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Using hierarchical Bayesian methods to examine the tools of
decision-making

Michael D. Lee∗ Benjamin R. Newell†

Abstract

Hierarchical Bayesian methods offer a principled and comprehensive way to relate psychological models to data.
Here we use them to model the patterns of information search,stopping and deciding in a simulated binary comparison
judgment task. The simulation involves 20 subjects making 100 forced choice comparisons about the relative magnitudes
of two objects (which of two German cities has more inhabitants). Two worked-examples show how hierarchical models
can be developed to account for and explain the diversity of both search and stopping rules seen across the simulated
individuals. We discuss how the results provide insight into current debates in the literature on heuristic decision making
and argue that they demonstrate the power and flexibility of hierarchical Bayesian methods in modeling human decision-
making.

Keywords: hierarchical Bayesian models, Bayesian inference, heuristic decision-making, take-the-best, search rules,
stopping rules.

1 Introduction

To the cognitive scientist individual differences in behav-
ior can be both intriguing and annoying. We are all fa-
miliar with the subjects in our experiments who “don’t do
what they are supposed to do.” Sometimes these differ-
ent patterns of behavior are simply noise (the subject was
on a cell phone during the experiment), but often they are
due to legitimate responses that our theories and models
failed to anticipate or cannot explain.

The field of judgment and decision making is no ex-
ception to the challenge of individual differences. As
Brighton and Gigerenzer (2011) mention in passing, even
a theory as important and influential as Prospect The-
ory (Kahneman & Tversky, 1979) typically predicts only
75%-80% of decisions in two-alternative choice tasks,
and many models do much worse. How should we, as a
field, treat these individual differences and the challenges
they present for our models and theories?

One emerging approach for tackling these issues is
to use hierarchical Bayesian methods to extend existing
models, and apply them in principled ways to experimen-
tal and observational data (e.g., Lee, 2008, 2001; Nils-
son, Rieskamp, & Wagenmakers, 2011; Rouder & Lu,
2005, van Ravenzwaaij, Dutilh, & Wagenmakers, 2011;
Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakers,
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2010). This approach not only provide tools for inter-
preting individual differences, but also facilitates theory
building by providing a model-based account of why in-
dividual differences might arise. We think it is an espe-
cially interesting, important, and promising approach, be-
cause it deals with fully developed models of cognition,
without constraints on the theoretical assumptions used to
develop the models.1 Taking existing successful models
of cognition and embedding them within a hierarchical
Bayesian framework opens a vista of potential extensions
and improvements to current modeling, because it pro-
vides a capability to model the rich structure of cognition
in complicated settings.

To demonstrate the application of hierarchical
Bayesian methods to the modeling of heuristic decision-
making, we use a standard experimental setup that
requires subjects to make judgments about the rela-
tive magnitudes of two objects (size, distance, fame,
profitability, and so on). To perform these judgments
it is often assumed that subjects search their memory,
or external sources of information, for cues to help
differentiate objects. For example, an inference about
the relative size of two cities might be facilitated by cues

1Note, in particular, that we arenot requiring the models of decision-
making we consider to be so-called “rational” models that assume peo-
ple are Bayesian reasoners (Griffiths, Kemp, & Tenenbaum, 2008). We
are not using Bayesian inference as a metaphor for human cognition.
Rather, we are using it as a statistical and modeling tool to relate process
models of cognition to behavioral data (Kruschke, 2010; Lee, 2011). In
fact, it is the hierarchical (or multi-level) aspects of ourmodeling that
provide the important theoretical capabilities, with the Bayesian infer-
ence simply providing a complete and effective approach foranalyzing
these models.
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indicating which of the two cities is a capital, has an
airport, a university, and so on (Gigerenzer & Goldstein,
1996). Judgments are then determined by rules that use
the presence or absence of cues to provide estimates of
the desired criterion (i.e., number of inhabitants).2

Such tasks, although apparently simple, incorporate
several important features that need specification in the-
ories and models that wish to describe how subjects per-
form them. In this paper, we present two simple case
studies: the first focuses on information search, and
the second focuses on stopping rules. We show how
Bayesian inference allows information about these psy-
chological processes at the level of both individuals and
groups to be extracted from basic behavioral data, and
how hierarchical extension of the models allow deeper
psychological questions aboutwhy there is variation in
search and stopping to be addressed.

