
Psychology as an empirical science progresses through 
the development of formal models incorporating theoretical 
ideas designed to explain and predict observations of psy­
chological phenomena. This means that progress in psychol­
ogy relies upon the quality and completeness of the methods 
it uses to relate models and data. There is little point in devel­
oping theories and models, on the one hand, and collecting 
data in the laboratory or the field, on the other, if the two 
cannot be brought into contact in useful ways.

In most empirical sciences, Bayesian methods have been 
or are rapidly being adopted as the most complete and co­
herent available way to relate models and data. Psychology 
has long been aware of problems with traditional frequent­
ist and null hypothesis significance-testing approaches to 
parameter estimation and model selection, and recognition 
of the Bayesian alternative has followed from a number of 
recent articles and special volumes addressing the general 
issues (e.g., Lee & Wagenmakers, 2005; Myung, Forster, 
& Browne, 2000; Myung & Pitt, 1997; Pitt, Myung, & 
Zhang, 2002). Beyond the illustrative applications provided 
in these general treatments, however, there are few worked 
examples of Bayesian methods being applied to models at 
the forefront of modern psychological theorizing. Perhaps 
one reason is that there has been too great a focus on model 
selection defined in a narrow sense—particularly through 
the evaluation of Bayes factors—rather than a full Bayes­
ian analysis. The perception that all that Bayesian methods 
have to offer for the evaluation of psychological models is 
a number that quantifies how much more likely one model 
is than another is dangerously limiting.

In this article, three previous cognitive-modeling studies 
are revisited, in an attempt to demonstrate the generality 

and usefulness of the Bayesian approach. The three appli­
cations involve the multidimensional scaling (MDS) rep­
resentation of stimulus similarity (Shepard, 1962, 1980), 
the generalized context model (GCM) account of category 
learning (Nosofsky, 1984, 1986), and a signal detection 
theory (SDT) account of inductive and deductive reasoning 
(Heit & Rotello, 2005). These applications were chosen in 
order to span a range of cognitive phenomena, to involve 
well-known and influential theories, and to put a focus on 
the ability of Bayesian methods to provide useful answers 
to important theoretical and empirical questions.

Metric Multidimensional Scaling

Theoretical Background
MDS representations of stimuli use a low-dimensional 

metric space in which points correspond to stimuli and the 
distance between points models the (dis)similarity between 
stimuli (Shepard, 1957, 1962, 1987, 1994). Nonmetric vari­
eties of MDS algorithms for inferring these representations 
from pairwise similarity data (e.g., Kruskal, 1964) make 
only weak assumptions about the form of the relationship 
between distance in the MDS space and stimulus similarity. 
However, Shepard’s (1987) universal law of generalization 
provides a compelling case that similarity decays exponen­
tially with distance, at least for relatively low-level percep­
tual stimulus domains. We make this assumption1 and, so, 
will consider the form of metric MDS that uses an exponen­
tial decay function to relate distances to similarities.

A classic issue in all MDS modeling has involved the 
interpretation of different metric assumptions for the rep­
resentational space. Typically, consideration is restricted to 
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and discrete variables with square nodes and of represent­
ing unobserved variables without shading and observed 
variables with shading are used. Stochastic and determinis­
tic unobserved variables are distinguished by using single 
and double borders, respectively. Plate notation, enclosing 
with square boundaries subsets of the graph that have inde­
pendent replications in the model, is also used.

Figure 1 presents a graphical model interpretation of 
metric MDS. At the top is the coordinate representation 
of the points corresponding to stimuli. The pix node corre­
sponds to the single coordinate value of the ith stimulus on 
the xth dimension, and the surrounding plates repeat these 
coordinates over the i  1, . . . , N stimuli and x  1, . . . , D 
dimensions. The node is shown as single-bordered, without 
shading, and circular because each coordinate dimension is 
stochastic, unknown, and continuous, respectively. Under 
the Bayesian approach, a prior distribution for these coor­
dinate location parameters must be specified. We make the 
obvious prior assumption that all of the coordinates have 
equal prior probability of being anywhere in a sufficiently 
large (hyper)cube with bounds (δ, δ):

	 pix ∼ Uniform(− >δ δ δ, ); ,0 	 (2)

where “sufficiently large” means large enough that in­
creasing δ does not alter the posterior distribution over 
the coordinate point parameters.

the Minkowskian family of distance metrics. For points pi  
( pi1, . . . , piD) and pj  ( pj1, . . . , pjD) in a D-dimensional 
space, the Minkowski r-metric distance is given by

	 d p pij ix jx

r

x

D
r

1

1/

.	 (1)

The r  1 (city block) and r  2 (Euclidean) cases are usu­
ally associated with so-called separable and integral stimu­
lus domains, respectively (Garner, 1974; Shepard, 1991). 
The basic idea is that many stimulus domains, such as dif­
ferent shapes or different sizes, have component dimen­
sions that can be attended to separately. These are termed 
separable and are well modeled by the distance metric that 
treats each dimension independently in accruing distance. 
Other stimulus domains, such as color, however, have 
component dimensions that are fused and not easily distin­
guished, and so the comparison of stimuli involves all of 
the dimensions simultaneously. These are termed integral 
and are well modeled by the familiar Euclidean distance 
metric. In addition, metrics with r  1 have been given 
a psychological justification (e.g., Gati & Tversky, 1982; 
Shepard, 1987, 1991) in terms of modeling stimuli with 
component dimensions that “compete” for attention.2

Despite the theoretical elegance of this framework for 
relating the Minkowskian metric family to core psycho­
logical properties of stimulus domains, there have been 
few attempts to infer r from similarity data by using MDS 
modeling. Shepard (1991) has presented a focused attack 
on the problem that gives a good account of the capabili­
ties and pitfalls of using standard methods. The basic ap­
proach is a brute force one of applying standard nonmet­
ric MDS algorithms assuming a large number of different 
r values and comparing the solutions on the basis of a 
measure of goodness of fit.

