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Knowledge of language

Knowledge of multiple complex generative systems: phonology,
morphology, syntax, …

Speakers use these systems to produce the observable data.

Children must discover the system that native speakers use to generate the
observable data

Knowledge of language

Knowledge of multiple complex generative systems: phonology,
morphology, syntax, …

Speakers use these systems to produce the observable data.

Children must discover the system that native speakers use to generate the
observable data

Observable data: stress contour OCtopus

OC    to    pus
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( S      S     S )

( H      L     L )
OC    to    pus

OC    to    pus

OC    to    pus
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Learning generative systems
The tricky part: Even if children know a generative system produces the
observable data (useful knowledge), how do they know what variables are
important to consider?

Observable data: stress contour OCtopus

Do individual segments matter?  Do syllables matter? Are
all segments/syllables involved?  Does syllable weight
matter?  Does rhyming matter? …
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Modeling acquisition

Important distinction: learnability vs. “acquirability” (Johnson 2004)

Acquirability (a more constrained form of learnability) = the ability of
children to acquire the knowledge they do from the data they
have, given the limitations they have

Practical matters: constraints on…
    …what data children encounter

    …when & how long they have to learn
    
    …how they integrate information

Modeling acquisition: today

The data children encounter: estimated from child-directed speech
(CHILDES database)

When & how long children have to learn: estimated from experimental
studies of children’s knowledge at certain ages

How children integrate information: assumes children have memory
limitations and process data incrementally

Main idea: If the model reasonably
reflects process of acquisition in
children, manipulations of the model
inform us about what those same
manipulations would do to the process
of acquisition in children.

Goal: Understand this

I. Background
 Parametric systems
   Parametric metrical phonology

II. Learning English metrical phonology
Analysis of data
Unbiased models & failure
Biased models & success

III. Implications for acquisition

Road Map
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Parametric systems & the hypothesis space

Hypothesis for a language consists of a
combination of generalizations about
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.

Are syllables differentiated?Are syllables differentiated?
{No, Yes-2 distinctions, Yes-3 distinctions, {No, Yes-2 distinctions, Yes-3 distinctions, ……}}

Are all syllables included?Are all syllables included?
{Yes, No-not leftmost, No-not rightmost, {Yes, No-not leftmost, No-not rightmost, ……}}

Which syllable of aWhich syllable of a  larger unit is stressed?larger unit is stressed?
{Leftmost, Rightmost,{Leftmost, Rightmost,  SecondSecond  from Left,from Left,……}}

Rhyming matters?Rhyming matters?
{No, Yes-every other, {No, Yes-every other, ……}}

Parametric systems & the hypothesis space

Hypothesis for a language consists of a
combination of generalizations about
that language (grammar). But this
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Rhyming matters?Rhyming matters?
{No, Yes-every other, {No, Yes-every other, ……}}

Observation:
Languages only differ in constrained
ways from each other.  Not all
generalizations are possible.

Parametric systems & the hypothesis space

Hypothesis for a language consists of a
combination of generalizations about
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.

Are syllables differentiated?Are syllables differentiated?
{No, Yes-2 distinctions, Yes-3 distinctions}{No, Yes-2 distinctions, Yes-3 distinctions}

Are all syllables included?Are all syllables included?
{Yes, No-not leftmost, No-not rightmost}{Yes, No-not leftmost, No-not rightmost}

Which syllable of aWhich syllable of a  larger unit is stressed?larger unit is stressed?
{Leftmost, Rightmost}{Leftmost, Rightmost}

Observation:
Languages only differ in constrained
ways from each other.  Not all
generalizations are possible.

Idea: Constraint on hypothesis space -
children’s hypotheses are constrained so
they only consider generalizations that
are possible in the world’s languages.

Chomsky (1981), Halle & Vergnaud (1987),
Tesar & Smolensky (2000)

Parametric systems & the hypothesis space

Hypothesis for a language consists of a
combination of generalizations about
that language (grammar). But this
leads to a theoretically infinite
hypothesis space.
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Today: Binary linguistic parameters chosen as implementation of
constraints on hypothesis space.

What the learner must do:  Set the appropriate value for the parameters of
the system.

