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a b s t r a c t

In 2005 Psychological Science, the flagship journal of the Association for Psychological Science, began their
current practice of asking contributors to compute the statistic prep in lieu of the traditional p-value.
In a polemic comprising five Fits we argue that prep is misnamed, commonly miscalculated, misapplied
outside a narrow scope, and its large variability often produces values that invite mistrust and mislead
the interpretation of data.

Published by Elsevier Inc.
Prelude to the Agony

‘‘Come, listen, my men, while I tell you again,
The five unmistakable marks
By which you may know, wheresoever you go,
The warranted genuine Snarks.’’

The Hunting of the Snark: FIT THE SECOND, The Bellmans Speech.
Lewis Carroll, 1876.
In the May 2005 issue of Psychological Science Peter Killeen

introduced the statistic prep to the psychological community. He
describes prep as follows:

‘‘The statistic prep estimates the probability of replicating an
effect. It captures traditional publication criteria for signal-
to-noise ratio, while avoiding parametric inference and the
resulting Bayesian dilemma. In concert with effect size and
replication intervals, prep provides all of the information now
used in evaluating research, while avoiding many of the pitfalls
of traditional statistical inference’’. (Killeen, 2005a, Abstract).

At the time James Cutting was chief editor of Psychological
Science and in an Acknowledgment (Cutting, 2005) that appeared
in the December 2005 issue of Psychological Science, he wrote ‘‘and
the General Article by Peter Killeen in the May issue may change
how all psychologists report their statistics’’. This prediction has
turned out to be accurate. Currently, about 60% of contributors to
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Psychological Science submit values of prep when reporting their
statistical analyses.
prep is intended to be read ‘‘probability of replication’’, and

gives the very strong impression that experiments yielding large
values of prep (currently Psychological Science regards prep ≥
0.85 as large1) are replicable with high probability. Recently the
euphemisms ‘reliable’ and ‘robust’ have crept into use, so that, for
example, prep = 0.92 is said to indicate a reliable experimental
finding. Whatever term is used, the unfortunate and misleading
impression is that prep = 0.92 indicates an experimental effect has
been established. This impression does not encourage substantive
replication. If an experimental effect is remotely plausible and
prep = 0.92, why bother to replicate?
For its calculation, prep requires an analytical context, and to

keep matters as simple as possible we shall assume throughout
that this context is provided by the independent groups design in
which the same number of measurements n is provided by each
of an ‘experimental’ and a ‘control’ group.2 All measurements are
assumed to be mutually independent and normally distributed,

1 There is no editorial statement that stamps prep ≥ 0.85 as the gold standard.
Indeed, Killeen (2005a,b,c) suggested prep ≥ 0.90. However, authors publishing in
Psychological Science routinely declare values of prep = 0.86 and above as signaling
significant effects. The first clear signs of hesitation occur when prep = 0.85, with
some authors happy to declare this value significant, whereas others are reluctant
to do so.
2 Note that Killeen uses n to denote the combined sample size from both the
control and experimental groups, whereas we use n for each group separately.
We prefer our approach, because it generalizes more naturally to cases where the
number of subjects in each group is not the same.
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with a common known3 variance σ 2. The parameter of interest
to the experimenter is the population effect δ = (µE − µC ) /σ

and is estimated by the experimental or substantive effect d =
(x̄E − x̄C ) /σ . Clearly d ∼ N

(
δ, 2n

)
and, as is familiar from

elementary statistical theory, d is ‘best unbiased’ for δ. The related
quantity z = d

√
n
2 is a familiar test statistic in this context. Under

the standard null hypothesis H0 : δ = 0, z is distributed as a
standard normal variate (mean 0, variance 1) and one rejects H0
whenever |z| ≥ zα/2 in carrying out the level-α Neyman–Pearson
test procedure. Equally familiar is the practice of reporting an
associated probability value, or p-value for short; p-values attach
themselves to test statistics and in the present context the (two-
sided) p-value attached to the statistic |z| is given by

p-value = 2Φ

(
− |d|

√
n
2

)
= 2Φ (− |z|) . (1)

Killeen (2005a,b,c) rejects much of the standard frequentist es-
timation and inference machinery. He has no time for estimation:

‘‘But it is rare for psychologists to need estimates of parameters
. . .’’ (Killeen, 2005a, p. 345);

and even less for frequentist inference:

‘‘Our unfortunate historical commitment to significance tests
forces us to rephrase [these] good questions in the negative,
attempt to reject those nullities, and be left with nothing we
can logically say about the questions—whether p = .100 or
p = .001’’ (Killeen, 2005a, pp. 345–346).

