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Abstract

We apply a cognitive modeling approach to the problem of measuring expertise on rank ordering

problems. In these problems, people must order a set of items in terms of a given criterion (e.g.,

ordering American holidays through the calendar year). Using a cognitive model of behavior on this

problem that allows for individual differences in knowledge, we are able to infer people’s expertise

directly from the rankings they provide. We show that our model-based measure of expertise outper-

forms self-report measures, taken both before and after completing the ordering of items, in terms of

correlation with the actual accuracy of the answers. These results apply to six general knowledge

tasks, like ordering American holidays, and two prediction tasks, involving sporting and television

competitions. Based on these results, we discuss the potential and limitations of using cognitive

models in assessing expertise.

Keywords: Expertise; Knowledge; Prediction; Ordering problem; Ranking problem; Wisdom of

crowds; Model-based measurement

1. Introduction

Understanding expertise is an important goal for cognitive science, for both theoretical

and practical reasons. Theoretically, expertise is closely related to the structure of individual

differences in knowledge, representation, decision making, and a range of other cognitive

capabilities (Wright & Bolderm, 1992). Practically, the ability to identify and use experts is

important in a wide range of real-world settings. There are many possible problems that

people can tackle using their expertise, including estimating numerical values (e.g., ‘‘what

is the length of the Nile?’’), predicting categorical future outcomes (‘‘who will win the
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FIFA World Cup?’’), and so on. In this article, we focus on the problem of ranking a set of

given items in terms of some criterion, such as ordering a set of cities from most to least

populous, or predicting the final rankings of teams in a sporting competition.

One prominent theory of expertise argues that the key requirements are discriminability

and consistency (Shanteau, Weiss, Thomas, & Pounds, 2002; Weiss & Shanteau, 2003).

Experts must be able to discriminate between different stimuli, and they must be able to

make these discriminations reliably or consistently. Protocols for measuring expertise in

terms of these two properties are well developed, and have been applied in settings as

diverse as livestock judgment (Phelps & Shanteau, 1978), audit judgment, personnel hiring

(see Shanteau et al., 2002), medical assessment (Williams, Haslam, & Weiss, 2008), aero-

nautical risk perception (Pauley, O’Hare, & Wiggins, 2009), and decision making in the oil

and gas industry (Malhotra, Lee, & Khurana, 2007). However, because these protocols need

to assess discriminability and consistency, they have two features that will not work in all

applied settings. First, they rely on knowing the answers to the discrimination questions.

Second, they must ask the same (or very similar) questions of people repeatedly, to assess

consistency, and so are time consuming. Given these limitations, it is perhaps not surprising

that expertise is often measured in simpler and cruder ways, such as by self-report.

In this article, we approach the problem of expertise from the perspective of cognitive

modeling. The basic idea is to build a model of how a number of people with different levels

of expertise produce judgments or estimates that reflect their knowledge. This requires

making assumptions about how individual differences in knowledge are structured, and how

people apply decision-making processes to their knowledge to produce answers.

There are two key attractive properties of this approach. The first is that, if a reasonable

model can be formulated, the knowledge people have can be inferred by fitting the model to

their behavior. This avoids the need to rely on self-reported measures of expertise, or to use

elaborate protocols to extract a measure of expertise. The cognitive model does all of the

work, providing an account of task behavior that is sensitive to the latent expertise of the

people who do the task.

The second attraction is that expertise is determined by making inferences about the

structure of the different answers provided by individuals. This means that performance

does not have to be assessed in terms of an accuracy measure relative to the ground truth.

It is possible to measure the relative expertise of individuals, without already having the

expertise to answer the question. This feature is especially important because it means our

approach extends naturally to prediction tasks where, by definition, there exists no ground

truth at the time expertise must be assessed.

The structure of this article is as follows. We first describe an experiment that asks people

to rank order sets of items and rate their expertise both before and after having done the

ranking. We then describe a simple cognitive model of the ranking problem and use the

model to infer individual differences in the precision of the knowledge each person has. In

the results section, we show that this individual differences parameter provides a good mea-

sure of expertise, in the sense that it correlates well with actual performance. We also show

it outperforms the self-reported measures of expertise. We conclude with some discussion

of the strengths and limitations of our cognitive modeling approach to assessing expertise.
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2. Experiment

2.1. Participants

A total of 70 participants completed the experiment. Participants were undergraduate stu-

dents recruited from the University of California, Irvine subject pool, and they were given

course credit as compensation.

