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Abstract

This document is the technical on-line appendix to “The Random-
Effects prep Continues to Mispredict the Probability of Replication”.

Background

Killeen (2007) and Lecoutre and Killeen (this volume) describe a numerical
simulation for the calculation of prep within a random effects model. In the language
that is used to describe the model, one first selects a “literature”, as a draw from
a prior distribution δ0 ∼ N

(
0, τ 2

)
. Given a literature, “within-literature” parame-

ters δ1 and δ2 are drawn independently from a population distributed as N
(
δ0, τ

′2
)
.

Finally, values of effect statistics d and drep are drawn independently from popula-
tions distributed respectively as N

(
δ1, 2/n

)
and N

(
δ2, 2/n

)
; each of the two-group

experiments that generate d and drep is based on the same per-group sample size of
n = N/2, so that N is the total sample size for an experiment. We follow Lecoutre
and Killeen (this volume) in assuming that the variance governing the data from each
experiment is the same, and is known.

The variances τ 2 and τ ′2 are estimated by Killeen (2007) from a meta-analysis
of effect magnitudes obtained across many published social science literatures, In the
following we assume τ 2 = 0.3025 (τ = 0.55) and τ ′2 = 0.0784 (τ ′ = 0.28), as quoted
by Killeen (2007).

In his original article Killeen gave an explicit analytical expression for prep in a
special case of the random-effects model. Tailored to the assumption of known data



variance this expression reads

pR
rep = Φ


 |d|√

4
n

+ 2τ ′2


 .

Notation. We shall often find it convenient to write in terms of z = d
√

n/2,

ω2 = τ 2n/2, and ω′2 = τ ′2n/2. For example, the above equation becomes

pR
rep = Φ

(
|z| /

√
2√

1 + ω′2

)
. (1)

Note that this expression comes about by assuming that the prior governing δ0 is the
improper uniform density (Killeen, 2005). Note too that Equation 1 degenerates as
τ ′2 → 0 to the expression

prep = Φ

(
|z|√

2

)
(2)

that is familiar from a fixed-effects model.

Example. The numerical value of prep, for given experimental data, thus depends
on the model chosen to compute it. For instance, suppose an experiment based on
n = 25 yields d = 0.56. From Equation 2 we obtain prep = 0.92, whereas Equation 1
gives the less optimistic value 0.84, reflecting the additional “realization variance”
τ ′2.

What is prep Trying to Predict?

Despite our misgivings about the term “replication” (see Iverson, Lee, Zhang,
& Wagenmakers, 2009), we shall retain it. But to understand the construction of
prep in a random-effects model only underscores our misgivings. Having observed
experimental data (d, n) an experimenter is asked to predict the probability that a
second independent experiment within the same literature (but addressing a possibly
quite different research question) will yield data (drep, n) for which ddrep ≥ 0, and we
are puzzled why this particular event deserves the term replication. At any rate, the
experimenter is asked to predict the value of

p∗rep = Pr (ddrep ≥ 0 | δ2, d) = Φ
(
δ2 sgnd

√
n/2
)

. (3)

For this difficult task Killeen (2005) proposed the posterior predictive probability

prep = E
(
p∗rep | d

)
=

∫
p∗repf (δ2 | d) dδ2 = Pr (ddrep ≥ 0 | d) . (4)

In Killeen (2007) and again in Lecoutre and Killeen (this volume) it is claimed
that prep is quite accurate as a predictor of p∗rep and Figure 6 in Killeen (2007) and the
same Figure 4 in Lecoutre and Killeen (this volume) appear to bear out this claim.



But the claim flies in the face of commonsense. The only thing that our ex-
perimenter can know about drep resides in the data (d, n). Certainly those data can
be used profitably to update distributions of prior parameters δ0 and δ2 to their pos-
terior counterparts. All the same, considerable uncertainty attends those posterior
parameters, and in turn that uncertainty combines with sampling variability in drep to
produce large variability in the posterior predictive distribution f (drep | d) on which
the calculation of prep is based. We give detailed calculations, both numerical and
analytical, to support our view.

Evaluating prep as a Predictor: Our Way

If prep is to be useful as a predictor of p∗rep it will necessarily have to possess a
small mean-squared error of prediction, MSEP:

MSEP =

∫∫ (
prep − p∗rep

)2
f (δ2, d) dδ2 dd. (5)

However, numerical calculations show that MSEP is large, in agreement with com-
monsense but quite at odds with the simulations of Killeen (2007) and Lecoutre and
Killeen (this volume). For typical numerical values of

√
MSEP = RMSEP see Table 1

of our reply.

Evaluating prep as a Predictor: The Way of Lecoutre and Killeen

Killeen (2007) and Lecoutre and Killeen (this volume) plot what they call “ob-
tained” prep against what they call “predicted” prep. There is no mystery as to “pre-
dicted” prep: it is pR

rep as calculated by Equation 1. “Obtained” pO
rep requires a new

calculation based on the random-effects model that we described in detail above. Let
us now carry out this calculation.

