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Abstract

We investigated the properties of the distribution of human solution times for Traveling
Salesperson Problems (TSPs) with increasing numbers of nodes. New experimental data
are presented that measure solution times for carefully chosen representative problems
with 10, 20, . . . 120 nodes. We compared the solution times predicted by the convex hull
procedure proposed by MacGregor and Ormerod (1996), the hierarchical approach of
Graham, Joshi, and Pizlo (2000), and by five algorithms drawn from the artificial
intelligence and operations research literature. The most likely polynomial model for
describing the relationship between mean solution time and the size of a TSP is linear or
near-linear over the range of problem sizes tested, supporting the earlier finding of
Graham et al. (2000). We argue the properties of the solution time distributions place
strong constraints on the development of detailed models of human performance for
TSPs, and provide some evaluation of previously proposed models in light of our findings.

Introduction

As humans interact with the world, they are inundated with information. Deciding what
information is or is not relevant to a given task is a nontrivial problem: A nearly infinite
supply of information is available to a decision-maker, all of which may potentially have
some influence upon an outcome. In spite of this potential information overload, we are
able to negotiate challenging environments with remarkable speed and success. It
appears that the way we deal with this wealth of data is to ignore much of it by employing
heuristics that focus upon statistical and environmental regularities (e.g., Gigerenzer &
Todd, 1999). In order to understand these heuristic processes better, researchers have
begun to explore tasks, such as the Traveling Salesperson Problem (TSP), that belong to
a class of problems for which it is believed no method exists whereby an optimal solution
can be calculated within a practical time (Lawler, Lenstra, Rinooy Kan, & Schmoys, 1985).
Because these problems are simple to explain and easily understood, they are well suited
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to laboratory exploration, yet they have some claim to being representative of the types
of real-world problems encountered in everyday life.

Solving a TSP involves finding the shortest pathway through an array of n nodes or
“cities,” generally returning to the starting node. As the number of nodes in the array is
increased, the number of possible solutions increases factorially: Each TSP has (n – 1)!/2
possible solutions. This means that a 5-point array has 12 possible solutions, a 10-point

array has 181,440 possible solutions, and a 15-point array has 4 × 1010 possible solutions.
Despite the apparent intractability of the TSP, research into human performance upon
visually presented TSPs has indicated that participants are capable of solving the prob-
lems to near optimal accuracy with a minimum of cognitive effort (e.g., MacGregor &
Ormerod, 1996; Vickers, Butavicius, Lee, & Medvedev, 2001).

As part of this general program of research, Graham, Joshi, and Pizlo (2000) carried
out an experiment in which six participants were tested on instances of Traveling
Salesperson Problems with 6, 8, 10, 20, or 30 nodes. An important finding was that
participants appeared to spend a roughly constant time per node, implying that the total
time they required to arrive at a solution was a linear function of the number of nodes.

If this finding can be corroborated, it is important for two main reasons. First, this
experiment is the only one in which human solution times have been measured and com-
pared across instances with several different numbers of nodes. Secondly, there are many
algorithms that yield approximate solutions to TSP instances (Lawler et al., 1985). How-
ever, no known useful algorithm predicts a simple linear relationship between solution
time and the number of nodes, n. If solution time for participants is indeed a linear func-
tion of n, then this suggests that the underlying mental processes have a low computa-
tional complexity and that participants cannot be searching through the entire (or even
a substantial proportion of the) problem space of potential TSP solutions. This, in turn,
imposes strong constraints on modeling human performance in arriving at TSP solutions.

Unfortunately, several features of the experiment by Graham et al. (2000) make
for considerable uncertainty regarding the finding of a linear relation between solution
time and n. First, the range in the number of nodes studied by Graham et al. was quite
restricted. Second, no descriptive statistics are given for the problem instances (e.g., the

number of convex hull nodes,1 the number of potential intersections), so that it is not
possible to ascertain how representative they were of the population of all problem
instances with a given n. Vickers, Lee, Dry, and Hughes (2003) demonstrated that
manipulating the number of potential intersections and number of nodes on the convex
hull for problems of a set size had a significant effect upon problem difficulty. Further-
more it has been shown that number of potential intersections and number of convex
hull nodes for randomly generated problems varies following a near-normal distribu-
tion (Lee & Vickers, 2000; Vickers et al., 2003). Given this, it is important to ensure
that test stimuli are representative and not drawn from the tails of these distribu-
tions. Thirdly, data were collected for six participants only (including the authors).
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Fourthly, participants had differing amounts of practice. Fifthly, the experiment was
conducted in two stages (the first with 6, 8, or 10 nodes and the second with 10, 20, or
30 nodes), and the two stages involved different amounts of practice. Finally, the three
authors responded under a deadline procedure, whereas the three remaining partici-
pants were instructed to use “as much time as needed in order to produce a best
solution” (Graham et al., 2000, p. 1194). Under these conditions, the averaged times for
each problem size can be interpreted as suggestive only.