Of course, Killeen is not alone in harboring a critical view of
frequentist inference.Wehold similar opinions. He is also not alone
in calling for an alternativemethodology. Now the Bayesian School
has elaborated a principled, coherent and readily interpretable
alternative to classical estimation and inference.
Killeen declares that his alternative is not Bayesian (Killeen,

2005a). Indeed, he offers his ideas as an alternative that avoids the
‘‘Bayesian dilemma’’ (of having to specify a prior distribution on δ).
But as we shall soon see, prep is a Bayesian calculation, though one
that is not carried out on a routine basis in Bayesian inference.
Killeen and Psychological Science propose that experimenters

report an (estimate of) the probability that a repetition drep of
an existing experimental effect d will agree with d in direction,
and to do so in lieu of a conventional p-value This probability of
replication prep seems new, exciting, and extremely useful. Despite
appearances however prep is misnamed, commonly miscalculated
even by its progenitors, misapplied outside a common but
otherwise very narrow scope, and its seductively large values
can be seriously misleading. In short, Psychological Science has bet
on the wrong horse, and nothing but mischief will follow from
its continued promotion of prep as a scientifically informative
predictive probability of replicability.

FIT THE FIRST: In which prep is misnamed

‘‘When I use a word’’, Humpty Dumpty said, in a rather scornful
tone, ‘‘it means just what I choose it to mean—neither more nor
less.’’ Through the Looking-Glass: Humpty Dumpty, Lewis Carroll,
1872.

3 This unrealistic assumption is one of convenience only. It can be dropped,
but to do so would involve us in analytical complications that distract from our
main purpose. Our critique of prep in no way depends on the assumption of known
variance.
Fig. 1. Two independent experimental effects d1 and d2 are drawn from the
distribution f (d | δ) generating the data. Each draw gives rise to a different value of
prep , shown by shaded areas. Note that if the true state of nature δ is close enough to
zero, d1 and d2 can have opposite signs. Even so, it is clear that prep is always greater
than 0.5.

Killeen (2005a) chooses to ‘‘Define replication as an effect of the
same sign as that found in the original experiment ’’ (p. 346, emphasis
in original). We think this definition is unfortunate and belies
normal usage of the terms ‘replicate’ and ‘reliable’.
To attach a probability to this definition requires a model,

and despite the obvious ‘‘Bayesian dilemma’’ Killeen invokes two
Bayesian models, the fixed effects model and the random effects
model. In the fixed effects model independent experiments are
literally replicas of one another. That is, they are identical in all
respects save for sampling variability, and that variability is the
only source of differences among experimental outcomes. Let us
call this modelM1 to distinguish it from the random effects model
M2 in which independent repetitions of an experimental protocol
combine uncertainty in the population effect parameter δ with
sampling variability. The standard calculation of prep is carried out
under modelM1:

prep = Pr
(
d and drep agree in sign | d,M1

)
.

The calculation of prep is pictured in Fig. 1. It is the larger of the
areas subtended by the posterior predictive f (drep | d) above and
below zero. Since f (drep | d) is not available in frequentist theory,
prep is a Bayesian construct.
We take exception to the terminology and notation that attends

the definition of prep. The following definition seems more in
line with standard English dictionaries and with dictionaries of
statistical terms.

Definition 1. Independent experimental effects d1 and d2 replicate
if (and only if) they are each generated under model M1. That is, if
they are each generated by the same value of δ.

Many experimental designs involve comparisons that invite
checks of no effect (e.g., no expected effect of order of treatment or
of sex or of age cohort). It is anticipated that these comparisonswill
rarely be significant, and at the same time it is expected that others
repeating the same comparisons would reach similar conclusions.
That is, experimental comparisons that everyone expects to reflect
no or at most a very small effect are nonetheless thought of as
highly replicable. This circumstance, which is a commonplace in
every empirical science, is entirely in linewith the above definition.
In such casesmeasured effectswill, over replications, bounce about
zero, and there will be a low probability, near 50%, that any two
randomly chosen effects agree in sign. For prep however, which
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Fig. 2. The distinction between the notions of ‘replication’ and ‘concurrence’,
illustrated by three combinations of d and drep . The points A, B and C show different
states of nature. The circular contours around each indicate the joint distribution
of d and drep in each case. Combination A replicates but does not necessarily
concur. Combination B concurs but does not replicate. Combination C replicates and
concurs.

places a premium on experimental effects agreeing in sign, these
reliable and replicable null experimental outcomes (which seem so
essential for the construction of uncluttered andworkable theory),
are deemed unlikely to replicate and are scorned as unreliable.
To put things another way: if experimental effects are

truly generated under model M1, they will necessarily replicate
according to our definition and it is then most puzzling why
one goes to the trouble of computing the probability 1 − prep
that they will not. Likewise, if repetitions of an experiment are
generated under the random effects model M2 then, according to
our definition, they (almost certainly) will not replicate, so why
ought one compute the probability prep that they will?

Definition 2. Two real numbers x1 and x2 concur if they agree in
sign. That is, x1 and x2 concur if x1x2 ≥ 0.