We have, by definition, for the “obtained” version

pO
rep =

∫
p∗repf (δ2 | d) dδ2. (6)

The posterior density f (δ2 | d) can be computed from

f (δ2 | d) =

∫
f (δ2 | δ0) f (δ0 | d) dδ. (7)

once the posterior density f (δ0 | d) is calculated. This last task is not difficult, and
one finds that

δ0 | d ∼ N


d

ω2

1 + ω2 + ω′2 ,
2

n

ω2
(
1 + ω′2

)

1 + ω2 + ω′2


 . (8)



It follows from Equations 7, 8 and the model assumption δ2 | δ0 ∼ N
(
δ0, τ

′2
)

that

δ2 | d ∼ N


d

ω2

1 + ω2 + ω′2 ,
2

n


ω′2 +

ω2
(
1 + ω′2

)

1 + ω2 + ω′2




 . (9)

Finally, integrating out δ2 one has

drep | d ∼ N

(
d

ω2

1 + ω2 + ω′2 ,
2

n

((
1 + ω′2

)(
1 +

ω2

1 + ω2 + ω′2

)))
(10)

and Equation 6 is explicitly evaluated from Equation 10 as the “obtained”

pO
rep = Φ




|z|
(

ω2

1+ω2+ω′2

)

√
(1 + ω′2)

(
1 + ω2

1+ω2+ω′2

)


 . (11)

We thus come to understand that Kileen’s (2007) Figure 6, and Figure 4 in
Lecoutre and Killeen (this volume), is merely a plot of one version of prep, which we
have denoted pO

rep for which τ 2 = 0.3025 in Equation 11, against another version, pR
rep

for which τ 2 = ∞ in Equation 11 to give Equation 1. The functional dependence
of “obtained” pO

rep, given by Equation 11 on “predicted” pR
rep, given by Equation 1 is

shown in Figure ?? of the main body of our rejoinder. This very strange plot in no
way directly addresses, as we do in terms of RMSEP, the performance of pR

rep as a
predictor for p∗rep. The different calculations of prep, one by Equation 11, the other by
Equation 1, introduces a model-dependent “bias” that shows up in a decomposition
of MSEP that we discuss later.

Example (Continued). With d = 0.56, n = 25, τ 2 = 0.3025, and τ ′2 = 0.0784,
Equation 11 gives prep = 0.76. Killeen (2005) and Lecoutre and Killeen (this volume)
are clear about “the uncertainty inherent in values of prep less than 0.9.” In view of
this acknowledged “uncertainty”, which Lecoutre and Killeen (this volume) do not
attempt to quantify, let us compute how large an initial effect must be so that (with
the above values of n and of variances τ 2 and τ ′2) one is assured that prep ≥ 0.9. This
is a straightforward calculation from Equation 11 and we discover that |z| ≥ 3.547;
equivalently, for a per-group sample size of n = 25, we require |d| ≥ 1. In other
words, only initial effects that most of us would agree are obviously real qualify as
reliably replicable. One does not need to compute prep to be confident that such
large experimental effects will likely be found by others. But as things stand in the
literature, prep is recommended for use with much smaller observed effects, and it is
for those smaller effects that we have found the use of prep to be most problematic.



Credible Intervals for p∗rep

In Iverson et al. (2009), within the context of a fixed-effects model, we won-
dered why a Bayesian would report a single number prep, the expected value of p∗rep
conditional on d, rather than report the full posterior distribution of p∗rep expressed as
a function of δ2 | d. In particular, it is straightforward to compute credible intervals
for p∗rep and we do so now for our canonical example. We consider four combinations

of values of the prior variances τ 2 and τ ′2:

(a) τ 2 = ∞ and τ ′2 = 0
(b) τ 2 = 0.3025 and τ ′2 = 0

These two combinations each correspond to a fixed effects model. The combination
(a) gives prep as described by Killeen (2005) early on in his original article; i.e., prep

is computed from Equation 2. The combination (b) gives an example of a fixed
effects model calculation for prep that was discussed at some length in Iverson, Wa-
genmakers, and Lee (in press), where it was denoted pθ

rep and shown to take the value

Φ
(
|z| θ/

√
1 + θ

)
where θ = ω2/ (1 + ω2).

(c) τ 2 = ∞ and τ ′2 = 0.0784
(d) τ 2 = 0.3025 and τ ′2 = 0.0784.

These last two combinations require random effects model calculations. Combination
(c) corresponds to placing a flat, improper prior on δ0. The final combination (d)
reflects the model proposed on the basis of meta-analytic considerations that were
discussed above.