A more general problem that we also attempt to address is that using total TSP
solution time as an index of decision-making processes ignores the time that participants
spend physically executing a solution. In order to provide an estimate of the separate
cognitive and motor aspects of TSP solution time, we undertake an additional experi-
ment measuring the time taken to trace the paths of representative participant TSP

solutions.2 We assume that, by removing the need for participants to devise a solution,
we could obtain a measure of the pure motor aspects of TSP solution times. Similarly,
by subtracting the solution times for the path-following experiment from the total TSP
solution times, we obtain an estimate of the decision-making aspects of TSP solution
time. In order to differentiate between the two experiments, the main experiment will
be referred to as the TSP condition, and the additional experiment will be referred to as
the path-following condition.

Overall, therefore, in this paper we carry out a rigorous, systematic investigation of
the relation between TSP solution time and n, using representative stimulus arrays with
between 10 and 120 nodes. We compare the results against hypotheses concerning the
solution processes employed by participants. Using Bayesian model selection we com-
pare the solution times predicted by the convex hull procedure proposed by MacGregor
and Ormerod (1996), by the hierarchical approach of Graham et al. (2000), and by five
algorithms drawn from the artificial intelligence and operations research literature.

Experiment

Participants

Forty participants (29 females, 11 males) completed the TSP condition. Five participants
(2 females, 3 males) completed the path-following condition. The participants’ ages
ranged from 18 to 52 years, with a mean age of 23. Ethics approval was obtained from
the University of Adelaide Psychology Department human ethics subcommittee.

Stimuli

All stimuli were presented on a uniform white background within a 14 cm × 14 cm
square. The nodes were black dots of diameter 1.5 mm, and were constrained to be at
least one diameter separate from each other.
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For the TSP condition, a total of 10,000 random problems were generated for
problems with 10, 20, 30, 40, . . . 120 nodes. Each of these problems was generated by
choosing each point independently from a uniform distribution, subject to a constraint
that ensured a minimal level of separation between nodes. For these large samples, the
modal number of points on the convex hull was observed to be 6, 8, 9, 10, 10, 10, 11, 11,
11, 12, 12, and 12 or 13 for n = 10, 20, 30, 40, . . . 120 nodes. Over all the problems with

the modal number of convex hull nodes, the average proportion of intersections3

between all nodes (including hull points) was 0.2317. The proportion of intersections
for problems with the modal number of hull points in each category varied between
0.2307 and 0.2327. Accordingly, for each value of n, a total of 20 problems were chosen
for the experiment that had the modal number of convex hull nodes and were in this
range for the proportion of intersections. No restriction was placed on the internode
distance mean or standard deviation. An example of a typical 40-node TSP is given in
Figure 1a.

For the path-following condition the stimuli were drawn from the pool of par-
ticipant solutions to problems in the TSP condition. For each value of n, we selected
the participant solution that was the closest to the mean of all participant solution
lengths for that class. The solution was superimposed on its corresponding TSP.
Figure 1b provides an example of the type of stimuli employed in the path-following
experiment.

In order to acquaint the participants with the process of solving a TSP, they were
given three practice problems (containing 30, 60, and 90 nodes) to complete before
commencing the experiment.

Figure 1.
Example 40-node TSP (a) and path-following (b) arrays.

a. b.
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Procedure

The arrays were presented on computer color monitors. The method employed to
create pathways was identical for both experiments. Participants could begin a path by
left-clicking on a node with the computer mouse. Then, while holding down the mouse
button, they drew a path by dragging the mouse cursor to a subsequent node and re-
leasing the button, causing a straight line to be drawn between that node and the
previously visited node. By right-clicking on a link to select it and then pressing the delete
key on the keyboard, the participants could undo any links they had drawn. The partic-
ipants were thus free to connect the nodes in any order, to work alternately from two
nodes, or to work on several separated clusters of nodes.