Besides the set of computational problems that are noted 
by Shepard (1991), which are severe enough to preclude 
even considering the theoretically interesting possibilities 
with r  1, this approach suffers from failing to account for 
the functional form effects of model complexity inherent 
in varying the metric parameter. Since the value of r dic­
tates how the coordinate location parameters interact, dif­
ferent values of r will certainly change the functional form 
of parametric interaction and, hence, the complexity of the 
metric space representational model being considered. One 
of the great attractions of Bayesian inference is that, through 
its basis in a coherent and axiomatized probabilistic frame­
work for inference, model complexity issues such as these 
are automatically handled in a principled way.

Graphical Model for MDS
All of the Bayesian models in this article rely on posterior 

sampling from graphical models (see Griffiths, Kemp, & 
Tenenbaum, in press, and Jordan, 2004, for psychological 
and statistical introductions, respectively). In these models, 
nodes represent variables of interest, and the graph struc­
ture is used to indicate dependencies between the variables, 
with children depending on their parents. The conventions 
of representing continuous variables with circular nodes Figure 1. Graphical model for metric multidimensional scaling.
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ern Bayesian inference for complicated models proceeds 
computationally by drawing samples from the posterior 
distribution. We implement our graphical models using 
WinBUGS (Spiegelhalter, Thomas, & Best, 2004), which 
uses a range of Markov chain Monte Carlo computational 
methods, including adaptive rejection sampling, slice sam­
pling, and Metropolis–Hastings (see, e.g., Chen, Shao, & 
Ibrahim, 2000; Gilks, Richardson, & Spiegelhalter, 1996; 
Mackay, 2003), to perform posterior sampling.

For the MDS model in Figure 1, each posterior sample 
lists values for the unobserved variables

	 r p p d dND NN, , , . . . , , , . . . , .τ 11 11( ) 	 (6)

The basic principle of posterior sampling is that, over a large 
number of samples, the relative frequency of a particular 
combination of parameter values’ appearing corresponds to 
the relative probability of those values in the posterior dis­
tribution. This correspondence allows the information that 
is conceptually in the exact joint posterior distribution to be 
accessed approximately by simple computations across the 
posterior samples. For example, a histogram of the sampled 
values of a variable approximates its marginal posterior 
distribution, and the arithmetic average over these values 
approximates its expected posterior value. Considering 
the sampled values of one variable, for only those samples 
where another variable takes a specific value, corresponds 
to considering a conditional probability. Considering the 
combination of values taken by two or more variables cor­
responds to considering their joint distribution, and so on.

Inference From MDS Data
Our MDS applications consider three sets of individual-

participant similarity data. Initial investigations with av­
eraged data, of the type considered by Shepard (1991), 
showed clearly that the repeated measures nature of 
individual-participant data was important for making 
sound inferences about the metric structure of the repre­
sentational space. This is consistent with results showing 
that averaging similarity data with individual differences 
can systematically affect the metric structure of MDS 
spaces (see Ashby, Maddox, & Lee, 1994; Lee & Pope, 
2003). Only three data sets could be found for which raw 
individual-participant data were available and for which 
reasonable predictions about the separability or integrality 
of the stimulus domain could be made.

The first of these related to rectangles of different height 
with interior line segments in different positions, using 
eight of the possibilities in a 4  4 factorial design, as re­
ported by Kruschke (1993). The second related to circles 
of different sizes with radial lines at different angles, fol­
lowing (essentially) a 3  3 factorial design, as reported by 
Treat, MacKay, and Nosofsky (1999). The third related to 
10 spectral colors, as reported by Helm (1959). Previous re­
sults would strongly suggest the first two of these domains 
are separable, whereas the colors are integral. Also, on the 
basis of previous analyses (e.g., Lee, 2001; Shepard, 1962) 
and the explicit two-factor combinatorial designs for two of 
these stimulus domains, a two-dimensional representational 
space was assumed for all three stimulus domains.

The metric parameter r that is the focus of this appli­
cation is also a stochastic, unobserved, and continuous 
node. Following the earlier discussion, a prior distribution 
is used that is uniform over the theoretically interpretable 
interval between zero and two:
	 r ∼ Uniform(0 2, ). .	 (3)

Given the value of r and the coordinate locations pix, the 
pairwise distances dij are automatically given by Equa­
tion 1. In the graphical model in Figure 1, this means that 
the dij node is double-bordered, to indicate that it is deter­
ministic, and has as parents the r and pix nodes. The dij node 
is encompassed by two plates, i  1, . . . , N and j  1, . . . , 
N, to express the repetition over all pairs of N stimuli.

The similarity data considered here provide similarity 
ratings for each pair of stimuli as generated independently 
by K participants. The observed similarity between the ith 
and the jth stimuli given by the k th participant is denoted 
sijk and, so, is enclosed by an additional plate represent­
ing the k  1, . . . , K participants. These similarities are 
assumed to be generated as the exponential decay of the 
distance between these points but are subject to noise and, 
so, are stochastic, observed, and continuous. The noise 
process is assumed to be a zero-mean Gaussian with com­
mon variance across all participants and stimulus pairs. 
The precision (i.e., the reciprocal of the variance) is rep­
resented by the stochastic, unobserved, and continuous 
parameter τ, so that

	 s d
ijk ij
∼ Gaussian exp ( )( ), ,τ 	 (4)

with the standard (see Spiegelhalter, Thomas, Best, & 
Gilks, 1996) near noninformative prior distribution for 
the precision
	 τ ε ε∼ Gamma ( , ), 	 (5)

where ε  .001 is set near zero.3

Posterior Inference in Graphical Models
The graphical model in Figure 1 defines a precise and 

complete probabilistic relationship between the MDS pa­
rameters—the coordinate locations of stimulus points and 
the metric parameter—and the observed similarity data. 
Bayesian inference uses this relationship to update what 
is known about the parameters, converting prior distribu­
tions to posterior distributions on the basis of the evidence 
provided by data.