We believe that prep ismisnamed: prep = Pr(d and drep concur |
d) = Pr (ddrep ≥ 0 | d), and a more appropriate notation would
employ pconcur in place of prep. We shall nonetheless retain the
notation prep throughout.
The distinction between replication and concurrence is shown

pictorially in Fig. 2, in terms of three different combinations of d
and drep. For true states of nature δ falling on the heavy diagonal
line, effects d and drep replicate by definition. This means the
combination of parameters A shows that observed effects can
replicate but do not always concur. Conversely, combination B
shows that observed effects can concur but not replicate. Only for
the combination C do d and drep both replicate and concur.
FIT THE SECOND: In which prep is miscalculated

‘‘Two added to one–if that could be done,
It said, ‘‘with one’s fingers and thumbs!’’,
Recollecting with tears how, in earlier years
It had taken no pains with its sums.

TheHunting of the Snark: FIT THE FIFTH, The Beaver’s Lesson. Lewis
Carroll, 1876
Of the 60% or so of authors who currently report prep values

in Psychological Science, a large majority use the recipe of Killeen
(2005c)4:

4 Killeen (2005c) uses the symbol N to denote the cumulative distribution
function of a standard normally distributed random variable. We use the Greek
letterΦ .
‘‘In particular, whenever a p value has been calculated, one
can immediately infer prep by (a) calculating the z-score
corresponding to 1− p, (b) dividing by the square root of 2, and
(c) finding the probability associated with this new z-score:

prep = Φ
[(
Φ−1 [1− p] /

√
2
)]
’’. (2)

Unfortunately, the computations of authors following this recipe
are often wrong. The standard analytical expression for prep is5

prep = Φ

(
|d|
√
n
4

)
. (3)

Here d is, as defined above, the observed effect in a comparison
of two independent groups, each involving samples of size n. The
accompanying (two-sided) p-value is given in Eq. (1).
Putting Eqs. (1) and (3) together gives

prep = Φ

[
Φ−1

(
1− p

2

)
√
2

]
. (4)

The difference between Eqs. (2) and (4) appears to be minor.
The p-value in Eq. (2) is not halved as it is in Eq. (4) but otherwise
the two formulas are identical. Of course the two formulas Eq. (2)
and Eq. (4) give different numerical results – a calculation via Eq.
(2) is always smaller than via Eq. (4) – but often these differences
are rather modest.
In its information for contributors, Psychological Science gives

the following examples6:

‘‘Thus, typical statistical reports would follow formats like
these:
t (50) = 2.68, prep = .95, d = 0.76; F (1, 30) = 4.69,
prep = .90, η2 = .135; or β = .61, prep = .99, d = 1.56’’.

For the first two examples, the correct calculation of prep via Eq. (4)
gives, in turn, prep = .97 and prep = .91. These values are
sufficiently close to the ones quoted in the Journal, namely prep =
.95 and prep = .90, to elicit little more than a shrug. All the same
there is unnecessary confusion over how to compute prep from a
given p-value and it seems to us worthwhile to clarify the matter.
Itmight be argued that Eq. (2) is appropriate to the p-value from

testing a one-sided hypothesis, and in part this is true. Since the
one-sided p-value is one-half of the two-sided p-value based on
the same data, Eqs. (2) and (4) should yield the same numerical
answer. To see how things can (and presently do) go awry, consider
how the editors of Psychological Science obtained prep = .95 from
the fact that t (50) = 2.68. This value of Student’s t statistic gives
p = .01 (two-sided) and p = .005 (one-sided). From Eq. (4) or (2)
we have (correctly)

prep = Φ
[
Φ−1 (.995)
√
2

]
= Φ

[
2.58
√
2

]
= Φ [1.824] = .966.

What Psychological Science appears to have done instead is to
compute the two-sided p-value, p = .01, and to plug that value
into the formula Eq. (2) appropriate to the one-sided p-value. That
mistaken calculation gives

prep = Φ
[
Φ−1 (.99)
√
2

]
= Φ

[
2.33
√
2

]
= Φ [1.648] = .95.

5 An explicit calculation is indicated below in Eq. (7).
6 This recommendation appears for the first time on the inside of the back cover
of Psychological Science, 16(12), December 2005. It has remained there unchanged
ever since.
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It seems that both Killeen and Cumming were alert to the
potential ambiguity in how to compute the value of prep from
a given p-value, but their recommendations were buried in an
Appendix (Killeen, 2005a) and a Table caption (Cumming, 2005).
In any event a little thought shows that the correct connection

between prep and the p-value from a one-sided test is not Eq. (2)
but rather

prep = Φ
[
Φ−1 (max{p, 1− p})

√
2

]
. (5)

Calculation of prep must yield a number in the interval
[ 1
2 , 1

]
by

its very definition as a posterior predictive probability (and recall
Eq. (3) for explicit confirmation); prep never takes values below 1

