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Abstract 

In this paper we present observers with point patterns based 
on 30 major star constellations and ask them to connect the 
points to show the structure they perceive. The resulting 
empirical structures had a high inter-rater reliability and a 
high degree of overlap with constellation structures recorded 
in star atlases, suggesting that the perception of structure in 
point patterns is largely invariant across individuals. Further, 
we demonstrate that the empirical structures correspond 
closely with the structures developed in the field of relational 
geometry. We discuss the results of the experiment in light of 
previous findings and suggest a number of potential 
approaches to formally modeling human performance on 
clustering tasks. 

Keywords: Gestalt organizational principles; visual 
perception; relational structure; Delaunay triangulation; 
perceptual organization; perceptual modeling. 

Introduction 

One of the fundamental tasks of early visual perception is 

the spatial organization of an image (e.g., Marr, 1982; 

Ullman, 1984). Researchers from the Gestalt school (e.g., 

Koffka, 1935; Köhler, 1929; Wertheimer, 1938) 

demonstrated that the organization of many visual stimuli 

appeared to be dictated by a number of simple principles 

such as relative proximity, similarity, good continuation, 

and common fate. Figure 1a is a replication of one of the 

examples given by Köhler (1929) as demonstration of 

organizational structure based on the grouping-by-proximity 

principle: specifically (all other things being equal) 

elements with a greater relative proximity tend to be 

grouped together. Hence, Figure 1a is generally seen as 

being organized into two groups of three objects rather than 

one group of two objects and one group of four objects (or 

any other possible configuration). 

Köhler suggested that this principle holds equally well for 

more complex stimuli, citing the constellations in the night 

sky as an ecologically plausible example. He noted that “If 

on a clear night we look up at the sky, some stars are 

immediately seen as belonging together and, as detached 

from the environment. The constellation Cassiopeia is an 

example, the Dipper is another. For ages people have seen 

the same groups as units, and at the present time children 

need no instructions to see the same units” (p. 141-142). 

As noted by previous researchers (e.g., Compton & 

Logan, 1993), while there is a large body of experimental 

and phenomenological evidence suggesting that the Gestalt 

organizational principles play an important role in early 

visual perception little effort has been made to develop 

formal models of the cognitive or perceptual processes 

underlying these principles. In this paper we outline a 

formal approach to describing the perception of structure in 

constellation (and constellation-like) stimuli. The approach 

is based upon Delaunay triangulation, a powerful measure 

of relational structure. In the following sections we describe 

Delaunay triangulation and outline the aims of the paper.  

Delaunay Triangulation 

Given any group of co-planar points it is possible to obtain a 

cell structure that defines the regions within the plane that 

are closer to each point than any other point. This is known 

as the Voronoi tessellation of the point set, an example of 

which is shown in Figure 1b. Joining the points in the set 

that share common Voronoi edges gives the Delaunay 

triangulation of the set, an example of which can be seen in 

Figure 1c.  

An important property of the Delaunay triangulation is 

that it is a super-graph of a number of relational structures: 

The Gabriel graph (Gabriel & Sokal, 1969) is the set of the 

Delaunay edges that intersect with only one Voronoi edge. 

The relative neighborhood graph (Toussaint, 1980) 

connects points if no other point is closer to both of them 

than their inter-point distance. A spanning tree is a structure 

that connects all of the points in a set with n-1 edges and 

contains no circuits. The minimum spanning tree is the 

structure that minimizes the total length of the edges 

connecting points (Zahn, 1971). Finally, two points are 

joined as nearest neighbors if one of the points lies closer to 

the other than to any other point within the set. Examples 



 

 
Figure 1. Replication of Köhler‟s (1929) demonstration of 

the proximity principle (a), the Voronoi tessellation of a 

random point set (b), and the corresponding Delaunay 

triangulation of the random point set (c). 

 

Examples of these sub-graphs are given in Figure 2. As can 

be seen, the graphs are hierarchically nested: the nearest 

neighbors are a subset of the minimum spanning tree, which 

is a subset of the relative neighborhood graph, and so on, up 

to the Delaunay triangulation. 