The graphical model is a generative one, specifying how 
stimulus points and a metric combine to produce similarity 
data. Once similarity data are observed, inference is the 
conceptually easy process of reversing the generative pro­
cess and working out what stimulus points and metric are 
likely to have produced the data. The posterior probability 
distribution represents this information, specifying the rela­
tive probability that each possible combination of stimulus 
points and metric is the one that generated the data.

Although conceptually straightforward, for most inter­
esting cognitive models, it will not be possible to find the 
posterior distribution analytically, and it is also unlikely 
that standard approximations will be very useful. Mod­
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Summary
This application considered a Bayesian formulation of 

metric MDS modeling for similarity-based representation. 
The formulation was not intended to be definitive: It ne­
glected issues of dimensionality determination and made 
plausible, but contestable, assumptions about the form of 
the generalization gradient and the distribution of empirical 
similarity. The present model also assumed that there are no 
individual differences in the stimulus representations for 
different participants. All of these issues await fuller explo­
ration within a Bayesian graphical model framework.

What the application does show, however, is that even 
with this simple formulation, a Bayesian approach au­
tomatically provides useful information not available in 
previous analyses. It provides a full posterior distribution 
over the location of the points representing stimuli, without 
the need to make distributional assumptions about these 
posteriors, as with many probabilistic MDS methods (e.g., 
Ramsay, 1982). Under the sampling approach to Bayesian 
inference, posterior distributions are not constrained to fol­
low any particular distribution but are free to take the form 

For each data set, we calculated 5,000 such samples 
after a 1,000-sample “burn-in” period (i.e., a period of 
sampling that is not recorded but allows the Markov chain 
to converge to sampling from the posterior distribution). 
We used multiple chains to check convergence and ob­
served a small proportion of these chains showing a de­
generate behavior, with r becoming trapped near zero. 
Although this behavior requires an explanation in the fu­
ture, these chains were removed from the present analysis. 
Postprocessing of the posterior samples for the coordinate 
location parameters was also required, to accommodate 
natural translation, reflection, and axis permutation in­
variances inherent in the MDS model. We achieved this by 
translating to center at the origin, reflecting where neces­
sary so that both coordinate values for the first stimulus 
were positive, and permuting the axes where necessary so 
that the first coordinate value was larger than the second.

Figure 2 shows 50 randomly selected posterior samples 
for the stimulus points, displaying the representations that 
have been inferred from each data set. In panel A, the eight 
stimuli are appropriately located within the 4  4 facto­
rial structure. In panel B, the nine stimuli follow the ex­
hausted 3  3 factorial structure. In panel C, the stimuli 
follow the standard color circle representation. In each 
case, showing samples from the distribution also gives 
a natural visual representation of the uncertainty in the 
coordinate locations.

Figure 3 shows the posterior distribution over the met­
ric parameter r for each of the three data sets. It is clear 
that the color stimulus domain, which is expected to be 
integral, is distributed between about 1.6 and 2.0. It is 
not clear whether the mode is slightly below 2.0 because, 
consistent with previous theorizing, full integrality is not 
achieved or as a consequence of the theoretically driven 
restriction4 that r not exceed 2.0. The posterior distribu­
tion of r for the radial lines and circles domains is cen­
tered about the value of 1.0 associated with separability, 
as would be expected. The rectangle with interior lines 
stimulus domain has a posterior that lies a little below 1.0. 
One plausible interpretation of this, again consistent with 
previous theorizing (e.g., Gati & Tversky, 1982; Shepard, 
1991), is that the rectangles and lines compete for atten­
tion and constitute a “highly separable” stimulus domain.

Figure  2. Multidimensional scaling representations for three stimulus 
domains—relating to (A) rectangles with interior lines, (B) circles with radial 
lines, and (C) spectral colors—showing samples from the posterior distribu-
tions for the representational points.
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The second issue is a model selection issue and relates to 
the augmented version of the GCM proposed by Nosofsky 
(1986). In this augmented version, not only are the stimuli 
presented in the category-learning task used in assessing 
similarity, but the other stimuli, shown in gray in Figure 4, 
from the domain encountered in the earlier identification 
task are also used. These additional stimuli are assumed 
to have a latent assignment to one of the categories. What 
inferences can be made about these assignments is not 
readily amenable to standard statistical testing, and so No­
sofsky (1986) considered every possible pattern of latent 
assignment to draw conclusions. Whether the improved fit 
of this augmented GCM over that of the original version 
warrants the additional model complexity is also a diffi­
cult question to answer using standard methods. Nosofsky 
(1986, p. 48) acknowledged this difficulty and argued for 
the appropriateness of the augmented model for just the 
criss-cross and interior–exterior category structures on the 
basis of unspecified “computer simulations.”

Graphical Model
Figure 5 presents a graphical model interpretation of 

the augmented GCM, as applied to the two-dimensional 
stimulus domain in Nosofsky (1986). The xi and θ nodes 
relate only to model comparison applications and will be 
explained in that section. At the top of Figure 5 are the 
observed MDS coordinate locations for the i  1, . . . , N 
stimuli in x  1, 2 dimensions. The attention weight param­
eter gives the relative emphasis given to the first stimulus 
dimension over the second. This weight is given a uniform 
prior distribution over the interval between zero and one:

	 w ∼ Uniform( , ).0 1 	 (7)

The version of the GCM used in Nosofsky (1986) models 
similarity as an exponentially decaying function of the 
squared distance between the representative points. These 
squared distances are represented by the d2

ij node, which is 
deterministically defined in terms of the attention weight 
and coordinates:

	 d w p p w p pij i j i j
2

1 1

2

2 2

2
1= −( ) + − −( )( ) . 	 (8)

Given these squared distances, the generalization gradient 
parameter c determines the similarities between each pair 
of stimuli:

	 s cdij ij= −( )





exp .
2

	 (9)

that follows from the specification of the model and the 
information provided by data. The present application also 
provides a full posterior distribution over the parameter 
indexing the metric structure of the space. This posterior 
is sensitive to differences in the functional form complex­
ity of parameter interaction, unlike the approach based on 
goodness of fit originally considered by Shepard (1991).