2 Modeling Search

Our case studies rely on an environment widely used in
the literature, in which 83 German cities are described
by 9 different cues, and the task is decide which of two
cities has the larger population (Gigerenzer & Goldstein,
1996). In a binary comparison task like this there are
different properties of cues that are relevant to the likeli-
hood of aiding judgment, and thus to the order in which
one might search through cues. For example, the cue “Is
the city the national capital?” is often very useful because
in most cases capital cities are the largest in the country
(with notable exceptions, such as Canberra), so if the cap-
ital cue is present it is highly likely that the city with that
cue has more inhabitants. However, for the vast major-
ity of cases a comparison on this cue will draw absent
values for both cities, because the majority of cities in a
country are not the capital. Thus, in terms of how often
a cue will provide you with diagnostic information, the
“national capital” cue is not at all useful.

Formally these qualities of cues can be thought of as
the validity and discriminability rate of a cue in a binary
comparison. Discriminability is the rate at which a cue
distinguishes between two objects. Validity is the rate at
which a cue, given it discriminates, indicates correctly
which of two objects should be chosen. There is ev-
idence from experimental investigations of search rules
(e.g., Newell, Rakow, Weston, & Shanks, 2004; Rakow,
Newell, Fayers, & Hersby, 2005) that both discriminabil-
ity and validity can be relevant to search, and that individ-
ual differences and task constraints might influence the
extent to which one or the other, or some combination

2Though see Brown and Tan (2011), Glöckner and Betsch (2008)
and Juslin and Persson (1999) for alternative conceptions of the judg-
ment process.

of the two dictates search through cues (e.g., Martignon
& Hoffrage, 1999). Our modeling of search in this case
study uses the different emphasis people might give to
discriminability and validity as a theoretical bases for in-
dividual differences in search, and shows how this theory
can be formalized within the hierarchical Bayesian ap-
proach.

2.1 Data

Figure 1 shows the experimental design and simulated
data.The top left panel shows how the 83 city objects are
defined in terms of the 9 cues. The objects are ordered
(left to right) in columns from highest to lowest in terms
of the population decision criterion. The cues correspond
to rows, and the presence of a dot indicates that a cue be-
longs to an object. A few objects are depicted with verti-
cal lines intersecting each cue that they possess (labeled
o1 to o8); these are used in our subsequent worked exam-
ples to illustrate different patterns of search, stopping and
choice. For example, the first object is highlighted as o1,
and has cues 1, 2, 4, 5, 6 and 7. The top right panel shows
how the 9 cues vary in terms of their discriminability (i.e.,
the proportion of stimulus pairs for which one has the cue
and the other does not) and validity (i.e., the proportion of
pairs for which the stimulus with the cue is higher on the
criterion, given that the cue discriminates). Each of the 9
cues is represented by a red cross, showing the discrim-
inability and validity of that cue. For example, the first
cue (corresponding to “national capital” in the German
cities dataset) has a very low discriminability (because
for most city pairs, neither is the national capital), but a
very high validity (because when one city is the national
capital in a problem, one of those cities is Berlin, and it
is always the largest city).

The bottom panel of Figure 1 shows the decisions
made by 20 simulated subjects completing 100 two-
alternative forced-choice problems. The problem set was
chosen so that every object was included at least once,
each problem pair was unique, and the cue validities and
discriminabilities based on the problems were similar to
the validities and discriminabilities obtained by consid-
ering all possible object pairs. The simulated data indi-
cate when subjects chose the first of the presented objects.
Again, some of these problem pairs are labeled, to help
with later examples. For example, when objects o1 and
o2 are presented as a pair, the blue dots in the highlighted
column show which subjects chose o1 (i.e., all subjects
except 6, 9 and 15).