2.2. Stimuli

We used six general knowledge rank ordering problems, all with 10 items, as shown in

Table 1. All involve general ‘‘book‘‘ knowledge and were intended to be of varying levels

of difficulty for our participants and lead to individual differences in expertise. We also used

two prediction problems. The first involved prediction of the order of the 32 teams in the

U.S. National Football League (NFL) at the end of the 2010 season. The second involved

predicting the order in which the 20 contestants in the television show ‘‘Survivor: Nicara-

gua’’ would be eliminated.

2.3. Procedure

The experimental procedure involved three parts. In the first part, participants completed

a pre-test self-report of their level of expertise in the general content area of each of the

problems. This was done on a 5-point scale, simply by asking questions like ‘‘Please rate,

on a scale from 1 to 5, where 1 is no knowledge and 5 is expert, your knowledge of the order

of American holidays.’’

In the second part, participants completed each of the eight ranking problems in a random

order. Within each problem, the items were presented in an initially random order and could

then be ‘‘dragged and dropped’’ to any part of the list to update the order. Participants were

Table 1

The six general knowledge rank ordering problems. Each involves 10 items, shown in correct order

Holidays Landmass Amendments US Cities Presidents World Cities

New Year’s Russia Freedom of speech and religion New York Washington Tokyo

Martin Luther

King

Canada Right to bear arms Los Angeles Adams Mexico City

President’s China No quartering of soldiers Chicago Jefferson New York

Memorial United States No unreasonable searches Houston Monroe Sao Paulo

Independence Brazil Due process Phoenix Jackson Mumbai

Labor Australia Trial by jury Philadelphia Roosevelt Delhi

Columbus India Civil trial by jury San Antonio Wilson Shanghai

Halloween Argentina No cruel punishment San Diego Roosevelt Kolkata

Veteran’s Kazakhstan Right to non-specified rights Dallas Truman Buenos Aires

Thanksgiving Sudan Power for states and people San Jose Eisenhower Dhaka
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free to move items as often as they wanted, with no time restrictions. They hit a ‘‘submit’’

button once they were satisfied with their answer. No time limit was applied.

The third part of the experimental procedure was completed immediately after each final

ordering answer was submitted. Participants were asked to express their level of confidence

in their answer, again on a 5-point scale, where 1 was not confident at all and 5 was extre-
mely confident.

3. A Thurstonian model of ranking

We use a previously developed Thurstonian model of how people complete ranking tasks

(Steyvers, Lee, Miller, & Hemmer, 2009). Originally, this model was developed in the con-

text of the ‘‘wisdom of the crowd’’ phenomenon for ranking data. The basic wisdom of the

crowd idea is that the average of the answers of many individuals may be as good as or

better than all of the individual answers (Surowiecki, 2004). An important component in

developing good group answers is weighting those individuals who know more, and so the

model we use already is designed to accommodate individual differences in expertise.

We first illustrate the model intuitively and explain how its parameters can be interpreted

in terms of levels of knowledge and expertise. We then provide some more formal details,

including some information about the inference procedures we used to fit the model to our

data.

3.1. Overview of model

The model is described in Fig. 1, using a simple example involving three items and two

individuals. Fig. 1A shows the ‘‘latent ground truth‘‘ representation for the three items, rep-

resented by l ¼ (l1,l2,l3) on an interval scale. Importantly, these coordinates do not neces-

sarily correspond to the actual ground truth but rather represent the knowledge that is shared

among individuals. Therefore, these coordinates are latent variables in the model that can be

estimated on the basis of the orderings from a group of individuals.

Figure 1B,C shows how these items might give rise to mental representations for two

individuals. The individuals might not have precise knowledge about the exact location of

each item on the interval scale due to some sort of noise or uncertainty. This mental noise

might be due to a variety of sources such as encoding and retrieval errors. In the model, all

these sources of noise are combined together into a single Gaussian distribution.1

The model assumes that the means of these item distributions are the same for every indi-

vidual, because every individual is assumed to have access to the same information about

the objective ground truth. The widths of the distributions, however, are allowed to vary, to

capture the notion of individual differences. There is a single standard deviation parameter,

rj for the jth participant, that is applied to the distribution of all items. In Fig. 1, Individual 1

is shown as having more precise item information than Individual 2, and so r1 < r2.