2
and both Eqs. (4) and (5) respect this restriction. Allowing prep to
take values in

[
0, 12

)
, as is permitted under Eq. (2), is to invite a

jarring collision between what prep is intended to report and what
it does in fact report.
Suppose prior to an experiment you have convinced yourself

that the outcomewill reflect a negative true effect parameter δ, and
you envisage a one-sided test of H0 : δ ≥ 0 vs. H1 : δ < 0. Your
observed effect d turns out to be positive, contrary to expectations,
and the one-sided p-value is 0.88. Eq. (2) gives prep = .20.
Now this can only mean the following: you have observed an

experimental effect that disagrees with expectations. Despite the
evidence, you are fairly sure (1 − prep = .80) that a repetition
of the experiment will yield a negative effect, in conflict with the
data at hand but in agreement with your hypothesis. In other
words, the evidence at hand has been overridden by your prior
expectations and your view of the matter is supported by a small
value of prep, and the smaller the better! Note that Eq. (5) gives
the answer that is intended of a sensible posterior predictive
probability of concurrence, namely prep = .80. The observed effect
is positive and one has a legitimate Bayesian right to anticipate
that a replication is more likely than not to produce a positive
effect. We hasten to add, however, that this Bayesian prediction
is by no means guaranteed to mirror the aleatory behavior of
empirical replications. For a more detailed discussion of the
critical distinction between substantive empirical replication and
posterior predictive replication, consult the fourth and fifth Fits.
One might have expected that contributors to Psychological

Science, not to mention reviewers and action editors, would have
spotted thedifficulty of interpretation that is built into Eq. (2)when
a p-value exceeds 12 , and to have corrected the matter by reporting
the complement. Perhaps some did so, but certainly others did not;
even Sanabria and Killeen (2007) quote a value of prep below 1

2 .
In Killeen (2005a, Figure 3) the trade-off between prep and the (one-
sided) p-value based on Eq. (1) is abruptly cut off at prep = 1

2 ,
inviting the reader to interpret the tradeoff for p-values greater
than 12 .
FIT THE THIRD: In which prep is misapplied

‘‘Thats a great deal to make one word mean,’’ Alice said in a
thoughtful tone. ‘‘When Imake aword do a lot of work like that,
said Humpty Dumpty, I always pay it extra.’’
Through the Looking-Glass: Humpty Dumpty, Lewis Carroll,
1872.

The (incorrect) formula Eq. (2) for computing prep invites the
unwary to carry out the indicated calculation whenever a p-
value is available, regardless of the context in which the p-value
arose. But it is wise to recall from the first Fit that prep is a
posterior probability of concurrence, and that last term requires
for its very meaning the notion of sign or direction of effect. What
is the (unambiguous) direction associated with an interaction
in a 3 × 4 ANOVA, or for that matter the fact that the main
effect of each variable is significant? More generally, what sense
of direction of effect is indicated by the fact that one cognitive
model outperforms another on some body of data, as considered
by Ashby and O’Brien (2008). As a careful reading of Ashby and
O’Brien (2008) shows, their notion of replicability amounts to
conventional power or something very similar. Many authors (e.g.,
Greenwald, Gonzalez, Guthrie, andHarris (1996), Oakes (1986) and
Tversky and Kahneman (1971)) earlier used power as a means
of quantifying ‘replicability’. But power, the complement of a
Neyman–Pearson long-term error rate, is antithetical to Killeen’s
views on statistical inference: ‘‘but once prep is determined,
calculation of traditional significance is a step backward’’, (Killeen,
2005a, p. 349).
While we are on the topic of power, it is noteworthy that

prep can be viewed as a predictive power calculation. One natural
interpretation of predictive power is given in the following
definition and calculation7:

β (α, d) = Pr

(
drep

√
n
2
sgn d ≥ zα | d

)
= Φ

(
|d|
√
n/2− zα
√
2

)
and it is seen at once that forα = 1

2 ,β
( 1
2 , d

)
= prep. In plainwords,

when significance means concurrence (and this is achieved when
α = 1

2 ), prep is predictive power. The trade-off between Type I and
Type II errors ensures that a large value of α is accompanied by
a boost in power. No wonder then that prep so often returns large
values that can mislead the casual consumer (see the fourth and
fifth Fits for further detailed discussion).
As a concrete numerical example, suppose youhave obtained an

experimental effect d = 0.56 based on a sample size n = 25. One
computes predictive power = .59 and this provides but modest
confidence that a replication will be significant at α = .05 (in the
same direction as the original). In contrast prep = .92. Themessage
conveyed by predictive power seems somewhat cautious in the
first case (α = .05) but quite optimistic in the second (α = .5). The
inflated confidence expressed by prep is revealed as a legerdemain
arising from the mere shift of a decimal point.
Recently Psychological Science seems to have realized that the