Category Learning

Theoretical Background
The GCM is a highly influential model of exemplar-

based category learning (Nosofsky, 1984, 1986). The 
model assumes that stimuli are represented as exemplars 
in memory according to a previously derived MDS repre­
sentation, which is subject to a selective attention process 
that weights the dimensions of the representation. The 
similarity between stimuli is modeled as an exponentially 
decaying function of distance in this transformed space, 
using a generalization gradient parameter. Category deci­
sions are made probabilistically according to the ratio of 
similarity between the presented stimulus and those in the 
different categories, using bias parameters that weight the 
different category responses.

Nosofsky (1986) presented a thorough and impres­
sive study of the performance of the GCM on individual-
participant data in related identification and two-category 
learning tasks. Of particular interest are the categorization 
tasks, which involved four different two-category struc­
tures, termed dimensional, criss-cross, interior–exterior, 
and diagonal. These category structures are shown in Fig­
ure 4. The stimuli are arranged in a 4  4 grid, corre­
sponding to their MDS representation. For each structure, 
the eight stimuli assigned to the two categories are shown 
as four black and four white squares in the grid, and the 
unassigned stimuli are shown as gray squares.

Of the many modeling issues Nosofsky (1986) ad­
dressed using these category structures, our focus will be 
on two. The first is an estimation issue and relates to the 
values of the attention, generalization, and bias param­
eters. In several places, theoretical questions are directly 
addressed by knowledge of the values that these param­
eters take, and Nosofsky (1986) reported standard tests of 
significance to decide, for example, whether attention was 
equally distributed over the two components of the stimuli. 
The posterior distribution over these parameters obtained 
automatically by Bayesian analysis contains the relevant 
information for addressing these sorts of inferences.

Figure 4. The four category structures used in the Nosofsky (1986) 
study. Based on Nosofsky (1986, Figure 5).
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stimulus, ranging over the N/2 such stimuli in each cat­
egory structure. The indicator variables zj represent the 
latent assignment of the jth unassigned stimulus, ranging 
over the N/2 such stimuli in each category structure. The 
latent variables are stochastic and are given a Bernoulli 
prior distribution with a rate of 1/2, making the stimuli 
equally likely a priori to be assigned to each category:

	 zj ∼ Bernoulli (1 2/ ). 	 (12)

From the similarities, bias, and assignments, the response 
probability for the ith stimulus being chosen as a member 
of the first category (“Category A”) is

	 r

b s s

b s s
i

ia iz
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ia iz
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	 (13)

The GCM uses these response probabilities to account 
for the observed data, which are the counts, ki, of the num­
ber of times the ith stimulus was chosen in Category A out 
of the ti trials on which it was presented. Accordingly, the 
counts ki follow a binomial distribution:

	 k r ti i i∼ Binomial , .( ) 	 (14)

Inference From Data
For each of the four category-learning data sets for 

Subject 1 in Nosofsky (1986), 100 chains were run col­
lecting 1,000 posterior samples drawn after a burn-in of 
1,000 samples. Each of the chains used a different ran­
dom initial pattern of assignment. For two of the category 
structures—the dimensional and interior–exterior ones—a 
single pattern of latent assignment was observed to domi­
nate the posterior. These patterns are shown, together with 
the original category structures, in Figure 6 and match ex­
actly those reported by Nosofsky (1986, Table 5).

Given the consistency in latent assignments, it is 
straightforward to interpret the posterior distributions for 
the attention, generalization, and bias parameters for each 
category structure, as is shown in Figure 7. These distribu­
tions are entirely consistent with the maximum-likelihood 
estimates reported by Nosofsky (1986, Table  5). The 
posterior distributions in Figure 7, however, carry use­
ful additional information, since they provide a complete 
characterization of the uncertainty in knowledge of each 
parameter. It is clear, for example, that attention in the 
interior–exterior condition has significant density at the 
theoretically important value of 0.5. It is also clear that 
the dimensional and interior–exterior bias and generaliza­
tion parameters are very likely to be different, since their 
posterior distributions do not significantly overlap.

Finally, it is worth noting that the posterior of the atten­
tion parameter for the dimensional condition shows how 
Bayesian methods naturally handle the theoretical restric­
tion of their range. Frequentist confidence intervals based 
on asymptotic assumptions are unlikely to be suitable for 
inference in cases such as these, and more difficult and 
ad hoc methods, such as bootstrapping, would probably 

The c parameter functions as an inverse scale (i.e., 1/c 
scales the distances), implying c2 functions as a precision, 
and is given the standard near noninformative prior:

	 c2 ∼ Gamma (ε ε, ), 	 (10)

where ε  .001 is set near zero. Both the distances and the 
similarities are repeated across all pairs of stimuli and, so, 
are enclosed in two plates.

The probability of responding to the i th stimulus is 
determined by the similarities between the stimuli, the 
response bias, and the assignment of the stimuli to the 
categories. The response bias b is stochastic, unobserved, 
and continuous and is given a uniform prior distribution 
over the interval between zero and one:

	 b ∼ Uniform(0 1, ). 	 (11)

The assignment of stimuli to the two categories is deter­
mined by two indicator variables. The indicator variables 
aj represent the known assignment of the j th presented 

Figure 5. Graphical model for the augmented generalized con-
text model.
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Figure 6. The augmented generalized context model latent assignments for 
the dimensional and interior–exterior structures.
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posterior samples in Figure 8 come from the marginal 
likelihood p (z | D), where D is the category-learning data. 
Only the marginal density accounts for model complexity, 
because it takes into consideration how likely a category 
representation is, averaged across all of the different pos­
sible values for attention, generalization, and bias.

Model Comparison
To address the model comparison issue of whether the 

additional complexity involved in allowing latent assign­
ments in the augmented GCM is justified by the data, the 
xi and θ nodes in Figure 5 are used. The xi nodes are latent 
indicator variables for each of the i stimuli being catego­
rized. These indicators determine whether or not the as­
sociated response probability ri uses the latent stimulus 
assignments zj as per the augmented GCM, or simply relies 
on the fixed assignments from the category-learning task 
given by aj.