Parametric systems & the hypothesis space

OC    to     pus
( H      L  )   H

( S     S )    S

( S     S      S )

( H     L      L )

Learning parametric linguistic systems

Data are often ambiguous between competing hypotheses, since multiple
grammars can account for the same data point.  Knowing the parametric
system doesn’t solve the acquisition problem.

OC    to   pus

OC    to     pus

OC    to     pus

OC    to     pus

?

?
?

?

Learning parametric linguistic systems: today

 Tractable case study of a parametric system of metrical phonology (adapted
from Dresher (1999), Halle & Vergnaud (1987), and Hayes (1995))

Compared to prior computational models of parametric systems:

♦ involves more parameters than previous work (Gibson & Wexler 1994,
Niyogi & Berwick 1996, Pearl & Weinberg 2007)

♦ input for the model is derived from child-directed speech distributions,
while input for previous models often has not been (Dresher & Kaye 1990,
Dresher 1999, Sakas & Nishimoto 2002, Sakas 2003, Fodor & Sakas
2004)

Parametric metrical phonology

Quantity SensitivityQuantity Sensitivity

All combine to generate stress contour output
Note: Does not include interactions with the morphology system, due to
learner’s likely initial knowledge state when first acquiring the metrical
phonology system (learner is under a year old and knows little morphology)

ExtrametricalityExtrametricality
Feet DirectionalityFeet Directionality

BoundednessBoundedness

Feet HeadednessFeet Headedness

Metrical phonology system here: 5 main parameters, 4 sub-parameters
156 grammars
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Parametric metrical phonology

Sub-parameters: options
that become available if
main parameter value is a
certain one

Metrical phonology system here: 5 main parameters, 4 sub-parameters
156 grammars

Parametric metrical phonology

Metrical phonology system here: 5 main parameters, 4 sub-parameters
156 grammars

Most parameters involve
metrical foot formation

Parametric metrical phonology

Metrical phonology system here: 5 main parameters, 4 sub-parameters
156 grammars

One parameter involves
stress assignment within a
metrical foot

Generating a stress contour

oc      to       pus
    VC    CV    CVC

Process speaker uses
to generate stress
contour
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Generating a stress contour

Are syllablesAre syllables
differentiated?differentiated?

Yes - by rime.Yes - by rime.

2 types:2 types:
VC & VV syllablesVC & VV syllables
are are HHeavy, Veavy, V
syllables are syllables are LLight.ight.

    VC    CV    CVC
        HH              LL            HH

Quantity SensitivityQuantity Sensitivity

Process speaker uses
to generate stress
contour

oc      to       pus

Generating a stress contour

    VC    CV    CVC

Are any syllablesAre any syllables
extrametrical?extrametrical?

Yes.Yes.

Rightmost syllable isRightmost syllable is
not included in metricalnot included in metrical
foot.foot.

        HH              LL            HH
(      (      ……        ))

ExtrametricalityExtrametricality

Process speaker uses
to generate stress
contour

oc      to       pus

Generating a stress contour

    VC    CV    CVC

Which direction areWhich direction are
feet constructed from?feet constructed from?

From the right.From the right.

        HH              LL))          HH

Feet DirectionalityFeet Directionality

Process speaker uses
to generate stress
contour

oc      to       pus

Generating a stress contour

    VC    CV    CVC

Are feet unrestricted in size?Are feet unrestricted in size?

No.No.

2 syllables per foot.2 syllables per foot.

      ((HH              LL)     )     HH

Process speaker uses
to generate stress
contour

BoundednessBoundedness

oc      to       pus
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Generating a stress contour

    VC    CV    CVC

Which syllable of theWhich syllable of the
foot is stressed?foot is stressed?

Leftmost.Leftmost.

      ((HH              LL)     )     HH

Process speaker uses
to generate stress
contour

Feet HeadednessFeet Headedness

oc      to       pus

Generating a stress contour

    VC    CV    CVC

Learner’s task: Figure
out which parameter
values were used to
generate this contour.