These data were generated by simulating subjects who
always applied a one-reason decision process, but used
different search orders. That is, we used the take-the-
best (TTB: Gigerenzer & Goldstein,1996) decision rule,
which stops search as soon as one discriminating cue is
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Figure 1: Stimuli defined in terms of cuxes (top left), with different cue discriminabilities and validities (top right).
The bottom panel shows artificial decision-making data for 20 subjects on 100 problem pairs, indicating when the first
stimulus in the pair was chosen. The highlighted objects o1 to o8 and the problems in which they are compared (e.g.,
o1–o8) are used to indicate individual differences in behavior. See main text for details.

1
2
3
4
5
6
7
8
9

Stimuli

C
ue

s

o1 o2 o7 o3 o8 o5o6o4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Problems

S
ub

je
ct

s

o1−o2 o3−o4

0 0.10.20.30.40.5
0.5

0.6

0.7

0.8

0.9

1

Discriminability

V
al

id
ity

1
23

456
7

8
9

found, but used orders other than the standard TTB one
that strictly follows decreasing cue validity. To simulate
the data, we assumed every subject used the same search
order for all their problems, but different subjects used
different orders.3 We discuss exactly how these search
orders were chosen once we have described the modeling
results.

For now, some hint of the individual differences in the
raw data can be gleaned from Figure 1. For example,
in the highlighted problem that compares the objects la-
beled o1 and o2, subjects make different decisions. This
could arise, for example, if some subjects (e.g., subject
1) were using a validity based order of search, and so
used cue 1 to make a decision thereby choosing object o1
because only object o1 has cue 1 (see top left panel). In
contrast, other subjects (e.g., subject 6) might incorporate
discriminability into their search order, and so consider
cue 3 before cue 1 and thus chose object o2 because only
object o2 has cue 3. For other problems, however, like
the highlighted o3–o4 comparison, there is consistency
across all subjects with all choosing o3, presumably be-
cause the cues that o4 possesses are a subset of those pos-

3The current assumption that a single subject uses the same search
order for all problems is a strong one, which could easily be relaxed in
an extended hierarchical model. The basic idea would be for trial-by-
trial variability in search orders for a subject, sampled from an overar-
ching distribution on possible orders. This is an interesting direction for
future work.

sessed by o3. This subset relation can be seen clearly in
the upper left panel of Figure 1, because o3 has cue 4 and
cue 7 whereas o4 has only cue 7.

Thus, the modeling challenge is to take the information
in Figure 1, and make inferences about the search orders
individual subjects use, and how these search orders vary
across the subjects.

2.2 Models

Figure 2 shows the two search models we apply to the
decision data. On the left is a non-hierarchical model,
and on the right is a hierarchically-extended model.
Both models are shown using the formalism provided by
graphical models, as widely used in statistics and com-
puter science (e.g., Koller, Friedman, Getoor, & Taskar,
2007). A graphical model is a graph with nodes that
represents the probabilistic process by which unobserved
parameters generate observed data. We use the same
notation as (Lee, 2008), with observed variables (i.e.,
data) shown as shaded nodes, and unobserved variables
(i.e., model parameters to be inferred) shown as un-
shaded nodes. Discrete variables are indicated by square
nodes, and continuous variables are indicated by circu-
lar nodes. Stochastic variables are indicated by single-
bordered nodes, and deterministic variables (included
for conceptual clarity) are indicated by double-bordered
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Figure 2: Graphical models for the simple search estimationmodel (left side), and the hierarchically extended search
model (right side).
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nodes. Encompassing plates are used to denote inde-
pendent replications of the graph structure within the
model. Further details and tutorials aimed at cogni-
tive scientists are provided by (Lee, 2008) and Shiffrin,
Lee, Kim, & Wagenmakers (2008). The advantage of
graphical model implementation is that it automatically
allows a fully Bayesian analysis for inferences relating
the model to data, and can handle large and complicated
joint distributions of parameters, as needed, for example,
to examine combinatorial spaces of search orders. We
achieve this using standard WinBUGS software (Spiegel-
halter, Thomas, & Best, 2004), which applies Markov
Chain Monte Carlo computational methods (see, for ex-
ample, Chen, Shao, & Ibrahim, 2000; Gilks, Richard-
son, & Spiegelhalter, 1996; MacKay, 2003) to make in-
ferences about model parameters and data. WinBUGS
scripts, Matlab code, and all the relevant data for all of
our models and analysis are provided as supplementary
materials along with this paper on the page for this issue:
http://journal.sjdm.org/vol6.8.html.