Each of these measures has previously been considered in 

research on structure detection. For example, Zahn (1971) 

demonstrated that the minimum spanning tree could be used 

to detect the presence of separate clusters of dots and 

changes in dot density in random dot textures. Similar 

demonstrations have also been made by Toussaint (1980) 

using the relative neighborhood graph, minimum spanning 

trees and Delaunay triangulation, and by Ahuja and 

Tuceryan (1989) using Delaunay triangulation. In each of 

these papers it was demonstrated that algorithms based on 

the respective relational measures were able to detect the 

presence of what Toussaint described as “perceptually 

meaningful” structure.  

It is important to note that these relational structures are 

not merely a convenient geometric measure more suited to 

computer/artificial vision than human vision. Rather, there 

is a growing body of psychophysical, physiological and 

theoretically motivated research suggesting that the human 

visual system might be generating a Voronoi/Delaunay-like 

representation at any early stage in visual processing via a 

spreading activation or „grassfire‟ process (e.g., Dry, 2008; 

Kovacs, Feher, & Julesz, 1998; T. Lee, Mumford, Romero, 

& Lamme, 1998). As such, this form of representation 

presents a psychologically plausible starting point for 

developing a formal understanding of the processes 

underlying perceptual organization. 

Aims 

The aims of this paper are twofold. First, we are interested 

in empirically testing Köhler‟s suggestion that the 

perception of structure in constellations is largely invariant 

across observers. Towards this end we present an 

experiment in which we asked observers to indicate the 

structure that they perceive in constellation stimuli. Second, 

we investigate the degree to which the empirical structures 

can be described by Delaunay triangulation and its‟ sub-

graphs. 

 

 

Figure 2. Set of randomly distributed points with its 

associated Delaunay triangulation and sub-graphs. 

Method 

Participants 

12 observers (six male, six female) participated in the 

experiment. The mean age of the participants was 28 years. 

All of the participants were postgraduate psychology 

students and had normal or corrected-to-normal vision.  

Stimuli 

30 constellations were selected from the 48 originally 

identified by Ptolemy (Toomer, 1984). The coordinates of 

the constellations were taken from the Redshift 3 Desktop 

Planetarium (RS3). The criteria for selection of a 

constellation were that it should have 8 or more stars and a 

structure that was not simply linear. The constellations were 

flipped across the horizontal axis to minimize the likelihood 

of the participants recognizing a constellation and 

reproducing the structure from memory.  

Each stimulus was comprised of 0.15 cm diameter black 

dots presented on a 15 x 15 cm white field. 



Procedure 

The stimuli were presented on computer monitors. The 

participants were instructed to connect the points in a 

stimulus to show the structure they perceive. They were told 

that they could join any point to any other point that they 

chose, and make as many or as few links as seemed 

necessary, with the one provision that the final structure 

should contain all of the points in the stimulus. 

The participants created links between points by left-

clicking on a point with the computer mouse. Then, while 

holding down the mouse button, they drew a path by 

dragging the mouse cursor to a subsequent point and 

releasing the button, causing a straight line to be drawn 

between that point and the previously visited point. By 

right-clicking on a link to select it and then pressing the 

„delete‟ key on the keyboard, the participants could undo 

any links they had drawn. The participants were thus free to 

connect the points in any order, to work alternately from 

two points, or to work on several separated clusters of 

points. 

The stimuli were presented in a single test session. The 

order of presentation for the stimuli was randomized across 

the participants. Prior to the presentation of the 

experimental stimuli the participants completed three 

practice stimuli (with 8, 15 and 24 points). Following the 

experiment the participants were debriefed regarding the 

aims of the study. None of the participants reported 

recognizing the stimuli as constellations. 

Results 

Inter-Rater Reliability 

For each of the participants we obtained an n by n matrix of 

ones and zeros detailing the links between the n points in 

each stimulus. For example, a link between points 3 and 7 

was indicated by a 1 in the third row and seventh column 

(and seventh row and third column) of the matrix. Points 

which were not linked had zeros in their corresponding 

cells. 

We measured the reliability of the participants‟ solutions 

using split-half correlations between the upper triangles of 

the link frequency matrices averaged over 10000 random 

splits. The resulting coefficients gave mean r-values ranging 

from .89 to .98, suggesting that there is a high degree of 

overlap between the links chosen by the different 

participants. This provides support for Köhler‟s claim that 

the perception of structure in constellation-like stimuli is 

largely invariant across individuals. 