Process speaker uses
to generate stress
contour

OC      to       pus

      ((HH              L)     )     HH

Parameters & parameter values

Quantity SensitivityQuantity Sensitivity
{QI, QS}{QI, QS}
            {QS-VC-H, QS-VC-L}{QS-VC-H, QS-VC-L}

ExtrametricalityExtrametricality
{{Em-NoneEm-None, , Em-SomeEm-Some}}
                                    {{Em-RtEm-Rt, , Em-LeftEm-Left}}

Feet DirectionalityFeet Directionality
{Ft-Dir-Left, {Ft-Dir-Left, Ft-Dir-RtFt-Dir-Rt}}

BoundednessBoundedness
{{UnbUnb, B}, B}
                  {B-2, B-3}{B-2, B-3}
                  {{B-SylB-Syl, , B-MorB-Mor}}

Feet HeadednessFeet Headedness
{{Ft-Hd-LeftFt-Hd-Left, , Ft-Hd-RtFt-Hd-Rt}} I. Background

 Parametric systems
   Parametric metrical phonology

II. Learning English metrical phonology
Analysis of data
Unbiased models & failure
Biased models & success

III. Implications for acquisition

Road Map
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Looking at English

English parameter values
= {QSQS, QS-VC-HQS-VC-H, Em-SomeEm-Some, Em-RtEm-Rt, Ft-Dir-RtFt-Dir-Rt, BB,B-2B-2, B-SylB-Syl, Ft-Hd-Left Ft-Hd-Left }
(drawing from Dresher (1999) & Hayes (1995))

Why English?
Modeling with realistic data is easier:
    (1) English child-directed speech available (CHILDES)

Acquisition is non-trivial:
    (1) English data are very ambiguous
    (2) English data contain many exceptions (27% tokens)

exception = data point incompatible with English grammar on at 
least one parameter value
(partially due to interaction with morphology system)

Model input: English child-directed speech data

Estimate of child input: caretaker speech to children
between the ages of 6 months and 2 years (CHILDES
[Brent & Bernstein corpora]: MacWhinney 2000)

Total Words: 540505    Mean Length of Utterance: 3.5

Words parsed into syllables using the MRC
Psycholinguistic database (Wilson, 1988) and
assigned likely stress contours using the
American English CALLHOME database of
telephone conversation (Canavan et al., 1997)

Modeling framework

Model’s data intake based on the number of
words likely to be heard on average in a 6 month
period: 1,666,667. (Akhtar et al. (2004), citing Hart
& Risley (1995))

Model’s hypothesis space:
Set of 156 grammars in parametric system

Model’s update procedure:
Incremental update, since any procedure that children are likely to use
should be incremental/online (Vallabha et al. 2007).  Why?  Humans
(especially human children) don’t have infinite memory, so they are
more likely to integrate information into their generative system as it
comes in.

OCtopus

Unbiased models
Probabilistic generation and testing of grammars (Yang 2002)

For each parameter, the learner associates a probability with
each of the competing parameter values.

QI = 0.5QI = 0.5 QS = 0.5QS = 0.5
QS-VC-L = 0.5QS-VC-L = 0.5 QS-VC-H = 0.5QS-VC-H = 0.5
Em-Some Em-Some = 0.5= 0.5 Em-None Em-None = 0.5= 0.5
Em-Left Em-Left = 0.5= 0.5 Em-Rt Em-Rt = 0.5= 0.5
Ft-Dir-Left = 0.5Ft-Dir-Left = 0.5 Ft-Dir-Rt Ft-Dir-Rt = 0.5= 0.5
B = 0.5B = 0.5 Unb Unb = 0.5= 0.5
B-2 = 0.5B-2 = 0.5 B-3 = 0.5B-3 = 0.5
B-Syl B-Syl = 0.5= 0.5 B-Mor B-Mor = 0.5= 0.5
Ft-Hd-Left Ft-Hd-Left = 0.5= 0.5 Ft-Hd-Rt Ft-Hd-Rt = 0.5= 0.5