calculation of prep must be confined to its original scope, the
simple two independent groups design, and that it does not readily
extend beyond that limited scope (it does however extend to
linear contrasts in ANOVA and to some analogous problems in
regression). It is becoming increasingly common for the same
author to report prep in a two-group comparison, but to switch to
p-value for all other tests.8 This is terribly awkward, and anyway
prompts the question: why not report p-values for all tests, as was
done routinely before the prep era? The answer of course is that, for
a variety of good reasons, p-values themselves have been regarded
as unsatisfactory and misleading. Wagenmakers (2007) gives an
extensive review of the many shortcomings of p-values that have
been exposed and discussed at length in the literature.
We thus discover that prep is not only equally unsatisfactory as

the p-value when used as a test statistic, it is at the same time
considerably more restricted in its scope and interpretation as an
object of evidentiary import.
FIT THE FOURTH: In which prep invites mistrust
‘‘I quite agreewith you’’, said the Duchess; and themoral of that
is – ‘Be what you would seem to be’ – or, if you’d like to put it
more simply—‘Never imagine yourself not to be otherwise than
what it might appear to others that you were or might have
been was not otherwise than what you had been would have
appeared to them to be otherwise’’.

7 The signum function, abbreviated sgn, indicates the sign (+1 or −1) of a real
variable. It is convenient to adopt the convention that sgn (0) = 1.
8 In his final editorial (Cutting, 2007) mixes prep and p-value without comment.
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Alice’s Adventures in Wonderland: The Mock Turtle’s Story.
Lewis Carroll, 1865.
Killeen (2005a, p. 349) discusses prep as a statistical estimator,

saying

‘‘As is the case for all statistics, there is sampling variability
associated with prep, so that any particular value of prep may be
more or less representative of the values found by other studies
executed under similar conditions. It is an estimate’’. [emphasis
added].

The leading question is: What exactly is prep estimating? Address-
ing this question brings out the large variability of prep that all too
frequently produces large numerical values, giving a naive con-
sumer a misleading and exaggerated sense of optimism that a rep-
etition of an experiment will concur with a given one.
Suppose you know the value of the population effect parameter

δ. You have in hand an observed effect d based on a per-group
sample size n. Suppose a repetition of your experiment yields an
independent observed effect drep. What is the probability that the
two effects agree in sign (concur)? An elementary calculation gives

Pr
(
drep concurs with d | d, δ

)
= Pr

(
ddrep ≥ 0 | d, δ

)
= Φ

(
δ sgn d

√
n
2

)
= Φ (∆ sgn d) . (6)

Here and below it is often convenient to write ∆ = δ
√
n/2; ∆

is a ‘non-centrality’ parameter, which determines power, familiar
from classical inference. Note that if d and δ disagree in sign, you
would base your prediction on the sign of δ, not on the sign of
d, and your predictive probability (Eq. (6)) would be less than 12 .
This stands in contrast to the prediction afforded by prep that relies
on the sign of d, and which takes on values that are necessarily
larger than 12 . We often abbreviate Pr (d

rep concurs with d | d, δ) as
Pr (concur | d, δ).
Of course one does not know δ, and it seems natural therefore to

estimate Pr (concur | d, δ). prep is the estimator proposed by Killeen
(2005a) to do the job.We note that Pr (concur | d, δ) can be viewed
– though very differently – from both a Bayesian and a frequentist
standpoint and we discuss each interpretation in turn.
For Bayesians, it is natural to consider Pr (concur | d, δ) as a

function of posterior belief f (δ | d). Indeed we have, from Killeen
(2005a,b,c), Sanabria and Killeen (2007); and especially Cumming
(2005), Doros and Geier (2005), and Macdonald (2005),

prep = E [Pr (concur | d, δ)] =
∫
Pr (concur | d, δ) f (δ | d) dδ, (7)

inwhich the expectation is taken over the posterior distribution9 of
δ. On the other hand it is unlikely that Bayesians would routinely
summarize their posterior belief concerning Pr (concur | d, δ) by
computing a single number such as prep or alternatively 1 − p/2
(which, as it happens, is the median value of Pr (concur | d, δ)),
when the entire posterior distribution of belief is available. If
a summary measure is desired it is more informative to give a
credible interval of values. In particular, the inequalities

Φ

(
|d|
√
n
2
− zα

)
≤ Pr (concur | d, δ) ≤ 1,

give the endpoints for the (1− α) 100% highest probability density
(HPD) credible interval. For example, d = .56 and n = 25 yields

9 If one adopts a flat prior on δ (i.e., f (δ) ∝ 1), it is well known that the posterior
density of δ | d turns out to be normalwithmean d and variance 2/n. The integral in
Eq. (7) is then straightforward and gives the standard expression in Eq. (3) for prep .
Fig. 3. An example of the density of the posterior random variableΦ (∆ sgn d | d),
calculated using Eq. (8). Also shown are prep , which is the mean of the distribution,
1 − p/2, which is the median, and p/2, which is the area under the density from 0
to 0.5.