Overlap Between RS3 And Empirical Structures 

The data also indicate that there is a high degree of overlap 

between the links represented in the RS3 planetarium and 

the links present in the structures generated by the 

participants for the constellation stimuli. On average 79% of 

the empirical links were also present in the RS3 structures, 

and 80% of the RS3 links were present in the empirical 

structures. Figure 3 shows two example stimuli with the 

RS3 structure indicated by black lines and the empirical 

structure indicated by white lines. The width of the white 

lines indicates the frequency with which the participants 

chose a given link (with thick lines indicating a higher 

frequency than thin lines). As can be seen, there is a high 

correspondence between the most frequently chosen 

empirical links and the links present in the RS3 structure. 

We employed a Bayesian approach to assessing the 

likelihood of finding this degree of overlap by chance 

(Navarro, 2008). Briefly, this approach compares the 

relative likelihoods of four competing explanatory models: 

M0 – the empirical and RS3 structures are drawn from 

populations with different link numerosities and locations); 

M1 – the empirical and RS3 structures are draw from 

populations with the same link numerosity but different link 

location; M2 – the two structures are drawn from 

populations with the same link numerosity and location; and 

M3 – the two structures are drawn from populations with 

different link numerosities but the same link locations. 

The need to consider both link location and numerosity is 

obvious when one considers the possibility of an empirical 

structure which connects each node to all other nodes: in 

this case the overlap between the two structures would be 

100%, but the empirical structure would also contain 

numerous links that are not present in the RS3 structure.  

The results of the analyses indicated that for each 

constellation the most likely model was M2, with the next 

most likely model being at least 1.24x10
4
 times less likely. 

In other words, the probability of the empirical and RS3 

structures sharing by chance such a high degree of overlap 

in number and location of structural links is highly unlikely. 

Again, this result points towards the relative invariance of 

the perceived organization of this class of stimuli. 

Overlap Between Delaunay And Empirical 

Structures 

As mentioned in the Introduction, one of the aims of this 

study was to investigate the degree to which the empirically 

produced structures could be described by Delaunay  

 

 
Figure 3. Example constellations with the RS3 structure 

shown in black, and the aggregated empirical structure 

shown in white. 



triangulation and its‟ subgraphs. Taking an approach 

analogous to precision/recall analyses in information 

retrieval research, Figure 4 shows the proportional overlap 

between the empirical links in the graph structures (y-axis), 

and the graph links in the empirical structures (x-axis). 

For the Delaunay triangulation links the data indicate high 

recall and low precision: a high proportion of the empirical 

links are Delaunay triangulation links ( X  = .98), but the 

Delaunay structures also contain a high proportion of links 

that are not present in the empirical structures ( X  = .58). 

Conversely, Figure 4 indicates that nearly all of the nearest 

neighbor links are present in the empirical structures ( X  = 

.93), but the empirical structures also contain numerous 

links that are not nearest neighbors ( X  = .52).  

Figure 4 suggests that the empirical structures are best 

described by relative neighborhood graph or minimum 

spanning tree links, with a close correspondence between 

the proportion of graph links that are empirical links ( X  = 

.83 and .86 for RNG and MST respectively) and empirical 

links that are graph links ( X  = .84 and .82 for RNG and 

MST respectively). A qualitative inspection of the empirical 

structures appears to confirm this result: the participants 

tended to create structures closely resembling minimum 

spanning trees, but with additional links employed to close 

loops. 

We employed the previously described Bayesian 

methodology to determine the likelihood of this degree of 

overlap occurring by chance. In regards to the overlap 

between the empirical structures and Delaunay triangulation 

and nearest neighbor graph structures the analyses indicated 

that for each stimulus the most likely model was M3, 

indicating that the empirical and graph structures had a high 

overlap in terms of link locations, but (as could be expected 

from Figure 4) the link numerosities appeared to be drawn 

from different populations. In regards to the Gabriel graph 

link structure the results of the analyses showed that 47% of 

the stimuli were best described by M2 indicating a high 

overlap between both the number and location of structure 

links, with the remaining 53% of the stimuli best described 

by M3.  