Initially all are equiprobable
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QI = 0.5QI = 0.5 QS = 0.5QS = 0.5
QS-VC-L = 0.5QS-VC-L = 0.5 QS-VC-H = 0.5QS-VC-H = 0.5
Em-Some Em-Some = 0.5= 0.5 Em-None Em-None = 0.5= 0.5
Em-Left Em-Left = 0.5= 0.5 Em-Rt Em-Rt = 0.5= 0.5
Ft-Dir-Left = 0.5Ft-Dir-Left = 0.5 Ft-Dir-Rt Ft-Dir-Rt = 0.5= 0.5
B = 0.5B = 0.5 Unb Unb = 0.5= 0.5
B-2 = 0.5B-2 = 0.5 B-3 = 0.5B-3 = 0.5
B-Syl B-Syl = 0.5= 0.5 B-Mor B-Mor = 0.5= 0.5
Ft-Hd-Left Ft-Hd-Left = 0.5= 0.5 Ft-Hd-Rt Ft-Hd-Rt = 0.5= 0.5

Probabilistic generation and testing of grammars (Yang 2002)

For each data point encountered, the learner probabilistically generates a
grammar.

Unbiased models

AFterNOON

QI/QS?QI/QS?……if QS, QS-VC-L or QS-VC-H?if QS, QS-VC-L or QS-VC-H?
Em-None/Em-SomeEm-None/Em-Some??……
……

QSQS, , QS-VC-LQS-VC-L, , Em-NoneEm-None, Ft-Dir-RtFt-Dir-Rt, 
BB, B-2B-2, B-SylB-Syl, Ft-Hd-RtFt-Hd-Rt

Probabilistic generation and testing of grammars (Yang 2002)

Unbiased models

AFterNOON

QSQS, , QS-VC-LQS-VC-L, , Em-NoneEm-None, Ft-Dir-RtFt-Dir-Rt, 
BB, B-2B-2, B-SylB-Syl, Ft-Hd-RtFt-Hd-Rt

The learner then uses this grammar to generate a stress contour for
the observed data point.

If the generated stress contour matches the observed stress
contour, all participating parameter values are rewarded.

      ( ( L L ) )   ( ( L   L             H H ))

AF     ter    NOON
    VC    CVC  CVVC

Reward all parameter values
(don’t attempt credit assignment)

Probabilistic generation and testing of grammars (Yang 2002)

Unbiased models

AFterNOON

QSQS, , QS-VC-LQS-VC-L, , Em-NoneEm-None, Ft-Dir-LeftFt-Dir-Left, 
BB, B-2B-2, B-SylB-Syl, Ft-Hd-RtFt-Hd-Rt

The learner then uses this grammar to generate a stress contour for
the observed data point.

      ( ( LL            LL  ))        ( ( H H ))

af     TER   NOON
    VC    CVC  CVVC

If the generated stress contour does not match the observed
stress contour, all participating parameter values are punished.

Punish all parameter values
(don’t attempt blame assignment)

Unbiased models
After seeing many data: expect probabilities of parameter values to
increase or decrease until past some threshold, and then that
parameter value is set (probability = 1.0).

Threshold chosen: Above 0.8 or below 0.2, based on estimates of
when children generalize (Gómez & Lakusta (2004), Hudson Kam &
Newport (2005))

QI = 0.3QI = 0.3 QS = 0.7QS = 0.7
QS-VC-L = 0.6QS-VC-L = 0.6 QS-VC-H = 0.4QS-VC-H = 0.4
Em-Some Em-Some = 0.2= 0.2 Em-None Em-None = 0.8= 0.8

…

Once set, a parameter value is always used during generation, since
its probability is 1.0.

Em-None Em-None = 1.0= 1.0 ((Em-Some Em-Some = 0.0)= 0.0)



10

Unbiased models: Update types
Naïve Parameter Learner (Yang 2002) [NParLearner]: Linear reward-
penalty (Bush & Mosteller 1951)

Learning rate γ:
small = small changes
large = large changes

! 

pv1 = pv1 +  "(1- pv1)

pv2 =  1- pv1

! 

pv1 =  (1- ")pv1

pv2 =  1- pv1

Parameter values v1 vs. v2

reward v1 punish v1

Bayesian Learner [BayesLearner]: Bayesian update of binomial
distribution (Chew 1971)

Parameter value v1

reward: success + 1 punish: success + 0

Parameters α, β:

α = β: initial bias at p = 0.5
α, β < 1: initial bias toward
endpoints (p = 0.0, 1.0)

here: α = β = 0.5

Unbiased models: Update types
Counting variants (Counting NParLearner & Counting BayesLearner)

These models keep count of how many successes or failures have
occurred in a row for a given parameter value.  Updating only occurs
when the number of successes/failures goes over a threshold c (Yang
2002).