In the TSP condition, the participants were instructed to create the shortest con-
tinuous pathway that passed through every point in the array. No restrictions were
imposed on the length of time that the participants could take to complete a problem.
Participants received feedback on how far their solution was from the optimal solution,
expressed as a percentage. This feedback was based on estimated optimal solutions that
were calculated using a standard simulated annealing algorithm (Press, 1992; Reinelt,
1994). Conversely, for the path-following condition the participants were instructed to
trace the circuit displayed on the screen as quickly as possible, and no feedback was
provided. In both cases, participants could proceed to the next problem by clicking on
a “proceed to next test” button but were not allowed to proceed until a legitimate closed
TSP tour was in place.

Each participant completed one problem for each of the 12 numbers of points. The
assignment of particular arrays to participants in the TSP condition ensured that each of
the 20 arrays of each type was completed by exactly two participants.

Analysis

Using the estimated optimal solution as a benchmark, it was possible to measure the
mean participant deviation from optimality for each problem in the TSP condition, ex-
pressed as the proportional length by which a participant solution exceeded the optimal

optimal solution length, and Figure 2b shows the mean participant deviation from op-
timality. Participant solution lengths closely approximate the estimated optimal solution
lengths, with deviation asymptoting at around 0.11 when problem size exceeds 70
nodes. Importantly, Figure 2b demonstrates that participant performance falls within
the range of deviation from optimality scores reported in Graham et al. (2000) and
MacGregor, Ormerod, and Chronicle (1999).
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Figure 2.
The distribution of mean participant solution lengths (a), and mean participant deviation from
optimal (b) for TSP arrays with 10, 20, . . . 120 nodes. The error bars represent one standard error.
The data points from Graham et al. (2000) represent mean values aggregated across the separate
scores reported for Authors and Naive Subjects.
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Mean empirical solution times for problems in the TSP and path-following condi-
tions were obtained by averaging across all participants for each of the 12 problem sizes.
As stated previously, by subtracting each point in the distribution of path-following so-
lution times from its corresponding point in the distribution of TSP solution times, we
were able to obtain an estimate of the decision-making component of TSP solution times.

condition, as well as the distribution of solution times for the path-following condition.
As can be seen, all three data sets appear to follow a linear distribution.

Graham et al. concluded that the linear distribution of TSP solution times ruled out
the majority of artificial intelligence and operations research algorithms as plausible
models of human performance on the TSP task. However, they did not provide any sta-
tistical evidence to support this conclusion. Given the empirical TSP solution time data
and the computational complexity of an algorithm (as indexed by the number of oper-
ations necessary to provide a solution to a given problem), it is possible to estimate
algorithm solution time as a function of number of problem nodes. The linear appearance
of the two empirical TSP solution time distributions suggests that participants employ
heuristics with a complexity of O (n). Graham et al. (2000) reviewed a number of artificial
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intelligence and operations research algorithms capable of providing good approxi-
mate solutions to the TSP: nearest neighbor (NN), cheapest insertion (CI), convex hull
with cheapest insertion (CCI), convex hull with cheapest insertion and three segment

swap (CCI3), and elastic net (EN), with computational complexities of O (n3), O (n3 ln n),

O (n2 ln n), O (n3), and O (n2) respectively. Furthermore, they introduced the hierarchical

pyramid algorithm (HP) with complexity O (n2) and suggested that the HP algorithm
could be simplified to a complexity of O (n ln n). The computational complexities of the
NN, CI, CCI, and CCI3 algorithms are based on the estimates presented in Golden,
Bodin, Doyle, and Stewart (1980). As Golden et al. indicate, the complexity of the NN

and CI algorithms increases by an order of magnitude equal to n [from O (n2) to O (n3),

and O (n2 ln n) to O (n3 ln n) for NN and CI respectively] when every node in an array is
considered as a potential starting point for the algorithm.

Figure 3.
The distribution of mean participant solution times for TSP and path-following arrays with
10, 20, . . . 120 nodes. The error bars represent one standard error.
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We employed Bayesian statistical inference to determine which of the six functions
predicted by computational complexity could provide the best account of the empirical
TSP total solution time and decision time data. Using this approach, the six functions
become competing models that make different assumptions about the relationship
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between mean solution time and number of problem nodes. The six models, their com-
putational complexity, functional form, slope, and intercept are summarized in Table 1.

Table 1

Summary of Models, Including the Slope, Intercept, Weighted Sum Squared Error Data
Fit, BIC and Bayes Factors for the TSP Total Solution Time, and Decision Time Data.