prep = .92 and 1 − p/2 = .976. In contrast, the 95% HPD credible
interval is the rather modest prediction .63 ≤ Pr (concur | d, δ) ≤
1. This broad credible interval for Pr (concur | d, δ) comes about
because, regarded as a function of the random variable δ | d,
the probability density of Pr (concur | d, δ) = Φ(δ

√
n/2 sgn d)

is strongly skewed towards 12 , as shown in Fig. 3. In other words,
there is considerable posterior uncertainty about the probability
that a future effect will concur with an original. A very similar
and equally undesirable skew attends the predictive density of p-
values (Cumming, in press), and essentially for the same reasons.
An example of the density of Φ(δ

√
n/2 sgn d | d) is shown in

Fig. 3. The analytic form is as follows: for 0 ≤ t ≤ 1

f (t) = exp
(
Φ−1 (t) |z|

)
exp

(
−z2/2

)
, (8)

in which z = d
√
n/2 is the z-score corresponding to the observed

effect d. This density first appeared as a histogrambased on a small-
scale simulation in Cumming (2005). The most striking feature of
the density is the large negative skew that is responsible for broad
credible intervals
Another figure helps to explain why prep is often quite large,

(e.g. prep ≥ .85), even though the true state of nature δ is
quite small and is thus likely to generate many more effects that
conflict with an original than are predicted by 1 − prep. In Fig. 4
an observed value of d is imagined to arise from a value of δ
that with probability 12 is larger than d, and with probability

1
2

is smaller. Three replications that might arise under a value of δ
that exemplifies each possibility are shown as open circles. prep is
computed as a weighted average over all such imagined scenarios,
the weights being provided by the posterior distribution f (δ | d).
Fig. 4 makes it clear that averaging over posterior uncertainty

in δ will often produce large values for prep, mainly because
Pr (concur | d, δ) ≈ 1 when δ > d, even though the true state of
nature might be more like the one shown in the lower branch for
which replicates can frequently be negative, in conflict with the
original.
For a frequentist δ is unknownbut fixed, and as a statistic (i.e., as

a function on the sample space) Pr (concur | d, δ) = Φ (∆ sgn d) is
the following dichotomous random variable:

Pr (concur | d, δ) =
{
Φ (∆) with probabilityΦ (∆)
Φ (−∆) with probabilityΦ (−∆) . (9)

The value of Φ (|∆|) of Pr (concur | d, δ) arises whenever d and
δ concur; the value Φ (− |∆|) = 1 − Φ (|∆|) arises if d and δ
conflict in sign. Note that of the two valuesΦ (∆) andΦ (−∆) one
is necessarily≥ 1

2 whereas the other is≤
1
2 .
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Fig. 4. Given an observed effect d, the possibility that δ > d is exemplified in the
upper scenario on the right, which shows three independent replicate effects as
open circles. Equally likely is the possibility that δ < d and a typical scenario is
depicted in the lower branch. prep is computed as a weighted average over all such
scenarios, the weights being provided by the posterior distribution f (δ | d).

Fig. 5. The sampling density of prep for |∆| = 0, 1, and 1.5.

prep = Φ(|d|
√
n/4) is concentrated on

[ 1
2 , 1

]
, and as an

estimator for Pr (concur | d, δ), which takes values in [0, 1], its
inability to take values in

[
0, 12

)
presents it with a very difficult

challenge. This restriction on range is especially worrisome for
small-to-moderate values of |∆|. For example if |∆| ≈ 0 the
values Φ (∆) and Φ (−∆) are each approximately 1

2 whereas
we know from its null distribution that the median value of prep
is Φ

(√
1/2Φ−1(3/4)

)
≈ .68 and its expected value is 12 +

1
π
arcsin(

√
1/3) ≈ .70.

In Fig. 5 we plot the distribution of prep for several values
of ∆. These functions are members of the following family of
expressions indexed by |∆|:

fprep (t) = 2
√
2 exp

[
−∆2/2

]
cosh

[√
2Φ−1 (t)∆

]
× exp

[
−
(
Φ−1 (t)

)2
/2
]
,
1
2
≤ t ≤ 1.