Useful for noisy data: a string of successes/failures is more indicative
of actual success/failure on majority of data

Example Usage: c= 5
QI count: 0 QS count: 0

Unbiased models: Update types
Counting variants (Counting NParLearner & Counting BayesLearner)

These models keep count of how many successes or failures have
occurred in a row for a given parameter value.  Updating only occurs
when the number of successes/failures goes over a threshold c (Yang
2002).

Useful for noisy data: a string of successes/failures is more indicative
of actual success/failure on majority of data

Example Usage: c= 5
QI count: 0 QS count: 0

(1) QI grammar mismatches
QI count: -1 QS count: 0

Unbiased models: Update types
Counting variants (Counting NParLearner & Counting BayesLearner)

These models keep count of how many successes or failures have
occurred in a row for a given parameter value.  Updating only occurs
when the number of successes/failures goes over a threshold c (Yang
2002).

Useful for noisy data: a string of successes/failures is more indicative
of actual success/failure on majority of data

Example Usage: c= 5
QI count: 0 QS count: 0

(1) QI grammar mismatches
QI count: -1 QS count: 0

(2) QS grammar matches 3 data points in a row
QI count: -1 QS count: 3
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Unbiased models: Update types
Counting variants (Counting NParLearner & Counting BayesLearner)

These models keep count of how many successes or failures have
occurred in a row for a given parameter value.  Updating only occurs
when the number of successes/failures goes over a threshold c (Yang
2002).

Useful for noisy data: a string of successes/failures is more indicative
of actual success/failure on majority of data

Example Usage: c= 5
QI count: 0 QS count: 0

(1) QI grammar mismatches
QI count: -1 QS count: 0

(2) QS grammar matches 3 data points in a row
QI count: -1 QS count: 3

(3) QI grammar matches 6 data points in a row
QI count: 5 QS count: 3

Unbiased models: Update types
Counting variants (Counting NParLearner & Counting BayesLearner)

These models keep count of how many successes or failures have
occurred in a row for a given parameter value.  Updating only occurs
when the number of successes/failures goes over a threshold c (Yang
2002).

Useful for noisy data: a string of successes/failures is more indicative
of actual success/failure on majority of data

Example Usage: c= 5
QI count: 0 QS count: 0

(1) QI grammar mismatches
QI count: -1 QS count: 0

(2) QS grammar matches 3 data points in a row
QI count: -1 QS count: 3

(3) QI grammar matches 6 data points in a row
QI count: 5 QS count: 3

QI value rewarded  (only 1 update vs. 10 updates in non-counting variants)

Processing the input
Words are processed by the model one at a time, which assumes word
segmentation is operational. Evidence from Jusczyk, Houston, &
Newsome (1999) that 7-month-olds can segment words successfully.

Words are divided into syllables, with syllable rime identified as VC, VV,
or V. Evidence from Jusczyk, Goodman, & Baumann (1999) and Turk,
Jusczyk, & Gerken (1995) suggests young infants are sensitive to
syllables and properties of syllable structure.

Sub-parameters (ex: QS-VC-H vs. QS-VC-L) are not set until the main
parameter is set (ex: QS). This is based on the idea that children only
consider information about a sub-parameter if they have to.

Unbiased model results: Not so good
Goal: Converge on English values after learning period is over

English parameter values
= {QSQS, QS-VC-HQS-VC-H, Em-SomeEm-Some, Em-RtEm-Rt, Ft-Dir-RtFt-Dir-Rt, BB,B-2B-2, B-SylB-Syl, Ft-Hd-Left Ft-Hd-Left }
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Unbiased model results: Not so good
Goal: Converge on English values after learning period is over

English parameter values
= {QSQS, QS-VC-HQS-VC-H, Em-SomeEm-Some, Em-RtEm-Rt, Ft-Dir-RtFt-Dir-Rt, BB,B-2B-2, B-SylB-Syl, Ft-Hd-Left Ft-Hd-Left }

0.000
Counting BayesLearner,
c = 2, 5, 7, 10, 15, or 20

0.000333

Counting NParLearner,
γ = 0.001, 0.0025, 0.01, or 0.025
c = 2, 5, 7, 10, 15, or 20

Average success rate
(1000 runs each condition)

Model

0.000BayesLearner
0.000

NParLearner,
γ  = 0.001, 0.0025, 0.01, or 0.025

Examining why
Is it just these models or is there some underlying issue that will
cause all unbiased models to fail?