Model Summary Total Solution Time Decision Time

No Complexity Functional

Form

slope int. WSSE BIC Bayes

Factors

slope int. WSSE BIC Bayes

Factors

1 O (n) y = ax + b   1.712   6.29  6.40   11.37 1 1.07   2.18   8.35 13.32 2.42

2 O (n ln n) y = ax ln x + b 0.357 17.41   6.66   11.63 1.13 0.226   9.16    6.60 11.57 1

3 O (n2) y = ax2 + b 0.015 31.46  48.44   53.41 1.34 × 109 0.009 18.25 22.20 27.17 2.43 × 103

4 O (n3) y = ax3 +b 0.000 38.78 124.40 129.37 4.20 × 1025 0.000 23.13 56.60 61.57 7.18 × 1010

5 O (n2 ln n) y = ax2 ln x + b 0.003 33.98  65.76   70.73 7.75 × 1012 0.002 19.92 29.76 34.73 1.06 × 105

6 O (n3 ln n) y = ax3 ln x + b 0.000 39.75 139.90 144.87 9.74 × 1028 0.000 23.78 63.76 68.73 2.58 × 1012

Note: Bayes factors are taken in relation to the most likely model, which in this case is Model 1 for the
total solution time data and Model 2 for the decision time data.

solution time data (a) and TSP decision time data (b). In both cases the maximum
likelihood fits are based upon the assumption of a Gaussian likelihood function. Given
these data fits, it is possible to calculate the Bayesian information criterion for each model
(Schwarz, 1978) using:

BIC = WSSE + Pln(N ),

where WSSE is the weighted sum-squared error, P is equal to the number of model
parameters, and N represents the number of data points to which the model is being
fitted (in this case, 12). The relative likelihood of each model can then be determined by
calculating Bayes factors (Kass & Raftery, 1995). In this case, the six models had equal
parametric complexity (P = 2); therefore, Pln (N) was essentially an additive constant of
4.96. It is recognized that log-likelihood ratios based on the maximum likelihood fits will
predict the same order of results as Bayes factors. However, given that future studies may
wish to evaluate the fits of models with varying parametric complexity, we have pre-
sented our results in a form that will facilitate this comparison. Table 1 summarizes the
results of these analyses, showing the maximum likelihood fit of the function predicted
by each of the six models and the associated BIC and Bayes factors for both the total
solution time and decision time.

As can be seen in Figure 4, Models 1 and 2 appear to provide the best qualitative
fit to both the total solution time and decision time data, with the more computationally
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complex models (Models 3–6) failing to match the basic pattern of results. This finding
is supported statistically by the weighted sum squared error fits and Bayesian analysis.
The Bayes factors indicate that, for the total solution time data, Model 1 provides the
most likely fit to the empirical data, with Model 2 being only 1.13 times less likely. For
the decision time data, the order is reversed, with Model 2 being 2.4 times more likely
than Model 1. According to Jeffreys’ (1961) guidelines for interpreting Bayes factors, it is
difficult to make a meaningful distinction between the likelihood of these two models’
fitting the data (a difference of less than 3.2 is “not worth more than a bare mention”).
However, it should be noted that the model that provides the next best fit to the data

(Model 3 in both cases) is 1.34 × 109 or 2.42 × 103 times less likely than the best-fitting
model for the total solution time and decision time data respectively. On the basis
of these analyses, we conclude that human solution times either are linear or closely
approximate linearity over the range of problem sizes tested in this experiment.

Figure 4.
Comparison between total solution time (a) and decision time (b), and time plotted as a function
of complexity. The error bars represent one standard error.
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Comparison of the model predicted intercept values provides further evidence
in favor of Models 1 and 2. Models 3–6 all predict intercepts that exceed the mean
participant solution time for 10 node problems. In contrast to this, Models 1 and 2 both
have intercepts that can be plausibly accepted as the amount of preparation time that
must necessarily precede the physical execution of a solution.

The same pattern of results was found in a subsequent experiment that employed
a subset of the TSP condition stimuli and 70 naive participants. Three problems were
chosen from each size category, and each problem was completed a minimum of
22 times (max = 26). The distribution of average participant solution times closely repli-
cated the findings of the initial experiment for both total solution time and decision time
data, with Model 2 providing the most likely description of the relationship between
problem size and time taken and Model 1 the next most likely description.

Discussion

Our finding—that the most likely polynomial model for describing the relationship
between mean solution time and the size of a TSP problem is linear or near-linear over

the range of problem sizes tested in this paper—supports the earlier finding of Graham
et al. (2000). Our analyses provide a quantified demonstration of the inadequacy of
standard artificial intelligence and operations research algorithms to provide a plausible
account of human performance. Although previous studies have shown that some of
these algorithms are able to perform at a level equal to or better than human perfor-
mance in regard to solution optimality (Graham et al., 2000) and solution path length
(MacGregor, Ormerod, & Chronicle, 2000), in each case the price of good performance
appears to be high computational complexity.