The null distribution corresponds to∆ = 0.
For small values of |∆|, prep overestimates its target, often by a

large amount. On the other hand, for a sufficiently large value of |∆|
one hasΦ (|∆|) ≈ 1, whence prep ≈ 1 as well. This last rather trite
fact does not, however, make prep a particularly good estimator
for Pr (concur | d, δ) even though both probabilities approximate
1. As we will see in Fig. 6, for large |∆|, prep systematically
Fig. 6. The expected values of prep and Pr (concur | d, δ) as functions of the non-
centrality parameter ∆, with equivalent representative values for effect size δ and
sample size n shown. The systematic bias in prep accounts for the difference between
the two curves. The large variability in prep is evident in the large error bars that
represent the 95% equal area intervals.

underestimates Pr (concur | d, δ) and the silly estimator 1 will
often do a better job.
One can understand visually the poor performance of prep by

plotting its expected value and the long-run expected value of
Pr (concur | d, δ), which equals Φ2 (|∆|) + Φ2 (−|∆|), on the
same axes, as functions of ∆. These plots are given in Fig. 6. It
is evident that the expected value E

[
prep

]
is much larger than

E [Pr (concur | d, δ)] for small values of ∆, but is dominated by
it for larger values of ∆. The error bars represent the 95% equal
area intervals of the sampling distribution of prep. The bias and
imprecision of prep as an estimator is evident for all but large effects
or sample sizes (values of ∆ in excess of 3.5), for which it close to
1.
FIT THE FIFTH: The Psychological Science action editor’s dilemma

He was thoughtful and grave—but the orders he gave
Were enough to bewilder a crew.
When he cried ‘‘Steer to starboard, but keep her head
larboard!’’
What on earth was the helmsman to do?

The Hunting of the Snark: FIT THE SECOND, The Bellman’s
Speech. Lewis Carroll, 1876.
A fundamental distributional difference underlies the construc-

tion of prep and Pr (concur | d, δ). Under model M1 substantive
effects are independent draws from a normally distributed pop-
ulation, with mean δ and variance 2/n. These effects are what ac-
tion editors examine when replications of an original experiment
come across their desks; these draws, provided by science, deter-
mine Pr (concur | d, δ). On the other hand, prep is the probability
of an event involving values of drep | d and those values are draws
from a normally distributed predictive distribution, with mean d
and variance 4/n. Values of drep | d are not substantive replicates,
and they are not independent. To confuse themwith independent,
substantive replicates is a mistake.
With this remark in mind we now examine how prep can

misinform the important business of scientific induction that is
carried out daily by authors, reviewers and action editors.
Suppose you are an action editor for Psychological Science and a

paper for review comes across your desk that reports a surprising
and somewhat controversial finding. The evidence for the effect in
question is summarized in the following data: d = .56, n = 25,
z = 1.98, p (two-sided) = .05, prep = .92. If this finding is
true it will wrinkle the theoretical cloth of an important branch
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of experimental psychology, and likely promote new directions for
empirical and theoretical research.
The referees are enthusiastic and you accept the article

for publication. A few months after publication, independent
experimental replications make an appearance. In fact the first
three lie unopened on your desk. Before opening any one, you ask
yourself what you expect on the basis of prep. All three replications
might exhibit positive effects, or none might. You quickly tabulate
the various possibilities and the accompanying probabilities as
determined by prep and the Binomial distribution.10 You find the
probabilities for 0, 1, 2 and 3 concurrences to be .00, .02, .20 and .78,
respectively.
Armed with your calculations, you are confident that at least

two of the three replications will concur with the original, and
you would not be surprised if all three did so. Opening the new
submissions you are dismayed to discover that two of the three
articles report negative effects, in conflict with the original. The
relevant data are: drep1 = 0.40, n = 25, z = 1.41, p (two-sided) =
.16, prep = .84; d

rep
2 = −0.08,n = 25, z = −0.28, p (two-sided) =

.78, prep = .58; and drep3 = −0.03, n = 25, z = −0.11,
p (two-sided) = .91, prep = .53.
The authors who obtained the positive effect drep = 0.40 claim

a replication of the original, despite the rather large p-value, and
in their discussion call for an aggressive experimental foray along
lines suggested by the original finding. In marked distinction, the
authors who found small negative effects are quite critical of the
original finding and state quite clearly that their efforts to replicate
had failed utterly, and that little purpose would be served by
pursuing this particular line of research.
As action editor how are you to react to these unexpected and

conflicting findings?Did something quite unusual occur, or is there
a subtle causal artifact atwork thatwould explain the two negative
outcomes, one that you suspect will be hard if not impossible to
uncover.
Neither of these reactions is warranted. In fact the data

are quite consistent with one another and with the model M1
that underlies the standard calculation of prep; and there are
multiple considerations that support this view of the data. Based
on the original data, the 95% posterior predictive interval for
future replications is [−0.22, 1.34] and this interval11readily
accommodates all of the observed replicate effects, though it is not
obliged to do so. Aχ2 test of the assumption that all four effects are
replicates (i.e., that all four are generated by a common value of δ
yields χ2 (3) = 3.75, and this χ2 value is not close to signaling any
significant differences among the various experimental outcomes.
Further, all data are compatible with a true value of δ about 0.20
(note that the arithmetic average of all four experimental effects is
0.21).12Assuming for illustration that δ = 0.20, the probability that
any single replicate effect will be negative is .23, and consequently
the observed pattern of replications (2 negative, 1 positive) is
expected to occur about 12% of the time; this last probability is 6
times larger than the corresponding binomial prediction based on
prep. We remind the reader of the lower branch of Fig. 4.