In the non-hierarchical model on the left of Figure 2,
the decision made by theith subject on thejth problem
is yij = 1 if the first object (object “a”) is chosen, and
yij = 0 if the second object (object “b”) is chosen. Be-
cause these data are observed, the node is shaded, and
because they are discrete, it is square. The cues for the
objects in thejth problem are given by the vectorsaj

andbj , and are also known and discrete. If theith subject
searches the cues in an order given by the vectorsi, then

the TTB model will choose eitheraj or bj , depending on
which has the first discriminating cue in the search order
si, or will choose at random if there is no discriminating
cue. This choice is represented by the nodetij , which
is double-bordered because it is a deterministic function,
defined as

tij =











γ if TTBsi
(aj , bj) = a

1 − γ if TTBsi
(aj , bj) = b

0.5 otherwise,

where TTBsi
(aj , bj) is the TTB model, andγ is a

decision parameter controlling the probability that the
deterministic TTB choice is made. From this genera-
tive process, the decision data are distributed asyij ∼

Bernoulli (tij). Using this model of the data, it is pos-
sible to infer a posterior distribution for the unknown
search order for each subject. In other words, this model
provides an ability to estimate search order from decision
data, at the level of individual subjects.

The model on the right in Figure 2 shows how a hier-
archical Bayesian approach can ask the deeper psycho-
logical question ofwhy different people might have dif-
ferent search orders. In this model, search orders are
generated by weighting information about both cue va-
lidity and discriminability. Formally, thei subject has
a weightwi that combines the validityvk and discrim-
inability dk of thekth cue to givewivk+(1 − wi) dk, and
the order of these weighted sums gives the search order
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over the cues. Under this approach, purely validity-based
search, as in TTB, corresponds to one extreme where
wi = 1, whereas purely discrimination-based research
corresponds to the other extreme wherewi = 0. The
model assumes that the weights follow a population-level
normal distribution (i.e., different people have different
weights, but there is a still a pattern at the population
level), so thatwi ∼ Gaussian (µ, σ)

I(0,1), with weakly
informative priorsµ, σ ∼ Uniform (0, 1).

We use aγ ∼ Uniform (0.5, 1) prior, reflecting the as-
sumption that decisions will generally follow TTB. This
corresponds to an assumption about the decisions that fol-
low at the termination of search. In the literature, decision
rules are perhaps less controversial, since most models
simply state that one chooses the option pointed to by one
(or more) of the cues. However, the extent to which such
a rule should be applied deterministically or with some
probability of error remains an area of contention. This
is, for example, one of the issues in the debate between
Brighton and Gigerenzer (2011) and Hilbig and Richter
(2011). Here, we make a probabilistic assumption, con-
sistent with the “accuracy of execution” formulation used
by Rieskamp (2008).