Let’s consider the hypothesis space, where the English grammar is
1 of 156 grammars under consideration.

How compatible are each of these
competing grammars with the English
child-directed speech data?

Examining why
Is it just these models or is there some underlying issue that will
cause all unbiased models to fail?

Let’s consider the hypothesis space, where the English grammar is
1 of 156 grammars under consideration.

It turns out that there are 51 other
grammars more compatible than the
English grammar with the data tokens
(56 are more compatible by data types).

Implication: The English grammar is not
the optimal grammar for this data set!

Examining why
Is it just these models or is there some underlying issue that will
cause all unbiased models to fail?

Are the unbiased models finding the more optimal grammars?

English grammar compatibility:
72.97% by tokens, 62.14% by types

Unbiased models choose grammars with
average compatibility of
73.56% by tokens, 63.30% by types

Implication: Unbiased models are finding
the more optimal grammar for the data.
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Examining why
Is it just these models or is there some underlying issue that will
cause all unbiased models to fail?

The problem seems not to be that the unbiased models cannot find
the more optimal grammars for the data given, but rather the
problem is because the unbiased models find the more optimal
grammars for the data given…and those grammars are not the
English grammar.

Implication: This means any unbiased learning model should fail.

Larger implication: English children are not unbiased learners.
They have some biases that constrain their learning.

Biased models: Bias on hypothesis space
Learner hypothesis bias: metrical phonology relies in part on
knowledge of rhythmical properties of the language

English infants may already have knowledge of Ft-Hd-LeftFt-Hd-Left and QSQS.

Jusczyk, Cutler, & Redanz (1993): English 9-month-olds prefer strong-weak
stress bisyllables (trochaic) to weak-strong ones (iambic).

        Ft-Hd-LeftFt-Hd-Left           Ft-Hd-Rt
    SS   S S  SS

Turk, Jusczyk, & Gerken (1995): English infants are sensitive to the difference
between long vowels and short vowels in syllables

QSQS QI
             VV    V                      S  S

Learner hypothesis bias: Ft-Hd-Left = 1.0, QS = 1.0
Hypothesis space is smaller (60 grammars)

Biased models: Bias on hypothesis space
Learner hypothesis bias: Ft-Hd-Left = 1.0, QS = 1.0
Hypothesis space is smaller (60 grammars)

Biased models: Bias on hypothesis space

0.0178
Counting BayesLearner,
c = 2, 5, 7, 10, 15, or 20

0.0165

Counting NParLearner,
γ = 0.001, 0.0025, 0.01, or 0.025
c = 2, 5, 7, 10, 15, or 20

Average success rate
(1000 runs each condition)

Model

0.001BayesLearner
0.000

NParLearner,
γ  = 0.001, 0.0025, 0.01, or 0.025
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Biased models: Bias on data intake
Pearl (2008): Selective learning bias

input
d d d

d
d

d
d
d

d
d

d
dModify the data the learner uses

(children learn only from certain data)

intake
input

d
d d

d

d

d
d d

“Selective” Intuition: Use the really good data only.

One instantiation of “really good” = highly informative.

One instantiation of “highly informative” = data viewed by
the learner as unambiguous (Fodor, 1998; Dresher,
1999; Lightfoot, 1999; Pearl & Weinberg, 2007)

Biased models: Bias on data intake
Identifying unambiguous data for a parametric system

intake
input

d
d d

d

d

d
d d

    CuesCues (Dresher, 1999; Lightfoot, 1999)

   ParsingParsing (Fodor, 1998; Sakas & Fodor, 2001)

Biased models: Bias on data intake
Identifying unambiguous data for a parametric system

intake
input

d
d d

d

d

d
d d

    CuesCues (Dresher, 1999; Lightfoot, 1999): heuristic pattern-matching to
observable form of the data. Cues are available for each parameter value,
known already by the learner.