The model assumes that the realized mental representation is based on a single sample

from each item distribution, represented by the crosses in Fig. 1, where xij is the sample for
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the ith item and jth individual. The ordering produced by each individual is then based on

an ordering of the mental samples. For example, Individual 1 in Fig. 1B draws sample for

items that leads to the ordering (1,2,3), whereas Individual 2 in Fig. 1C draws a sample for

the third item that is smaller than the sample for the second item, leading to the ordering

(1,3,2). Therefore, the overlap in the item distributions can lead to errors in the orderings

produced by individuals.

The key parameters in the model are l and rj. In terms of the original wisdom of the

crowd motivation, the most important parameter was l, because it represents the assumed

common latent ordering individuals share. Inferring this ordering corresponds to construct-

ing a group answer to the ranking problem. In our context of measuring expertise, however,

it is the rj parameters that are important. These are naturally interpreted as a measure of

expertise. Smaller values will lead to more consistent answers closer to the underlying

ordering. Larger values will lead to more variable answers, with more possibility of deviat-

ing from the underlying ordering.

3.2. Generative model and inference

Figure 2 shows the Thurstonian model, as it applies to a single question, using graphical

model notation (see Koller, Friedman, Getoor, & Taskar, 2007; Lee, 2008; Shiffrin, Lee,

(A)

(B)

(C)

Fig. 1. Illustration of the Thurstonian model. Panel A shows the latent locations l1,l2, and l3 of three items to

be ordered. Panels B and C show how this latent representation gives rise to mental representation and rankings

for two individuals. Mental representations xij for the jth individual on the ith item are a draw from the Gaussian

distribution centered on the location of the item. The ordering of these mental representation then gives the

reported ranking yj for the jth individual. Individual differences are captured by different standard deviations rj

for the individuals.

M. D. Lee et al. ⁄ Topics in Cognitive Science 4 (2012) 155



Kim, & Wagenmakers, 2008, for statistical and psychological introductions). The nodes rep-

resent variables and the graph structure is used to indicate the conditional dependencies

between variables. Stochastic and deterministic variables are indicated by single-and dou-

ble-bordered nodes, and observed data are represented by shaded nodes. The plate repre-

sents independent replications of the graph structure, which corresponds to individual

participants in this model.

The observed data are the ordering given by the jth individual, denoted by the vector

yj, where yij represents the item placed in the ith position by the individual. To explain

how these data are generated, the model begins with the underlying location of the items,

given by the vector l. Each individual is assumed to have access to this group-level

information. To determine the order of items, the jth individual samples for the ith item,

as xij � Gaussian(li,rj), where rj is the uncertainty that the jth individual has about the

items, and the samples xij represent the realized mental representation for the individual.

The ordering for each individual is determined by the ordering of their mental samples

yj ¼ Rank(xj).

We used a flat prior for l and a ri � Gamma(k,1/k) prior on the standard deviations,

where k is a hyper-parameter that determines the variability of the noise distributions across

individuals. We set k ¼ 3 in the current modeling but plan to explore a more general

approach, where k is given a prior, and inferred, in the future.

Although the model is straightforward as a generative process for the observed data,

some aspects of inference are difficult because the observed variable yj is a deterministic
ranking. Yao and Böckenholt (1999), however, have developed appropriate Markov chain

Monte Carlo (MCMC) methods. We used an MCMC sampling procedure that allowed us

to estimate the posterior distribution over the latent variables xij, rj, and l, given the

Fig. 2. Graphical model representation of the Thurstonian model, showing how latent item locations l combine

with individual expertise rj to generate mental representations xj, on which the observed ranking data yj are

assumed to be based.
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observed orderings yj. We use Gibbs sampling to update the mental samples xij, and

Metropolis-Hastings updates for rj and l. Details of the MCMC inference procedure are

provided in the Appendix.

4. Results

We first describe how we measure the accuracy of a rank order provided by a participant,

as a ground truth assessment of his or her expertise. We then examine the correlations

between this ground truth and their pre- and post-reported self-assessments, and the model-

based measure.