The most interesting psychology in the modeling is
that the hierarchical extension gives a theory of individ-
ual differences, as coming from different emphasis being
placed on cue validity and discriminability in determin-
ing cue search order. It also naturally combines these
individual differences with the idea of population-level
structure, not letting the weights vary arbitrarily, but ex-
plaining them as coming from an overarching distribu-
tion. Thus, using the hierarchical model, the decision
data can be used to infer group parameters likeµ andσ,
and individual parameters like the weightswi and search
orderssi.

2.3 Results

Figure 3 summarizes some of the main results of the mod-
eling.4 Each panel corresponds to a subject, and the true
search order used to generate their data is shown at the
top of the panel. The histograms show how close the in-
ferred search orders are to this truth, using the standard
Kendall Tau measure of distance between order (i.e., how
many pair-wise swaps it takes to change the inferred order
into the true order). The yellow (light) distribution cor-
responds to the non-hierarchical model, while the green
(dark) distribution corresponds to the hierarchical model.

4All of our modeling inferences in this paper are based on running
2 chains of 10,000 samples, after a 100 sample burn-in (i.e.,samples
that are generated, but not used in inference). We checked convergence
using the standard̂R statistic (Brooks & Gelman, 1997) for every pa-
rameter, and always found it to be between 0.99 and 1.01, indicating
convergence.

Inset within each figure is the posterior over thewi weight
parameter for each subject, with its true data-generating
value shown by the line.

Subjects 4 and 20 are good examples to focus on to dis-
cuss the general results. These two subjects give differ-
ent emphases to discriminability and validity, reflected in
their weights and search orders. Subject 4 tends to search
cues that are higher in validity first (cues 2,3,1), accord-
ing to the subject’s higher valuewi = 0.66. In contrast,
subject 20 searches the cue with the highest discrimina-
tion rate first (cue 7) since they place less emphasis on
validity, as shown by the lower valuewi = 0.48.

The hierarchical model is able to infer these weights
reasonably well (the distributions around the true value
are relatively narrow), and produces excellent estimates
of the search order (the greatest mass is on the true or-
der). The modal inferred order is exactly correct, and
the remainder of the inferences are within one or two
swaps. It is clear for these subjects, and more generally
across all subjects, that the hierarchical model inferences
of search order are superior to those provided by the non-
hierarchical model. This is because, in the hierarchical
model, what is learned about one subject can be used to
assist inferences about another, and is a good example of
what is called “shrinkage” or “sharing strength” in statis-
tics (e.g., Gelman, Carlin, Stern, & Rubin, 2004).

Not shown in Figure 3 are the inferences made about
the other parameters. For both models, the expected pos-
terior of the decision parameterγ = .95, and for the hi-
erarchical model, expected posteriors for the overarch-
ing group distribution over the relative emphasis on va-
lidity and discrimination wereµw = 0.54 andσw = .10.
These are all close to the true generating values of 0.5 and
0.1 for the mean and standard deviation, and 0.95 for the
decision parameter. These results show how the models
can make inferences about decision processes, and group-
level properties of the subjects.

3 Modeling Stopping

In our first example all simulated subjects used a one-
discriminating cue stopping rule. The accuracy and ro-
bustness of such rules has been discussed at great length
in the context of heuristics like TTB and recognition (e.g.,
Czerlinski, Gigerenzer, & Goldstein, 1999; Gigerenzer
& Goldstein,1996; Katsikopoulos, Schooler, & Hertwig,
2010). These simple rules are often contrasted against
rules that require more information, including tallying
and weighted-additive (WADD) rules, but do not neces-
sarily improve the accuracy of predictions.