 S…S  AF  ter  NOON

Cue for Em-None

Em-NoneEm-None

Biased models: Bias on data intake
Identifying unambiguous data for a parametric system

intake
input

d
d d

d

d

d
d d

ParsingParsing (Fodor 1998; Sakas & Fodor 2001): extract unambiguous
parameter values from all successful parses of data point (strongest form of
parsing)

    (S      S)     (S)
    AF    ter  NOON

    (L      L)     (H)
    AF    ter  NOON

    (L)    (L        H)
    AF    ter  NOON

 Em-NoneEm-None
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Biased models: Bias on data intake

Pearl (2008): A general class of probabilistic models learning from
unambiguous data is guaranteed to succeed at acquiring the English
grammar from English child-directed speech, provided the parameters are
learned in certain orders.

Why learning from unambiguous data works: The unambiguous data
favor the English grammar, so English becomes the optimal grammar.

However, they make up a small percentage of the available data (never
more than 5%) so their effect can be washed away in the wake of
ambiguous data if the ambiguous data are learned from as well and the
parameters are not learned in an appropriate order.

I. Background
 Parametric systems
   Parametric metrical phonology

II. Learning English metrical phonology
Analysis of data
Unbiased models & failure
Biased models & success

III. Implications for acquisition

Road Map

Today
Case study of acquiring a parametric system of metrical phonology,
constraining the learning model to be a model of acquisition
    Input = realistic distributions of child-directed speech
    Learning period = limited to a plausible amount of time for children to
acquire the system (6 months)
    Updating = incremental to reflect limited memory

What we found: Unbiased learning is not viable due to the data themselves.

Some kind of bias is required.

One that works: a plausible bias on the data intake of the learner
(learn from unambiguous data)
One that doesn’t: a plausible bias on the hypothesis space
(use prior knowledge of the language’s rhythmical properties)

Tomorrow?

When are biases necessary for acquisition, what biases are necessary,
and what is the nature of those necessary biases?

Domain-specific biases: English metrical phonology (Pearl (2008)),
English anaphoric one (Pearl & Lidz (submitted)), Object-Verb word order
(Pearl & Weinberg (2007))

Domain-general biases: English anaphoric one (Pearl & Lidz (submitted),
Regier & Gahl (2004)), Object-Verb word order (Pearl & Weinberg
(2007)),  structure-dependency (Perfors, Tenenbaum, & Regier (2006))
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Tomorrow?

When we find successful biases, are they generally useful biases?

Metrical phonology, Object-Verb word order: Learning from unambiguous
data is useful (Pearl (2008), Pearl & Weinberg (2007)).

English anaphoric one: Learning from unambiguous data is not so useful
because of data sparseness.  Ambiguous data must be leveraged. (Pearl
& Lidz (submitted), Regier & Gahl (2004))

Tomorrow?

Can we test theories of knowledge instantiation (parametric, constraint-
based, etc.) by how acquirable they are?  Only acquirable knowledge
instantiations are viable as representations of what children have in their
minds.

One parametric system of metrical phonology is acquirable (Pearl (2008)),
but only with certain biases.

Are other parametric systems also acquirable?  What about constraint-
based systems? What biases (if any) do they need?
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Why not just do manipulations with real children?

Some manipulations are very difficult to do with children in a
realistic language acquisition environment.

How do we control…
   …what hypotheses children consider?

   …what data children learn from?

   …how children change their beliefs in different hypotheses?

Ambiguity makes life hard: example
Credit problem (Dresher 1999): it’s hard to know which parameter value is

responsible for a particular stress contour because the data can be
compatible with multiple grammars

    CCVV   CVC  CVC
CU     CUM   ber

( ( S S ))        ((  SS            SS  ))

Grammar1 = {QIQI,                    Em-NoneEm-None,              Ft-Dir-RtFt-Dir-Rt,   BB,B-2B-2, B-SylB-Syl, Ft-Hd-Left Ft-Hd-Left }

((  H H ))        ((  HH ) )        HH

Grammar2 = {QSQS, QS-VC-HQS-VC-H, Em-SomeEm-Some, Em-RtEm-Rt, Ft-Dir-LeftFt-Dir-Left, UnbUnb,               Ft-Hd-Rt   Ft-Hd-Rt   }

No values are the same - which get(s) the credit?