Formally, this extension can be expressed by updating 
Equation 13 to Equation 15, as shown at the bottom of 
the page.

be required. In contrast, the Bayesian approach handles 
the constraint automatically and naturally.

Across the 100 chains, the posterior samples for the criss-
cross and diagonal category structures revealed two and four 
different patterns, respectively, of latent stimulus assign­
ment.5 These latent assignments are shown in Figure 8.

Only the latent assignments CI, DII, and DIV were 
identified by Nosofsky (1986). Considering the additional 
latent assignments for the diagonal structure is particu­
larly satisfying, because the total of four patterns exhausts 
the possibilities for Stimuli 7 and 10. In this way, the two 
newly found assignments complement and complete those 
already established. Of course, it is possible that by lower­
ing the threshold of goodness of fit used to find latent as­
signments, Nosofsky (1986) could also have found these 
new assignments. But it is important to understand that 
unlike the Bayesian results reported here, such an analy­
sis would not be sensitive to differences in the complex­
ity of different assignments. Formally, Nosofsky (1986) 
considered patterns of latent assignment on the basis of 
their maximum likelihood, p (z | w*, c*, b*, D), whereas the 
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by researchers in each specific context. For the present ap­
plication, we would conclude from Figure 9 that the aug­
mented GCM is a useful and justified theoretical extension 
for all but the dimensional category structure.

Summary
This application demonstrated the ability of Bayesian 

methods to improve both parameter estimation and model 
comparison for the GCM account of category learning. The 
parameter posterior distributions provide a complete repre­
sentation of what is known and unknown about the psycho­
logical variables—selective attention, stimulus generaliza­
tion, and response bias—used by the model to explain the 
observed category-learning behavior. Under the posterior 
sampling approach to Bayesian inference, these distributions 
are again not constrained to follow any particular distribution 
but are free to take the form that follows from the specifica­
tion of the model and the information provided by data.

A different sort of parameter estimation is demonstrated 
by the patterns of latent assignment in Figure 6. The aug­
mented version of the GCM involves an additional set of 
membership parameters, which indicate the assignment 
of untrained stimuli to the two categories. In contrast to 
the difficulties encountered by Nosofsky (1986) with 
standard methods, Bayesian inference applies exactly the 
same principles to estimating these discrete parameters as 
it does for the continuous attention, generalization, and 
bias parameters. For two of the category structures, the 
Bayesian analysis showed the same augmented assign­
ments as those originally found by Nosofsky (1986), but 
for the criss-cross and diagonal structures, it showed ad­
ditional and intuitively satisfying patterns of associating 
untrained stimuli with the categories, and made these in­
ferences with sensitivity to model complexity.

All of the indicators xi are assumed to support the stan­
dard and augmented GCM accounts according to a fixed 
underlying rate of use, θ. This rate of use is given a uni­
form prior distribution,

	 θ ∼ Uniform(0 1, ), 	 (16)

and its posterior provides a measure of the relative useful­
ness of the standard and augmented GCM accounts.

The posterior rate of use provides a measure of the rela­
tive importance of the two models in accounting for the way 
the participant categorized all of the stimuli. The nature of 
the measure is best understood by noting its relationship 
to the standard Bayes factor (see Kass & Raftery, 1995). If 
θ were given a prior that only allowed the possibility that 
every stimulus was categorized by the standard GCM, or 
every stimulus was categorized by the augmented GCM, 
the posterior distribution would naturally allow the estima­
tion of the Bayes factor. That is, the Bayes factor is a form of 
mixture estimation, when the only possible mixing rates are 
zero and one, because exactly one of the models is true. The 
assumption of a uniform prior employed here corresponds 
to allowing the possibility that neither model is exactly and 
exclusively true but both might be useful, and the issue of 
relative merit is the issue of what mixture of standard to 
augmented GCM can be inferred from the data.

This is the information provided by the posteriors for rate 
of use shown in Figure 9 for the four category structures. It 
is clear that the augmented GCM is rarely used for the di­
mensional category structure but is used significantly often 
for the other three structures, particularly in the case of the 
criss-cross and interior–exterior structures. In general, ex­
actly what rate of use is required before a model is declared 
necessary, or superior to a competitor, is a question of the 
standards of scientific evidence needed and must be made 

Figure 7. Posterior distributions for the augmented generalized context model pa-
rameters for two category-learning structures.
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To obtain empirical evidence for evaluating the SDT 
model, Heit and Rotello (2005) tested the inductive and de­
ductive judgments of 80 participants on eight arguments. 
They used a between-subjects design, so that 40 partici­
pants were asked induction questions about the arguments 
(i.e., whether or not the conclusion was “plausible”), 
whereas the other 40 participants were asked deduction 
questions (i.e., whether or not the conclusion was “neces­
sarily true”). For each participant, there were four signal 
questions, where the conclusions were plausible or neces­
sarily true, and four noise questions, where the conclusions 
were not plausible or necessarily true. Accordingly, the de­
cisions made by the participants had a natural characteriza­
tion in terms of hit and false alarm rates, which could then 
be converted to standard measures of discriminability (or 
synonymously, sensitivity) and bias using SDT.

In one of the key analyses of Heit and Rotello (2005), 
standard significance testing was used to reject the null 
hypothesis that there was no difference between discrim­
inability for induction and deduction conditions. Their 
analysis involved calculating the mean discriminabilities 
for each participant, using edge corrections where perfect 
performance was observed. These sets of discriminabili­
ties gave means of 0.93 for the induction condition and 
1.68 for the deduction condition. By calculating via the t 
statistic—and so, assuming associated Gaussian sampling 
distributions—and observing that the p value was less than 
.01, Heit and Rotello rejected the null hypothesis of equal 
means. According to Heit and Rotello, this finding of dif­
ferent discriminabilities provided evidence against the 
criterion-shifting unidimensional account offered by SDT.