4.1. Ground truth accuracy

To evaluate the performance of participants, we measured the distance between their pro-

vided order and the correct orders given in Table 1. A commonly used distance metric for

orderings is Kendall’s s, which counts the number of adjacent pairwise disagreements

between orderings. Values of s range from 0 £ s £ n(n)1)/2, where n is the number of items

for the problem. A value of zero means the ordering is exactly right, and a value of one

means that the ordering is correct except for two neighboring items being transposed, and so

on, up to the maximum possible value. For the 10-item general knowledge questions, this

maximum is 45. The maximum s is 496 for the NFL prediction question, and 190 for the

Survivor prediction question.

4.2. Relationship between expertise and accuracy

Figure 3 presents the relationship between the three measures of expertise—pre-reported

expertise, post-reported confidence, and the mean of the posterior for the r parameter

inferred in the Thurstonian model—and the s measures of accuracy. In each plot, a point

corresponds to a participant. The plots are organized with the six problems in the first six

columns, the two prediction problems highlighted in the last two columns, and the three

measures as rows throughout. The Pearson correlations are also shown. Note that, for the

self-reported measures, the goal is for higher levels of rated expertise to correspond to lower

(more accurate) values of s, and so a negative correlation means the measure was effective.

For the model-based r measure, smaller values correspond to higher expertise, and so a

positive correlation means the measure is effective.

We consider first the results for the six general knowledge problems. Fig. 3 shows that

they ranged in difficulty. Looking at the maximum s needed to show results, the Holidays,

Amendments, U.S. Cities and Presidents questions were more accurately answered than the

Landmass and World Cities questions. This finding accords with our intuitions about the

difficulty of the topic domains and the experience of our participant pool.

More important, there is a clear pattern, for all six problems, in the way the

three expertise measures relate to accuracy. The correlations are generally in the right
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direction, but small in absolute size, for the pre-reported expertise. They continue to be

in the right direction, and have larger absolute values, for the post-reported confidence

measure of expertise.

Perhaps most important, it is also clear that the model-based measure improves upon the

self-reported measures. It achieves, for all but the world cities problem, an impressively

high level of correlation with accuracy. With correlations around 0.9, the r measure of

expertise explains about 80% of the variance between people in their accuracy in complet-

ing the rank orderings.2

In terms of the prediction results, the NFL problem shows a similar pattern of results.

There is a weak correlation, in the right direction, for both of the self-reported measures and

the final ground truth, and this correlation is significantly improved by the model-based

measure. The Survivor problem shows a slightly different pattern of results. In both the pre-

and post-report measures, all but one of the participants gave the lowest possible self-rating

of their expertise. This lack of variation makes correlation with the final ground truth impos-

sible. The model-based measure manages a correlation of 0.40, which is its poorest perfor-

mance over all of the eight problems, but impressive in the context of the lack of ability

people apparently have to report their relative expertise.

5. Discussion

We first discuss the advantages of the modeling approach we have explored for measur-

ing expertise, then acknowledge some of its limitations, before finally mentioning some pos-

sible extensions.
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Fig. 3. Results comparing the relationship between the three measures of expertise and the accuracy of individual

answers. The plots are organized with the measures in rows and the problems in columns.
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5.1. Advantages

Our results could be used to make a strong case for the assessment of expertise, at least in

the context of rank order questions, using the Thurstonian model. We have shown that, by

having a group of participants complete the ordering problem, the model can infer an inter-

pretable measure of expertise that correlates highly with the actual accuracy of the answers.

One attractive feature of this approach is that it does not require self-ratings of expertise.

It simply requires people to do the ordering problem. Our results indicate that the model-

based measure is much more useful than self-reported assessments taken before doing the

task, focusing on general domain knowledge, or confidence ratings done after having done

the task, focusing on the specific answer provided.

An even more attractive feature of the modeling approach is that it does not require

access to the ground truth to assess expertise. We used ground truth accuracies to assess

whether the measured expertise was useful, but we did not need the s values to estimate the

r measures themselves. The model-based expertise emerges from the patterns of agreement

and disagreement across the participants, under the assumption there is some fixed (but

unknown) ground truth, as per the wisdom of the crowd origins of the model.