    CCVV   CVC  CVC
CU     CUM   ber

Exceptional English
How many exceptions are there in the child-directed speech?

27.03% tokens (38.86% types)

Reasonable question: Is this the right parametric system to be using if the
English grammar has this many exceptions?

Yes, if we believe being able to account for ~73% of the tokens (~62% of
the types) with one system is better than not having a system at all to
generate the observable data.

Learning trajectory:
   (1) Start by learning the system that doesn’t interact with morphology
   (2) Realize there is interaction with the morphology system
   (3) Enrich/expand the existing system to include these interactions and

therefore account for more of the data

Unbiased models: Update types

Naïve Parameter Learner (Yang 2002) [NParLearner]: Linear reward-
penalty (Bush & Mosteller 1951)

Learning rate γ:
small = small changes
large = large changes

! 

pv1 = pv1 +  "(1- pv1)

pv2 =  1- pv1

! 

pv1 =  (1- ")pv1

pv2 =  1- pv1

Parameter values v1 vs. v2

reward v1 punish v1

Example Usage: The first data point is seen, and the grammar
generated uses the QI value.  That grammar fails to generate a contour
that matches the observed contour.  Let γ = 0.01.

 Old QI value = 0.5  New QI value = 0.495
(Old QS value = 0.5) (New QS value = 0.505)
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Unbiased models: Update types
Bayesian Learner [BayesLearner]: Bayesian update of binomial
distribution (Chew 1971)

Example Usage: The first data point is seen, and the grammar
generated uses the QI value.  That grammar fails to generate a contour
that matches the observed contour.

 Old QI value = 0.5  New QI value = 0.429
(Old QS value = 0.5) (New QS value = 0.571)

Parameter value v1

reward: success + 1 punish: success + 0

Parameters α, β:

α = β: initial bias at p = 0.5
α, β < 1: initial bias toward
endpoints (p = 0.0, 1.0)

here: α = β = 0.5

Examples of erroneous grammars chosen by
unbiased models

QIQI, , Em-SomeEm-Some, , Em-RtEm-Rt, , Ft-Dir-LeftFt-Dir-Left, , UnbUnb, , Ft-Hd-LeftFt-Hd-Left

QSQS, , QS-VC-HQS-VC-H, , Em-SomeEm-Some, , Em-RtEm-Rt, , Ft-Dir-RtFt-Dir-Rt, , UnbUnb, , Ft-Hd-RtFt-Hd-Rt

QSQS, , QS-VC-HQS-VC-H, , Em-SomeEm-Some, , Em-RtEm-Rt, , Ft-Dir-RtFt-Dir-Rt, , BB, , B-2B-2, , B-MorB-Mor, , Ft-Hd-LeftFt-Hd-Left

QSQS, , QS-VC-LQS-VC-L, , Em-SomeEm-Some, , Em-RtEm-Rt, , Ft-Dir-RtFt-Dir-Rt, , UnbUnb, , Ft-Hd-RtFt-Hd-Rt

Parsing
Group 1:
QSQS, Ft-Hd-LeftFt-Hd-Left, BB
Group 2:
Ft-Dir-RtFt-Dir-Rt, QS-VC-HeavyQS-VC-Heavy
Group 3:
Em-Some, Em-Some, Em-RtEm-Rt, B-2, B-2, B-SylB-Syl

The parameters are freely ordered
w.r.t. each other within each group.

Success guaranteed as long as parameter-setting order constraints are followed.

Cues
(a)(a) QS-VC-HeavyQS-VC-Heavy

before Em-RtEm-Rt
(b)(b)  Em-RtEm-Rt

before B-SylB-Syl
(c)(c) B-2B-2

before B-SylB-Syl

The rest of the parameters are freely
ordered w.r.t. each other.

Required parameter-setting orders for
unambiguous data

Completely derivable from data
saliency, data quantity, & default
values

Only partially derivable from data
saliency, data quantity, & default
values