Although the statistical inference methods used by Heit 
and Rotello (2005) are widely used and accepted, they 
explicitly or implicitly make a number of problematic 
assumptions that can be dealt with effectively by using 
the Bayesian approach. First, the uncertainty about the 

Finally, this application shows how Bayesian inference 
can provide answers for a difficult model selection prob­
lem that was not addressed in any formal way by Nosofsky 
(1986). Using a mixture modeling approach to compare 
the standard and the augmented GCM accounts, strong ev­
idence was found for the additional complexity of the aug­
mented account for three of the four category structures.

Signal Detection Model 
of Reasoning

Theoretical Background
Heit and Rotello (2005) have presented a clever model-

based evaluation of the conjecture that both inductive and 
deductive reasoning involve the same single psychologi­
cal dimension of argument strength (Rips, 2001). Heit and 
Rotello used SDT (for detailed treatments, see Green & 
Swets, 1966; Macmillan & Creelman, 2005) to model this 
conjecture. The basic idea is to assume that the strength of 
an argument is unidimensional but that different decision 
criteria control inductive and deductive reasoning. In par­
ticular, a relatively lesser criterion of argument strength 
is assumed to decide between weak and strong arguments 
for induction, whereas a relatively greater criterion de­
cides between invalid and valid arguments for deduction. 
Under this conception, deduction is simply a more strin­
gent form of induction. Accordingly, empirical evidence 
for or against the SDT model has strong implications for 
the many-threaded contemporary debate over the exis­
tence of different kinds of reasoning systems or processes 
(e.g., Chater & Oaksford, 2000; Heit, 2000; Parsons & 
Osherson, 2001; Sloman, 1998).

Figure 8. The augmented generalized context model latent as-
signments for the criss-cross and diagonal category structures.
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Figure 9. Posterior distribution of the rate at which stimuli are 
assigned to the augmented generalized context model (GCM), 
rather than to the standard GCM, for each of the four category 
structures.
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to be estimated is a distribution of individual-participant 
discriminabilities, with the parameters of this distribution 
becoming more certain as additional data become avail­
able. Bayesian methods naturally achieve this extension 
to accommodate individual differences using hierarchical 
models.

Graphical Model
Figure 10 shows a graphical model for a hierarchical 

version of SDT that allows for individual differences in 
discriminability and bias across participants and is very 
similar to that developed by Rouder and Lu (2005). The 
plate represents repetitions over participants. Within the 
plate, the graphical model shows the relationships for the 
ith participant between their discriminability di, bias ci, hit 
rate hi, and false alarm rate fi, and their observed counts of 
hit ki

h and false alarm k i
f decisions.

The discriminability of each participant is assumed to 
be a value drawn from an overarching Gaussian distribu­
tion with mean md and precision τd. Similarly, the bias of 
each participant is drawn from a Gaussian with mean mc 
and precision τc. This means that

	

d m

c m

i d d

i c c

∼

∼

Gaussian

Gaussian

,

, .

τ

τ

( )
( ) 	 (17)

These overarching Gaussians represent the individual dif­
ferences in discriminability and bias over participants. 
Their mean and precision parameters are given standard 
near noninformative priors:
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where ε  .001 is set near zero.
The discriminability and bias variables for each partici­

pant can be reparameterized according to equal-variance 
SDT into hit and false alarm rates, according to
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2

, 	 (19)

where Φ() is the standard cumulative Gaussian func­
tion. Finally, the counts of hit and false alarm decisions 
follow a binomial distribution with respect to the hit and 
false alarm rates, and the number of signal ts (i.e., valid 
or strong) and noise tn (i.e., invalid or weak) arguments 
presented, so that

	

k h t

k f t
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i
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,

, .

( )
( ) 	 (20)

Inference
The graphical model for SDT with individual differences 

was applied to both the induction and the deduction con­
dition data of Heit and Rotello (2005), drawing 100,000 

discriminability of each individual is ignored, since it is 
represented by a single point estimate. Intuitively, making 
decisions corresponding, for example, to three hits and 
one false alarm is consistent, to varying degrees, with a 
range of possible hit and false alarm rates and, hence, to 
varying degrees, with a range of discriminabilities. The 
Bayesian approach naturally represents this uncertainty by 
making prior assumptions about hit and false alarm rates 
and then using the evidence provided by the decisions to 
calculate posterior distributions. These posterior distribu­
tions are naturally mapped into posterior distributions for 
discriminability and bias according to SDT, which avoids 
the need for ad hoc edge corrections.

In addition, and perhaps more important, the statistical 
analyses undertaken by Heit and Rotello (2005) implicitly 
assume that there are no individual differences across par­
ticipants within each condition. The mean discriminabili­
ties for each group they calculate are based on the statisti­
cal assumption that there is exactly one underlying point 
that generates the behavior of every participant in that 
group. That is, all of the individual-participant data are 
used to estimate a single discriminability, with a standard 
error representing only the uncertainty about this single 
point. However, it seems psychologically implausible that 
there are not some individual differences in higher order 
cognitive abilities such as reasoning. Ideally, what ought 

Figure 10. Graphical model for signal detection theory analy-
sis allowing for Gaussian variation in discriminability and bias 
across participants.
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Discussion

The aim of this article was to demonstrate that Bayesian 
methods can be applied generally and usefully to aid in the 
understanding and evaluation of psychological models. 
The three applications tried to span a range of cognitive 
models and demonstrate a range of Bayesian analyses for 
addressing interesting theoretical questions informed by 
the available empirical data. In each case, the idea was 
to learn something useful through the Bayesian approach 
that would be difficult to achieve with the ways of relat­
ing models to data traditionally used in psychological 
modeling.

We concede that it is probably the case that the collec­
tion of ad hoc methods dominating current practice could 
be enlarged further with specific methods to achieve the 
outcomes reported here (after all, that is what ad hoc 
means). But the conceptual insight and technical skills 
needed to develop new methods stands in stark contrast to 
the conceptual simplicity and ease of implementation and 
analysis for the Bayesian graphical modeling approach.