Finally, in regards to the overlap between the empirical 

structures and the relative neighborhood graph and 

minimum spanning tree graph structures the analyses 

indicated that for all 30 constellations the correspondence 

was best described by M2, with the next most likely model 

(which in each case was M3) being at least 3.01x10
10

 and 

4.05x10
10

 times less likely for the relative neighborhood 

graph and minimum spanning tree respectively. In other 

words, the probability that the empirical structures would by 

chance share such a high degree of overlap with the 

minimum spanning tree and relative neighborhood graph 

structures in terms of both number and location of structure 

links is extremely low.  

Nonetheless, Figure 4 also demonstrates that the links 

present in the minimum spanning tree and relative 

neighborhood graph structures are not sufficient to model 

the empirical structures. Specifically, it can be seen that  

 
 

Figure 4. Proportional overlap between graph and 

empirical structure links for Delaunay triangulation (DT), 

Gabriel graph (GG), relative neighborhood graph (RNG), 

minimum spanning tree (MST), and nearest neighbors 

(NN). Each data point represents one of the 30 stimuli. 

 

there is a wide range in the degree of correspondence 

between the graph and empirical structures, indicating that 

in some cases the observers are employing Delaunay links, 

but are not necessarily employing minimum spanning tree 

or relative neighborhood graph links. This suggests that in 

order to model the empirical structures it would be 

necessary to employ the full Delaunay triangulation, but 

with some means of restricting or biasing the links to lower-

level neighbor relations (i.e., maintaining the recall, but 

improving the precision). 

 Figure 5 indicates the plausibility of such an approach. If 

the Delaunay neighbors are indexed ordinally (i.e., 1
st
 

nearest Delaunay neighbor, 2
nd

 nearest Delaunay neighbor, 

… k
th

 nearest Delaunay neighbor) it can be seen that the 

majority of the empirical links are captured by Delaunay 

neighbors of order <= 5 (top panel). Furthermore, the 

majority of the empirical links are first order neighbors (i.e., 

nearest neighbors), with the frequency of inclusion 

decreasing as a function of neighbor order (lower panel). 

It should be noted that for uniformly random distributions 

of points the most prevalent number of Delaunay neighbors 

is 6, with 5 and 7 neighbors being roughly three quarters as 

prevalent. Given this it is unsurprising that the proportion of 

high-order Delaunay neighbors present in the empirical 

structures is low. Nonetheless, Figure 5 indicates that the 

empirical links are not chosen with a uniform probability – 

rather there appears to be a strong bias towards including 

very low-order neighbors (i.e., 1
st
 to 3

rd
 nearest Delaunay 

neighbors). 



 
Figure 5. The cumulative distribution function for the 

proportion of empirical links that are 1
st
 order Delaunay 

neighbors through to 1
st
 , 2

nd
, 3

rd
 … and 10

th
 order neighbors 

(top panel), and the probability density function for the 

proportion of empirical links that are 1
st
 order neighbors 

only, through to 10
th

 order neighbors only (bottom panel). 

Individual stimuli are shown in gray, with the average 

shown in black 

Controlling For Familiarity 

As has been indicated none of the participants reported 

recognizing the experimental stimuli as constellations. 

However, in order to control for the possibility that the 

participants unconsciously reproduced the constellation 

structures from memory we ran a control study (using the 

same 12 participants from the current study) which 

employed 30 random point patterns or „pseudo-

constellations‟ which were matched to one of the 30 

constellations in terms of numerosity and degree of 

clustering as measured by 
eo rrR  , where ro is the mean 

nearest neighbor distance for the n points in the stimulus 

and re is the expected mean for a uniformly random 

distribution of n points. The results of the control study 

provided the same pattern of results as those reported for the 

constellation stimuli in terms of inter-rater reliability, 

proportional overlap with Delaunay and Delaunay sub-

graph link structure. Given this we can safely assume that 

any familiarity effects are either negligible or non-existent. 

Furthermore, the control study provides an important 

indication of the generality of the results of the constellation 

experiment. 

Discussion 

The high inter-rater reliability and high degree of overlap 

between the RS3 and empirical constellation structures 

provide support for Köhler‟s suggestion that the perceptual 

organization of constellation-like stimuli is relatively 

invariant across individuals. Köhler and colleagues argued 

that perceptual organization is driven by universal principles 

or processes, citing phenomenological examples such as 

Figure 1a as evidence. In this study we provide quantified 

empirical evidence pointing towards the same conclusion. 