However, experiments that have investigated the stop-
ping rules adopted by participants reveal mixed evidence:
some participants use frugal rules often, some less so,
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Figure 3: Performance of the two search models. Each panel corresponds to a subject, and their true cue search order
is shown at the top. The histograms show the distribution of inferred search orders in terms of their tau distance from
the true order. The green (dark) distribution is for the hierarchical model, and the yellow (light) distribution is for
the non-hierarchical model. The inset shows the posterior distribution over the weight parameter in the hierarchical
model, relative to the true value shown by the blue line.
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some never (e.g., Newell & Shanks, 2003). Environmen-
tal factors dictate their use, to some extent, such as the
presence of costly cues increasing the use of frugal rules
(Newell, Weston, & Shanks, 2003), but there are always
individual differences across subjects in the same deci-
sion environment (e.g., Lee & Cummins, 2004; Newell &
Lee, in press). Our second example examines how such
patterns might arise.

3.1 Data

In our second example, we generated data by simulat-
ing subjects who always used the same search order
(the7, 2, 3, 4, 6, 5, 1, 8, 9 order used by subject 20 in our
search example), but used different stopping rules. In par-
ticular, we used stopping rules using minimal cue search
or encouraging extensive cue search. We describe the ex-
act nature of the simulation process once we have pre-
sented the modeling results.

For now, the data are shown in Figure 4. Again, some
indication of the different stopping rules can be gleaned
from the raw data. While there is consistency in prob-
lems like the highlighted o5–o6 comparison, which is not
surprising given that object o6 has absent values for all

cues (see top left panel of Figure 1 ), problems like o7–o8
show individual differences (6 subjects chose o7 with the
remainder choosing o8). Looking at the cue structure of
o7 and o8 (top left panel of Figure 1 ), it is clear that cue
7 provides some early evidence for o8 in the search or-
der, but this evidence would later be compensated by the
greater evidence cue 3 provides for o7 if a more conser-
vative stopping rule was used to allow for longer search.

As for our search example, the modeling challenge is
to take the information in Figure 4, and make inferences
about the stopping rules individual subjects use, and how
these rules vary across the subjects.

3.2 Models

Figure 5 shows the two models we applied to the stop-
ping data. On the left is a simple mixture model that as-
sumes every subject either uses a TTB strategy, in which
a decision is made from the first discriminating cue, or a
WADD strategy, in which all cues are used, and a deci-
sion is made based on the total evidence.5 In this graphi-
cal model, thezi parameter functions as an indicator vari-

5We measure evidence on the natural log-odds scale, so that the in-
crement provided by a discriminating cue with validityvk is log

vk

1−vk

.
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Figure 4: Artificial decision-making data for 20 subjects on100 problem pairs, indicating when the first stimulus in
the pair was chosen. The comparisons between objects o5– o6,and o7–o8 highlight individual differences, and are
discussed in the main text.
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able, withzi = 1 if the ith subject uses TTB, andzi = 0
if they use WADD. This indicator variable is distributed
according to an (unknown) base-rate of TTB subjects in
the population, so thatzi ∼ Bernoulli (φ). The deter-
ministic nodeθij for theith subject is then given by

θij =































γ if TTBs (aj, bj) = a andzi = 1

1 − γ if TTBs (aj, bj) = b andzi = 1

γ if WADDs (aj , bj) = a andzi = 0

1 − γ if WADDs (aj , bj) = b andzi = 0

0.5 otherwise,

with yij ∼ Bernoulli (θij). We use a φ ∼

Uniform (0.25, 0.75) prior, reflecting the assumption that
we believe there are significant numbers of both TTB and
WADD subjects, but we do not know the exact propor-
tions.6 We use aγ ∼ Uniform (0.5, 1) prior on the deci-
sion parameter, as before.

The hierarchically extended graphical model on the
right of Figure 5 provides an account of why people
have different stopping rules. It uses the idea that peo-
ple search until they have some criterion level of evi-
dence in favor of one stimulus over another, as per se-
quential sampling interpretations of decision-making in
cue search tasks (Lee & Cummins, 2004; Newell, 2005).
This theoretical conception is consistent with accounts of
simple decision-making that emphasize desired levels of
confidence as key mechanisms, as in the pioneering work
of Vickers (1979) and later similar ideas in Hausmann
and Lage (2008).