To the extent that the applications succeeded in encour­
aging the use of Bayesian methods, a number of obvious 
questions arise. One has to do with the extent to which 
Bayesian methods can be applied to diverse types of cog­
nitive models and cognitive-modeling approaches. An­
other involves the scalability of computational forms of 
Bayesian inference to large-scale models and data sets. A 
final question involves the extent to which Bayesian infer­
ence is being used “just for data analysis,” rather than as 
a model of human cognition. Some tentative answers will 
be attempted.

samples after a burn-in period of 1,000 samples. One useful 
analysis of the full joint posterior distribution, concentrat­
ing on the group-level means of discriminability and bias 
for each condition, is shown in Figure 11. The main panel 
shows 500 random samples from the joint posterior of the 
means md and mc, shown as circles for the induction condi­
tion and crosses for the deduction condition. The side pan­
els show the marginal distribution for each of these means.

Figure 11 shows that the two conditions have different 
patterns of mean discriminability and bias. In particular, 
the induction condition seems to have worse mean dis­
criminability than does the deduction condition. It is also 
clear that there is a large negative bias for the induction 
condition, indicating a tendency to overrespond strong, 
whereas the deduction condition shows little if any bias 
toward overresponding valid.

Summary
The conclusion from the Bayesian analyses is that, in 

complete agreement with Heit and Rotello (2005), it is 
important to allow discriminability in the induction condi­
tion to be different from that in the deduction condition. 
The contribution of the Bayesian analysis is that this con­
clusion has been reached, unlike in the Heit and Rotello 
analysis, allowing for the possibility of individual differ­
ences in discriminability and bias across participants and 
accommodating the clear limitations in how accurately 
hit and false alarm rates can be estimated from only four 
observations per participant. In this way, the application 
demonstrates the ability of Bayesian methods to imple­
ment more realistic theoretical and methodological as­
sumptions in drawing inferences from data.

Figure 11. The main panel shows samples from the joint distribution of mean 
discriminability and mean bias, using circles for the induction condition and 
crosses for the deduction condition. The side panels show the corresponding 
marginal distributions, using solid lines for the induction condition and broken 
lines for the deduction condition.
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More generally, there is a natural tension in psycho­
logical modeling between building models and addressing 
data that have the scale and complexity needed to account 
for what goes on in the real world, on the one hand, and 
maintaining the ability to evaluate those models and data 
in rigorous ways, on the other. The advantage of the Bayes­
ian approach is that it guarantees a principled relationship 
between models and data. The potential of the Bayesian 
approach is that it will be able to accommodate progres­
sively larger and more sophisticated models and data.

Bayesian Modeling Versus Data Analysis
It is possible to draw a distinction between two ways that 

Bayesian ideas can be applied to the modeling of human 
cognition. One is to assume that the mind solves the infer­
ence problems it faces in a Bayesian way. That is, a theo­
retical assumption is made that the mind does Bayesian 
inference. Good recent examples of this approach include 
models of concept and category learning (e.g., Anderson, 
1991; Sanborn, Griffiths, & Navarro, 2006; Tenenbaum & 
Griffiths, 2001) and models of inductive inference and de­
cision making (e.g., Griffiths & Tenenbaum, 2005). These 
are impressive models and have significantly increased 
our understanding of the basic abilities of human cogni­
tion that they address.

The second way Bayesian ideas can improve our un­
derstanding of cognition is to use them to relate model to 
data, improving the ability to make inferences about pa­
rameters and models using the incomplete and uncertain 
information provided by empirical data. The applications 
in this article are largely of this type and are part of a more 
general enterprise that has addressed diverse areas from 
similarity modeling and structure learning (e.g., Navarro 
& Lee, 2004), response time distributions (Lee, Fuss, & 
Navarro, 2007; Rouder, Lu, Speckman, Sun, & Jiang, 
2005), and individual differences (e.g., Lee & Webb, 
2005; Navarro et al., 2006; Rouder & Lu, 2005).

Although the distinction between Bayesian models of 
cognition and Bayesian analyses of models of cognition is 
an intuitively appealing and practically useful one, it can 
mask a number of important issues. One issue is that the 
mere act of analyzing a model from the Bayesian perspec­
tive almost always requires making additional theoreti­
cal assumptions and, so, changes the model itself to some 
degree. Most obviously, this happens in specifying prior 
distributions for parameters, as in all of the applications 
presented here. Occasionally, existing theory will suggest 
a form for these priors, but more often the goal will be 
to specify priors that affect the posteriors following from 
data as little as possible. In either case, the introduction 
of priors makes new theoretical assumptions about the 
psychologically meaningful variables used by a model. 
In this sense, the adoption of Bayesian methods can never 
amount to “just data analysis.”

In some cases, applying Bayesian methods can have 
more dramatic theoretical consequences. One example 
is the Rescorla–Wagner model of classical conditioning, 
which, under a non-Bayesian treatment, does not predict 
backward-blocking effects (Rescorla & Wagner, 1972). 

Generality of Bayesian Methods
One thing that is clear from the three applications pre­

sented is that Bayesian analysis can be possible for models 
not originally developed in Bayesian terms. But a natu­
ral question is how generally psychological models can 
be accommodated in the structured probabilistic frame­
work needed for graphical model interpretation. Deter­
ministic (or qualitative) models that do not have an error 
theory—algorithmic models of decision making such as 
take-the-best (Gigerenzer & Goldstein, 1996) constitute 
one prominent example—clearly need some additional 
assumptions before being amenable to probabilistic treat­
ment. One promising source for providing principled error 
theories to such models are entropification methods aris­
ing from the minimum description length coding approach 
to model evaluation (Grünwald, 1998, 1999), which have 
already been applied successfully to a number of psycho­
logical models (e.g., Lee, 2006; Lee & Cummins, 2004).