10 Actually, this is not the way Bayesian posterior predictive probabilities are
computed. However the correct calculations do not change the conclusions of this
analysis.
11 Both frequentists and Bayesians (assuming a flat prior on δ) agree on the form
of this predictive interval, though they differ considerably on its interpretation. The
general form of the interval is d− zα/2

√
4/n ≤ drep ≤ d+ zα/2

√
4/n.

12 The symmetric 95% HPD credible interval for δ based on d is [.01, 1.11]. Based
on all four experimental effects it is [−.067, 0.487].
Postlude to the agony: Caveat emptor
He had bought a large map representing the sea,
Without the least vestige of land:
And the crew were much pleased when they found it to be
A map they could all understand.
The Hunting of the Snark: FIT THE SECOND, The Bellman’s

Speech. Lewis Carroll, 1876
If you must use prep do so with caution, a deliberate purpose

in mind, and with full awareness of its shortcomings as an
estimator of Pr (concur | d, δ). As we have seen, prep does not
quantify ‘replicability’ of experimental effects, it does not appear
to generalize beyond linear contrasts, and as an estimator of
concurrence it is unreliable and is in fact not even consistent.13
To buy into prep as it is currently promoted by Psychological

Science is to buy into the significance fallacy, the belief that
significant effects are highly reliable and replicable (Oakes, 1986;
Tversky & Kahneman, 1971).14 Not only does prep encourage that
erroneous belief, it sanctions it with the authority and precision of
a quantitative calculation.
In particular do not use prep as Psychological Science currently

does, merely as a convenient way to lower the bar on conventional
criteria for significance, allowing Type I errors to triple in frequency
over conventional 5% rates, not to mention sanctioning a fourteen-
fold increase over the more conservative (but often preferable) 1%
standard. Despite the encouraging words that have been bandied
about in praise of prep, the fact remains that prep = .85 corresponds
to a p-value of .14 and prep = .90 corresponds to a p-value of .07.
If, based on p-value of .14, you would not reject the possibility that
|δ| is quite small, perhaps negligible, why would you offer much
better than even odds that a substantive replication would agree
in sign with an original?
You protest: surely 85% and 90% are much closer to 100%

than they are to 50%. Our response is that this simple fact of
arithmetic is as misleading as it is true (for reasons detailed in
our fourth and fifth Fits). The probability scale provided by prep
(or any other probability value for that matter) is the wrong
metric on which to evaluate evidence about δ. If you had asked
different questions of your data, for instance what does your
value of prep tell you about δ = 0 versus δ 6= 0, we would
encourage you to compute a ratio of probabilities. The resulting
Bayes Factor, a ratio of probability densities, is a sensible and
readily interpretable means of evaluating (relative) evidence (e.g.,
Bernardo and Smith (1994), Kass and Raftery (1995) and Lee
and Wagenmakers (2005).15 It should be the routine business of
authors contributing to Psychological Science or any other Journal of
scientific psychology to report Bayes Factors. Presently only a small
handful do so, in stark contrast to current practice in the statistical
community.

13 The term ‘consistent’ is standard in statistics (Casella & Berger, 2002). A
sequence of estimators ϑ̂n is consistent for a parameter ϑ if, for every ε > 0 and
every ϑ , limn→∞ Pr

(∣∣∣ϑ̂n − ϑ∣∣∣ ≥ ε) = 0. This property, which is usually the very
least one requires of an estimator, obviously does not hold for prep . When δ = 0 we
have Pr (concur | d, δ) = 1

2 ; and since, with probability 1, prep does not take on the
value 12 it can hardly be said to be consistent for its target.
14 The term ‘significance fallacy’ is our terminology. Oakes called the common
but unjustified belief in the replicability of significant effects the ‘significance
hypothesis’, whereas Tversky and Kahneman discussed the matter in terms of a
folk-theorem, a ‘lawof small numbers’, in a particular example of theirmore general
study of representativeness.
15 Under modelM1 and a flat prior on δ, a Bayes Factor for selecting between the
hypotheses H0 : δ = 0 and H1 : δ 6= 0 is given by B01 =

√
n exp

(
−z2/2

)
. When

d = 0.56 and n = 25, one has z = 0.56 × 5/
√
2 = 1.98 and B01 = 0.7. Yes, the

data favor H1 over H0 , but by a factor that is scarcely worth the mention. If a priori
you believed Pr (H0) = .5, a posteriori you believe Pr (H0 | d) = .41; if a priori you
believed Pr (H0) = .1 the data have modified your belief so that Pr (H0 | d) = .065.
In either case, the data d = 0.56 and n = 25 are prettymuch inconsequential.What
price then the frequentist asterisk and the declaration ‘‘significant at level .05’’?
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