For each of these combinations we now give a 95% credible interval of values for
p∗rep conditional on our canonical data d = 0.56, n = 25. Each interval is accompanied
by the corresponding value of prep, the conditional expected value of p∗rep. Because the
density of p∗rep is in each case markedly skewed to the left our 95% credible intervals
are all one-sided.

(a) prep = 0.92, interval [.63, 1)
(b) prep = 0.88, interval [.54, 1)
(c) prep = 0.84, interval [.20, 1)
(d) prep = 0.76, interval [.12, 1).

In all cases the credible intervals are very broad and reflect considerable uncertainty
about values of p∗rep. The accompanying values of prep simply do not capture this
uncertainty. Note that the random-effects models involve greater uncertainty than
their fixed-effects counterparts. This is easy to understand from our analysis above,
and is why RMSEP values are even larger for random-effects models than for their
fixed-effects counterparts.

MSEP Decomposed

From Equation 5 we have



MSEP =

∫∫ (
prep − p∗rep

)2
f (δ2, d) dδ2 dd

=

∫ [∫ (
prep − p∗rep

)2
f (δ2 | d) dδ2

]
f (d) dd

=

∫ [
Var

(
p∗rep | d

)
+
(
E
(
p∗rep | d

)
− prep

)2]
f (d) dd. (12)

This decomposition of MSEP shows that the uncertainty in p∗rep, as given by its
posterior variance, provides the dominant contribution to MSEP. This fact is yet
another expression of our analysis. The second term in square brackets in Equation 12
involves a model-dependent bias which provides a typically much smaller contribution
than the variance. This bias is, in effect, what Lecoutre and Killeen (this volume)
discovered in their simulations and promptly confused with accuracy of prediction.

How pcoinc Arises as an Average Target for prep

A standard way to evaluate an estimator is to study its mean-squared-error
performance. A similar measure can be employed for problems of prediction (as here).

In ILW we considered the squared-error of prediction
(
prep − p∗rep

)2 | δ, d averaged
over many pairs (δ, d) according to various joint densities f (δ, d) = f (d | δ) f (δ)
that correspond to the various research strategies we envisaged. The standard fixed-
effects model is assumed whence it follows that Killeen’s prep = Φ

(
|z| /

√
2
)

and
p∗rep = Pr (ddrep ≥ 0 | δ, d) = Φ (∆ sgnd) is the true probability of replication in whose

evaluation we have used the convenient abbreviation ∆ = δ
√

n/2. Steps 1 and 2 of
our simulation algorithm provide the draws (δ, d). The remaining steps 3–7 provide
the appropriate mean-squared-error of prediction:

MSEP =

∫∫ (
prep − p∗rep

)2
f (δ2, d) dδ2 dd

It is useful to decompose this double integral by an initial integration over d, followed
by integration over δ. We have

MSEP =

∫ [∫ (
prep − p∗rep

)2
dd

]
f (δ) dδ

=

∫ [
Var

(
p∗rep | δ

)
+
(
E
(
p∗rep | δ

)
− prep

)2]
f (δ) dδ.

Note that

E
((

prep − p∗rep
)
| δ
)

= E (prep | δ) −E
(
p∗rep | δ

)

= E (prep | δ) −
(
Φ2 (∆) + Φ2 (−∆)

)

= E (prep | δ) − pcoinc



is a form of bias, the extent to which E (prep | δ) differs from its expected target value
E
(
p∗rep | δ

)
= pcoinc = Pr (ddrep ≥ 0 | δ). We also have

Var
(
prep − p∗rep | δ

)
= Var (prep | δ) + Var

(
p∗rep | δ

)
− 2Cov

(
prep, p

∗
rep | δ

)
,

from which we obtain the following decomposition:

MSEP =

∫ [
MSEEδ + Var

(
p∗rep | δ

)
− 2Cov

(
prep, p

∗
rep | δ

)]
f (δ) d δ, (13)

in which we have

MSEEδ = Var (prep | δ) + (E (prep | δ) − pcoinc)
2

= E
(
(prep − pcoinc)

2 | δ
)
.

For small values of the non-centrality parameter ∆ = δ
√

n/2, common enough
in our science, the first term MSEE dominates the contribution of the other two
terms. The acronym MSEE stands for mean-squared-error of estimation and is com-
puted as if prep was employed solely for the purpose of estimating E

(
p∗rep | δ

)
= pcoinc.

The decomposition in Equation 13 of MSEP shows that MSEE is critical to an un-
derstanding of the ability of prep to predict p∗rep and justifies plotting pcoinc as an
“average target” for the predictions of prep, as in Figure 1 in ILW and Figure 6 in
ILZW. The lessons learned from the decomposition in Equation 13 stand in sharp
distinction to the view of LK who claim that “ILWs conclusions are irrelevant for
Killeens statistic.”. Readers can decide for themselves whose view of matters is the
more compelling, informative, and relevant.
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