Another class of psychological models that present 
a challenge are those that do not have a fixed set of pa­
rameters. Examples include the original version of the 
ALCOVE model (Kruschke, 1992) or the SUSTAIN 
model (Love, Medin, & Gureckis, 2004) of category 
learning, which specify processes for introducing ad­
ditional representation nodes within a task, so that their 
parameter sets change as a function of the data. The me­
chanics of the applications presented here, with their reli­
ance on WinBUGS and its associated standard Markov 
chain Monte Carlo methods, do not extend automatically 
to these types of models. Instead, a more general Bayes­
ian approach is required, using Bayesian nonparametric 
(also known as infinite dimensional) methods (Escobar 
& West, 1995; Ferguson, 1973; Ghosh & Ramamoorthi, 
2003; Neal, 2000). Navarro, Griffiths, Steyvers, and Lee 
(2006) provide a general introduction to many Bayesian 
nonparametric ideas and a specific application to model­
ing individual differences in psychology.

Scalability of Bayesian Methods
Bayesian inference relies upon the full joint posterior 

distribution over the model parameters as the basis for 
understanding and evaluating models against data. This 
is powerful, because the posterior represents everything 
that is known and unknown about the psychologically in­
teresting variables represented by the parameters. Ana­
lytic power, however, comes with a computational burden, 
and it is reasonable to ask how well the approach scales 
to large models or data sets. There seem to be grounds 
for optimism on this front. The topics model (Griffiths & 
Steyvers, 2002, 2004) of language processing, for exam­
ple, has been applied to a text corpus with about 2,000,000 
words and, hence, has successfully made inferences from 
data about the joint distribution of about 2,000,000 latent 
variables. Pioneering hierarchical and generative Bayes­
ian models in vision have also succeeded at impressive 
scales (e.g., Yuille & Kersten, 2006). The application of 
Bayesian methods in other fields, such as biology and 
machine learning, give successful examples at very large 
scales (e.g., Ridgeway & Madigan, 2003).
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the goals of modeling in empirical sciences such as psy­
chology. Psychological variables and processes are given 
formal expression by parameters and models, and the ra­
tionale for collecting experimental data is to refine our 
understanding of those variables and processes.

In this article, the aim has been to give worked exam­
ples applying Bayesian methods to models, showing how 
Bayesian analysis provides the tools to make inferences 
about hard but important research questions. The use of 
graphical models and posterior sampling has been em­
phasized as an easy and powerful method to undertake 
Bayesian analyses. The adoption of Bayesian methods for 
analysis promises to improve the way models are related 
to data, maximizing what we can learn from our ongoing 
efforts to develop theoretical models and gather empirical 
information.
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Historically, this failure has been remedied by making ad­
ditional theoretical assumptions and augmenting the basic 
model (e.g., Van Hamme & Wasserman, 1994). Dayan 
and Kakade (2001) have shown, however, that a Bayesian 
treatment of the basic learning mechanism underlying the 
Rescorla–Wagner model automatically predicts backward 
blocking. In this way, the Bayesian analysis lessens the 
appeal of the more complicated models that have been 
developed, and so the Bayesian analysis makes a strong 
contribution to the development of theory.

A final point is that Bayesian inference, by itself, will 
often not provide all of the ideas needed to model any 
significant part of human cognition and, so, will often re­
quire additional theory to be applied. This means it will 
be rare to have a purely Bayesian model of some aspect of 
cognition. As Griffiths et al. (in press) argued:

Bayesian inference stipulates how rational learners 
should update their beliefs in the light of evidence. 
The principles behind Bayesian inference can be ap­
plied whenever we are making inferences from data, 
whether the hypotheses involved are discrete or con­
tinuous, or have one or more unspecified free param­
eters. However, developing probabilistic models that 
can capture the richness and complexity of human 
cognition requires going beyond these basic ideas.

Two good recent examples are models of feature induction 
and stimulus similarity (Kemp, Bernstein, & Tenenbaum, 
2005; Kemp, Perfors, & Tenenbaum, 2004) and of sequen­
tial decision-making behavior (Lee, 2006). Both of these 
are hierarchical Bayesian models and rely entirely on the 
Bayesian approach to statistical inference to relate model 
parameters to data. Both also apply Bayesian methods to 
model the mind where those ideas are available, using, 
for example, Bayes’s theorem as an account of how in­
formation updates mental representations and how model 
averaging combines different mental hypotheses. But both 
models need to introduce non-Bayesian components to 
address the full range of phenomena they aim to explain. 
Kemp et al. (2005) used generative node-replacement 
graph grammars and diffusion processes over graphical 
structure to generate stimulus representations and model 
their relationships to one another. Lee (2006) relies on 
a simple finite state account for generating thresholds 
to guide decision making. None of these theoretical 
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as theoretical accounts of the mind and as a method for 
analyzing data.
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3. Gelman (2006) points out that this prior distribution, although 
very widely used, is problematic for small variances. For all of the ap­
plications reported here, the inferred variances are large enough to avoid 
this difficulty.

4. In an alternative analysis, r was given a prior that allowed values 
greater than 2.0. The posterior for r for the color data under these as­
sumptions retained a mode below 2.0 but had some significant density 
extending to 2.0 and beyond.

5. In this case, it would have been highly desirable to have ob­
served mixing within the chains, rather than relying on random initial 
assignments for a large number of chains. In other words, what posterior 
sampling should ideally be able to produce is a single chain that includes 
all of the patterns of latent assignment in proportion to their posterior 
density. What has been done is to combine many different chains to ap­
proximate this output. Nevertheless, the patterns of latent assignments 
observed are intuitively sensible, and we believe that they can be used 
to make inferences. But it is obviously necessary to treat measures such 
as the posterior densities of each latent assignment that could be derived 
from this analysis with caution.
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NOTES

1. We are aware of the argument that it is not clear that the exponential 
decay relationship applies as well to direct judgment of (dis)similarity as 
it does to the conditional probabilities obtained from identification confu­
sion or generalization experiments. In particular, nonmetric analyses of 
direct judgment data often show a relationship that is more nearly linear.

2. These interpretations of 0  r  2 also map naturally onto 
Shepard’s (1987) framework, corresponding to the full possible range 
of 1 to 1 correlations for the consequential regions that underpin his 
theoretical results. In contrast, other than for the supremum metric, it is 
difficult to give psychological meaning to metrics with r  2, and so our 
attention will be restricted to 0  r  2.