6We include this assumption not because it follows from any aspect
of the current simulated data, but because it demonstrates how a reason-
able substantive assumption can easily be incorporated in aBayesian
analysis.

Formally, the criterion evidence level isei for the
ith subject, and is assumed to come from one of two
group-level Normal distributions with means and stan-
dard deviationsµ1, µ2, σ1, σ2. The zi indicator vari-
able now controls which distribution theith subject
draws their evidence criterion value from, so thatei ∼

Gaussian (µzi
, σzi

). We again place weakly informative
priors on the means and standard deviations, and include
an order constraint in the priors on the means, so that
µ1 ≤ µ2.

The deterministic decision now follows the sequential
sampling model, so that

θij =

{

γ if SEQ(s,ei) (aj , bj) = a

1 − γ if SEQ(s,ei) (aj , bj) = b,

whereSEQ(s,ei) (aj, bj) gives the choice (a or b) that
the sequential sampling model makes using a search or-
ders to criterion level of evidenceei on stimuliaj and
bj .

3.3 Results

Figure 6 summarizes the results of applying the two stop-
ping models to the artificial data. The top row corre-
sponds to the simple mixture model. The top-left panel
shows the inferences about whether each subject used
TTB or WADD, as given by the posterior ofzi. It is clear
that 7 subjects were classified as using a TTB stopping
rule, with the remaining 12 using WADD. The other pan-
els in the top row show the posterior distributions over
φ and γ, corresponding to inferences about the base-
rate of TTB use, and the probability of following the
deterministic TTB and WADD strategies in making de-
cisions. These results show how a simple hierarchical
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Figure 5: Graphical models for the simple stopping estimation model (left side), and the hierarchically extended
stopping model (right side).
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Bayesian mixture model provides a complete and princi-
pled approach to identifying which subjects use different
stopping rules, which is a common methodological chal-
lenge in the heuristic decision-making literature (Bröder
& Schiffer, 2006; Newell & Lee, in press; Rieskamp &
Otto, 2006).

The middle row of Figure 6 presents the same analy-
ses for the extended sequential sampling model based on
evidence accumulation. The results are extremely sim-
ilar, highlighting that the same information about stop-
ping rule use can be extracted within the sequential sam-
pling framework. The bottom row shows some of the ad-
ditional psychological information gained by moving to
this framework. The bottom-left panel shows the group-
level distribution of evidence for the two distributions,
with the green (dark) distribution corresponding to the
low evidence (essentially, TTB) group, and the yellow
(light) distribution corresponding to the high evidence
(essentially, WADD group). These evidence values are
then interpreted in sequential sampling model terms in
the bottom right panel, showing the evidence bounds
needed for decision-making on the o7–o8 problem’s pat-
tern of evidence accrual. The dotted black line sums
the evidence provided by cues as search progresses. The
green (dark) evidence threshold is relatively low, so a sin-
gle discriminating cue provides sufficient evidence for the
o8 decision. The yellow (light) evidence threshold is very
high, so that all cues are searched, leading to o7 being
chosen.

The results for the hierarchical model tell us something
about different levels of evidence people may require, to
explain their different stopping rules. But the results also
tell us something about what we do not know, because

of limitations in the environment used in the experiment.
The actual distributions of evidence parameters we used
to generate the data had means of 1 and 10 for the TTB
and WADD groups respectively, with standard deviations
of 0.2 and 3, and a decision parameter of 0.95. The in-
ferences in Figure 6 are consistent with these generating
values, but are not very precise. In particular, the dif-
fuse distribution for the high evidence group in the lower-
left panel of Figure 6 shows that, once a threshold level
of about 2 is required, the sequential sampling stopping
rule shown in the lower-right panel leads to all cues be-
ing examined, as per the WADD strategy. If people are
using finer-grained intermediate evidence values, as they
were in these simulated data, the environment used in
the current experiment is not able to make this distinc-
tion. The fault here lies with the environment, rather than
the inference method. The cue structure of the problems
available in the German cities domain simply do not al-
low for diagnosis of some range of evidence values from
decision-making behavior.One way to overcome this lim-
itation would be to use environments with cue validities
that allow for more compensatory decisions. In the cur-
rent setting, the diffuse inference distributions are appro-
priate, showing both what is and is not known about un-
derlying parameters from the available behavioral data.