A natural consequence is that the approach can be applied to prediction tasks, where there

is not (yet) a ground truth. While our results only include two such problems—one involv-

ing sporting prediction, and the other involving a television competition—the results for

both are encouraging. These findings are especially intruiging, because standard measures

of expertise based on self-report have often been found to be unreliable predictors of fore-

casting accuracy (e.g., Tetlock, 2006).

Most important, the potential for real-world application to prediction problems is clear.

While general knowledge can often be uncovered by means other than human judgment,

prediction often fundamentally relies upon the projections of experts in business, govern-

ment, sport, military, and other settings. The predictions our participants made about the

performance of NFL teams are the type of predictions that need to be made in the context of

sports betting, for example, and being able to identify expertise in making those predictions

is an important real-world problem.

5.2. Limitations

A basic property of the approach we have presented is that it involves assessing the rela-

tive expertise for a large group of people. There are two inherent limitations with this. One

is that a possibly quite large number of participants needs to complete the task. How many

people are required for our results to hold is an interesting question for future research. The

other limitation is that the measure of expertise makes sense as a comparison between indi-

viduals and predicts their relative performance, but it does not automatically say anything

about the absolute level of performance. As the results in Fig. 3 show, the relationship

between r and s is well correlated, but with different slopes and intercepts. This means we

cannot equate an inferred r value for the expertise of an individual with a predicted s level

of accuracy. We can merely say which individuals are more accurate.
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For this reason, our approach is best suited to real-world problems, where the goal is to

be able to find the most expert individuals from a large pool. If more precise statements

about levels of accuracy are important the sorts of protocols we mentioned in Section 1,

measuring discriminability and consistency, seem likely to be better suited.

Another basic limitation of our approach is that it relies on assuming there is one underly-

ing truth, and people have knowledge of this truth that, while inaccurate, is not systemati-

cally distorted. If the knowledge that most people use to provide rankings is fundamentally

wrong, or if there are multiple different justified answers, it is unlikely our approach will be

effective. Systematic error could arise in practice if there is a widely held erroneous belief.

Multiple truths could arise in practice if, for example, different cultures have different justi-

fiable beliefs, as in Cultural Consensus Theory (Romney, Batchelder, & Weller, 1987). We

think both of these issues could potentially be addressed with more complicated cognitive

models than the one assumed in Fig. 2, using hierarchical models to capture systematic dis-

tortions, and mixture models to accommodate multiple truths (Lee, 2011). But these exten-

sions remain a challenge for future work.

5.3. Extensions

Our current results are specific to rank ordering tasks, but the basic approach could be

applied to other sorts of tasks for expressing knowledge and expertise. One obvious possibil-

ity is estimation tasks, in which people have to give values for quantities (Merkle & Stey-

vers, 2011). It should also be possible to develop suitable models for tasks, such as multiple

choice questions, where the answers are discrete and nominally scaled.

Our analysis considered each problem as independent of the others, which seems reason-

able as a starting point. However, if there was reason to believe a domain-level expertise

might exist for a set of related problems (e.g., if we had believed there was expertise for city

populations, linking the U.S. and World Cities questions), that assumption could be incorpo-

rated into the model. The basic idea would be to create a hierarchical model, with a single r
for each participant that applied to all of the relevant problems in the domain (e.g., Klemen-

tiev, Roth, Small, & Titov, 2009). Usually, when hierarchical assumptions are reasonable,

they improve inference, leading to better estimates of parameters from fewer data. As such,

this is an interesting possibility worth exploring, both to test the theoretical assumption of

domain-level expertise and to make the measurement of expertise more efficient in practical

applications.

6. Conclusion

In this article, we have developed and demonstrated a model-based approach to measur-

ing expertise for rank ordering problems. The approach simply requires people to complete

the problem on which their expertise is sought, with parameter inference then automatically

providing the measure of expertise. The method was shown to work extremely well, on both

general knowledge and prediction problems. It allowed the inference of expertise measures
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that correlated strongly with the actual accuracy of people’s performance, and providing

significantly better information that two self-reported measures.

Notes

1. In our experiment, participants give only one ranking for each problem. Therefore, the

model cannot disentangle the different sources of error related to encoding and retrieval.