More generally, the solution time data suggest that human participants are only
searching through a subset of potential solution pathways. This imposes constraints
upon the types of heuristics that participants might be employing to solve the TSP task.
Recently Vickers, Lee et al. (2003) suggested that the visual system may be solving the
TSP task by exploiting spontaneous perceptual organization based on least-distance
links between neighboring nodes. The clusters formed by this nearest-neighbor linking
can be thought of as providing the initial solution for a TSP, and the TSP task as a
hierarchical nearest-neighbor (HNN) procedure of finding the most economical path-
way connecting the clusters. A growing body of evidence suggests that such an approach
might be able to provide a plausible account of human performance upon the TSP task.
First, Vickers, Lee et al. (2003) demonstrated that problem difficulty is related to
number of potential intersections. Because nearest-neighbor links never intersect,
reliance upon nearest neighbors would place a strong restriction on the number of
plausible solution pathways within a problem. Furthermore, this would account for the
general avoidance of crossings in TSP solutions (van Rooij, Stege, & Schactman, 2003).
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Second, Vickers, Bovet, Lee, & Hughes (2003) found that the solution length of both
open and closed versions of the TSP was reliably correlated with the number of nearest-
neighbor links that a standard NN algorithm shared with the benchmark solution, and
Vickers, Mayo, Heitmann, Lee, and Hughes (2004) demonstrated that solution lengths
for TSPs and two closely related visual optimization tasks, the Minimum Spanning Tree
and Steiner Tree, were all highly correlated with a measure of path complexity indexing
the 1st to kth order neighbor links within participant solutions. Finally, and most impor-
tantly in light of the results of the current experiment, the number of clusters formed by
nearest-neighbor links increases as a linear function of n (Vickers, Bovet et al., 2003). Given
this, we could expect the amount of time taken by an HNN procedure to produce TSP
solutions to similarly increase as a linear function of n.

A final point needs to be made in relation to modeling human performance upon
visual optimization problems such as the TSP. There have been a number of attempts to
elucidate the psychological processes underlying TSP solution. A common feature that
each of these approaches shares is that the low-level perceptual structure from which
solutions are assumed to be derived (e.g., neighbor relations [Vickers, Lee et al., 2003],
clustering derived from Gaussian filtering [Graham et al., 2000], and the convex hull
[MacGregor et al., 2000]), have all been shown to be features of numerous other per-
ceptual tasks. For example, both neighbor relations and Gaussian filtering have been
used to model the perception of Glass patterns (Caelli, 1981; Dakin, 1997; Dry, Vickers,
Lee, & Hughes, submitted), and it could be argued that perception of the convex hull is
a form of figure-ground segregation. Importantly, it has been shown that the human
visual system is capable of detecting perceptual features such as these with presentation
durations of less than a second, and it is assumed that awareness of these features is the
result of spontaneous parallel processes acting in tandem across the face of a stimulus.

In this context, it is worth contrasting these “bottom-up” perceptual processes
with the “top-down” cognitive process of tour planning and execution. It may be that we
need to make a distinction between the spontaneous parallel processes involved in the
initial perception of the structure in TSP arrays and the serial process of linking individual
nodes or clusters of nodes. It could be argued that the computational complexity of a
psychological model should not be based upon the process or processes involved in
deriving the initial representation of a problem array but rather upon the process or
processes involved in moving from the initial representation to the solution end-state.
This is not to say, however, that these perceptual processes are not worthy of attention,
for we can assume that the representations derived from these distinctive perceptual
processes will result in very different predictions about the computational complexity
of the solution process. In any case, both the top-down and bottom-up processes
should be of interest to optimization researchers.

30 Matthew Dry, Michael D. Lee, Douglas Vickers, and Peter Hughes



Notes

1. The convex hull is a boundary so that no line joining any two nodes in the array can fall
outside it.

2. We are indebted to our reviewers for suggesting that we obtain a separate measure of
the motor component of TSP solution time.

3. Within each array, there are n(n – 1)/2 unique node pairings. The number of intersections
within an array is given by the number of instances in which the vectors joining node
pairs cross. The proportion of intersections can then be calculated as the number of
intersections observed within a given array of size n, divided by the total number of
potential intersections for all size n arrays, where the number of potential intersections
is given by [n(n – 1)/2][(n – 2)(n – 3)/2]/2.
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