The finding that the empirical constellation structures 

were best described by minimum spanning tree or relative 

neighborhood graph structure is analogous to the results of a 

similar experiment reported in Pomerantz (1981) in which 

participants were asked to join up the dots in semi-random 

point patterns to show the structure that they perceived. As 

with the current study the results indicated that the empirical 

structures tended to be minimum spanning trees with a 

small number of additional links closing loops or adding to 

the overall symmetry of the structure.  

Pomerantz noted that the participants‟ production of 

structures corresponding closely to minimum spanning trees 

could be interpreted as empirical evidence of the law of 

Prägnanz (the minimum principle). In other words the 

empirical structures tended towards the simplest possible 

configuration of the point set in that they had close to the 

minimum number of links needed to create a tree structure, 

and came close to minimizing the overall length of the links 

included in the structure. Furthermore, it was suggested that 

the fact the participants generated these close-to-minimal 

structures without prompting could be taken as evidence 

that much of perceptual organization occurs in a bottom-up 

fashion without reference to top-down processes based on 

strategy or learning. 

If this is indeed the case, then the results of these 

experiments might provide insight into human performance 

on difficult optimization tasks such as the visually presented 

traveling salesperson problem (TSP). Solving a TSP 

involves finding the shortest pathway through a set of N 

cities that begins and ends at the same city. The number of 

potential solutions to a TSP instance increases factorially as 

the number of cities in the instance increases, such that for a 

5 city instance there are 12 pathways, for a 10 city instance 

there are 181,400 pathways and for a 15 city instance there 

are 4x10
10

 pathways. Despite this apparent intractability 

research has shown that human participants are able to 

generate near-optimal solutions to TSPs in a timeframe that 

is a close-to-linear function of problem size (e.g., Dry, M. 

Lee, Vickers, & Hughes, 2006). 

This finding might be explicable in terms of a bottom-up 

process that is biased towards organizing visual stimuli such 

that the resulting structure is simple or minimal. If the base 

representation or initial clustering of a TSP is a minimal 

structure (by virtue of the bottom-up process employed to 

generate the representation), then producing a minimal 

pathway via some form of top-down cluster joining heuristic 

should be far more efficient than a path-finding heuristic 

that works entirely from a top-down perspective seeking to 

actively impose minimality on a raw stimulus. 

The results of the current study provide some important 

insights into formally modeling human performance on 

perceptual clustering tasks. Firstly, the analyses indicate that 

the empirical structures can be well described by grouping 

heuristics based upon relative proximity alone. Specifically, 

it was not necessary to employ more complex heuristics 



such as good continuation or symmetry in order to describe 

the empirical structures. Nonetheless, the fact that the 

participants were creating near-minimal structures with the 

addition of extra links to close loops or add some form of 

balance or symmetry to the structure suggests that some of 

the remaining variance between the graph and empirical 

structures might be accounted for by these additional 

heuristics. 

Secondly, the data in Figure 5 suggest that it might be 

possible to simulate the empirical structures using a model 

that links together neighboring points in a hierarchical 

manner by initially forming clusters based on nearest 

neighbor or low-level Delaunay neighbor links, and then 

joining these clusters into a single structure. A similar 

approach has been suggested in relation to modeling human 

performance on the traveling salesperson problem (e.g., Dry 

et al., 2006). Preliminary analyses have shown that this form 

of approach is able to produce structures that have a high 

degree of overlap with the empirical constellation structures 

(mean r = .92) 

There are a number of alternative previously published 

models that have also been applied to the detection of 

structure in dot stimuli using spatial filtering (e.g., Smits & 

Vos, 1986) or some form of relational information (e.g., 

Caelli, Preston, & Howell, 1978; Pizlo, Salach-Golyska, & 

Rosenfeld, 1997). Furthermore, Vickers, Navarro and M. 

Lee (2000) suggested that the visual system might extract 

structure from point sets by searching for transformations 

(e.g., rotations, translations, etc) that generate an output that 

is maximally symmetric with the original image, and 

demonstrated that such an approach could produce a link 

structure for the constellation Perseus that closely resembled 

the structure present in star atlases. It would be highly 

interesting to compare the performance of these different 

models on the constellation task to determine which of these 

approaches provides a better account of the processes 

underlying human perceptual organization. 
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