4 Conclusion

We hope to have demonstrated that hierarchical Bayesian
modeling can provide a principled way to understand and
explain the diversity found in a standard judgment task.
One of the most compelling features of the hierarchical
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Figure 6: Performance of the two stopping models. The top rowshows the inferences about TTB and WADD strategy
use, and the base-rate (φ) and decision (γ) parameters for the mixture model. The middle row shows the same
inferences for the hierarchically extended model. The bottom row shows the distribution of evidence values inferred
by the hierarchical model (bottom left), and their interpretation as threshold levels of evidence within a sequential
sampling of stopping for the problem o7–o8 (bottom right).
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Bayesian approach is that it encourages deeper theoriz-
ing and the construction of more psychologically com-
plete models Lee (2011), because the graphical model-
ing framework makes it easy to implement and evalu-
ate new ideas. For example, it is natural to ask whether
the extended model of search we presented, weighting
both validity and discriminability, is more accurate than
the original TTB validity-only approach. Both accounts
are easy to implement as graphical models, and easy
to compare directly, using the Bayesian model compar-
ison approach described by Wagenmakers, Lodewyckx,
Kuriyal, and Grasman (2010). As another example, it is
straightforward to develop a model that incorporates both
the searching and stopping processes, which we consid-
ered separately. This would constitute a more complete
model of heuristic decision-making, and allow informa-
tion about both searching and stopping operate, and how
they interact, at both the individual and group level, to be
inferred from behavioral data.

There is also, however, clearly still more that we need
to understand. For example, while the models we have
considered can explain why one might see individual dif-
ferences in search and stopping rules (e.g., because in-
dividuals weight discrimination and validity differently),
they cannot reveal how people arrive at those differ-

ent search orders. In other words, while our hierarchi-
cal extensions involve theoretical accounts of searching
and stopping, they are necessarily incomplete theories.
A fuller account would presumably incorporate aspects
of individual differences related to intelligence, person-
ality, and so on, describing how they relate to differ-
ences in decision-making behavior (Bröder, 2003; Hilbig,
2008). More complete theories incorporating these fac-
tors could naturally be incorporated within the hierarchi-
cal Bayesian approach.

Whether one conceptualizes the tool(s) that people use
for tasks of this kind as comprising numerous heuris-
tics contained within a toolbox (e.g., Gigerenzer & Todd,
1999) or a single “tool” that can incorporate heuristics
as special cases (Glöckner, Betsch, & Schindler, 2010;
Lee & Cummins, 2004; Newell, 2005; Newell & Lee,
in press), both need to provide accounts of how differ-
ent heuristics are selected for different decision tasks
(Gigerenzer & Gaissmaier, 2011; Rieskamp & Otto,
2006), or analogously, how and why new and successful
parameter combinations are set for each type of problem
(Marewski, 2010; Newell & Lee, 2011).

We are optimistic that using the hierarchical Bayesian
methods demonstrated here will provide a window on this
process and in so doing bring a new perspective to the
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debates between “toolbox” and “single-tool” interpreta-
tions of decision making (e.g., Gigerenzer & Gaissmaier,
2011; Glöckner et al., 2010; Hilbig, 2010; Newell, 2005;
Newell & Lee, in press). More importantly we hope that
other researchers see the potential for these methods to
advance understanding across the wide range of higher-
level cognitive phenomena that are relevant to judgment
and decision making (e.g., Lee, 2008; Nilsson et al.,
2011; van Ravenzwaaij et al., 2011).
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