2. A legitimate concern is that the correlations for the Thurstonian model benefit from r
being continuous, whereas the pre- and post-report measures are discrete. To check

this, we also calculated correlations for the Thurstonian model using five binned val-

ues of r and found correlations of 0.88, 0.88, 0.80, 0.77, 0.92, 0.54, 0.67, and 0.42 for

the eight problems, in the order shown left to right in Fig. 3. These correlations are

only slightly different from those shown, and they support the same conclusions.
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Appendix: MCMC details

In the first Gibbs sampling step, we sample a value for each xij conditional on all other

variables. Using Bayes rule and the conditional independencies in the model, this distribu-

tion can be evaluated by

pðxij j li;rj; yj;x�ijÞ / pðyj j xjÞpðxij j li;rjÞ; ð1Þ

where x)ij refers to all samples x for individual j except the sample for the ith item. The

distribution p(xij Œli,rj) has a Gaussian distribution and p(yj Œxj) is

pðyj j xjÞ ¼ 1 if yj ¼ RankðxjÞ
0 otherwise.

�
ð2Þ

Taken together, the sampling distribution for xij conditional on all other variables can be

evaluated by

xij j li;rj; xlj; xuj � TruncGaussxlj;xujðli; rjÞ: ð3Þ

The sampling distribution is the Truncated Gaussian with the lower and upper bounds

determined by xlj and xuj, respectively. The values xlj and xuj are based on the next smallest

and largest values from xj relative to xij. Specifically, if p(i) denotes the rank given to item i
and p)1(i) denotes the item assigned to rank i, l ¼ p)1(p(i) ) 1), and u ¼ p)1(p(i) + 1). We

also define xlj ¼ )¥ when p(i) ¼ 1, and xuj ¼ ¥, when p(i) ¼ N. With these bounds, it is

guaranteed that the samples satisfy Eq. 2 and the ordering of samples xj is consistent with

the observed ordering yj for the jth individual.
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We update the group means l using a Metropolis Hastings step. We sample a new mean

li from a proposal distribution Qðl0i j liÞ and accept the new value with probability

min 1;
pðl0ijxi�; rÞ
pðlijxi�; rÞ

Qðlijl0iÞ
Qðl0ijliÞ

� �
: ð4Þ

With Bayes rule and a uniform prior on li, the first ratio can be simplified to

pðl0ijxi�;rÞ
pðlijxi�;rÞ

¼
Y
j

pðxijjl0i;rjÞ
pðxijjli;rjÞ

¼ exp � 1

2

X
j

ðxij � l0iÞ
2 � ðxij � liÞ2

r2
j

 !
:

ð5Þ

For the proposal distribution, we use a Gaussian distribution with mean equal to the cur-

rent mean, Qðl0ijliÞ � Gaussianðli; fÞ, where the standard deviation f controls the step

size of the adjustments in li.

We update the standard deviations for each individual rj using another Metropolis

Hastings step. We sample a new standard deviation rj from a proposal distribution Qðr0jjrjÞ
and accept the new value with probability

min 1;
pðr0jjx�j; lÞ
pðrjjx�j; lÞ

Qðrjjr0jÞ
Qðr0jjrjÞ

 !
: ð6Þ

Using Bayes rule, the first ratio can be simplified to

p r0jjx�j;l
� �
p rjjx�j;l
� � ¼ p r0jjk

� �
p rjjk
� � Y

i

p xijjr0j;li

� �
p xijjrj;li

� �

¼
p r0jjk
� �
p rjjk
� � exp � 1

2

r2
j � r0j

2

r2
j r
0
j
2

X
i

xij � li

� �2 !
:

ð7Þ

We use a Gamma proposal distribution with a mean set to the current value of

rj;Qðr0jjrjÞ � Gammaðrjm; 1=mÞ, and a precision parameter m.

For the MCMC sampling procedure, the proposal distribution parameters were f ¼
0.1,m ¼ 20, to give approximately an acceptance probability of 0.5. We started each chain

with randomly initialized values. In a single iteration, we used Eqs. (3), (4), and (6) to sam-

ple new values in the vectors x, l, and r, respectively. Each chain was continued for 500

iterations, and samples were taken after 300 iterations with an interval of 10 iterations. In

total, we ran eight chains and collected 160 samples.
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