More learnable than thou? Empirically testing linguistic knowledge representations

Lisa Pearl
University of California, Irvine

Zephyr Detrano

Tim Ho

November 22, 2013:

Logic & Philosophy of Science Colloquium

University of California, Irvine

What exactly do you know when you know a language?

There are many types of linguistic knowledge, including knowledge of sounds (phonology)...

What exactly do you know when you know a language?

There are many types of linguistic knowledge, including knowledge of sounds (phonology), words (lexicon, morphology) ...

goblins

goblin + s = goblin (plural)

What exactly do you know when you know a language?

There are many types of linguistic knowledge, including knowledge of sounds (phonology), words (lexicon, morphology), sentences (syntax)...

goblins

Goblins steal children.

goblin + s = goblin (plural)

What exactly do you know when you know a language?

There are many types of linguistic knowledge, including knowledge of sounds (phonology), words (lexicon, morphology), sentences (syntax), meanings (semantics)...

goblins

steal(goblins, children)

Goblins steal children.

goblin + s = goblin (plural)

What exactly do you know when you know a language?

There are many types of linguistic knowledge, including knowledge of sounds (phonology), words (lexicon, morphology), sentences (syntax), meanings (semantics), and how language is used to convey certain types of information (pragmatics).

goblins

Don't goblins steal children?

steal(goblins, children)

Goblins steal children.

goblin + s = goblin (plural)

What exactly do you know when you know a language?

Some things you can do when you know these different types of linguistic knowledge:

Novel comprehension: You can understand utterances in the language, even if you haven't heard the specific utterance before.

Novel generation: You can create new utterances to express whatever thoughts you have.

Knowledge = Grammar

What exactly do you know when you know a language?

How can you do these things?

You have an underlying system that compactly describes the regularities and patterns of the language. This is your grammar for the language.

Grammar = Generative system

What exactly do you know when you know a language?

Generative system variation

Ideally, this generative system can be instantiated in various ways so that it can handle any of the world's languages.

Grammar instantiations = Knowledge representation

What are the possible ways a grammar can be instantiated?

The knowledge representation encodes information about the general form that grammars for human languages can have.

Grammar instantiations = Knowledge representation

Idea: If the child already knows the general form that grammars for human languages can have, all she needs to do is learn to instantiate her language's grammar appropriately, based on the input data from her language.

What does a knowledge representation look like?

This demonstrates two checkpoints for any knowledge representation:

- (1) it should explain cross-linguistic variation
- (2) its language-specific grammar should be learnable from the data children encounter

What does a knowledge representation look like?

Argument from cross-linguistic variation:

Traditionally, proposals for the general form of knowledge representations have focused on optimizing the first checkpoint of accounting for cross-linguistic variation, with the (often implicit) assumption that the second checkpoint of learnability would be easily satisfied.

What does a knowledge representation look like?

Assumption of learnability:

If a child has the right knowledge representation, this makes learning the grammar of a language easy and fast.

Why? The child is just learning the specific instantiation, instead of having to figure out all the relevant variables from scratch.

Basic point: The right knowledge representation is helpful for acquisition (Chomsky 1981, Crain & Pietroski 2002, Dresher 1999)

What does a knowledge representation look like?

Argument from cross-linguistic variation:

This has led to several knowledge representations for the different aspects of linguistic knowledge. For example, proposals in metrical phonology have included both parametric and constraint-ranking systems.

What does a knowledge representation look like?

Argument from cross-linguistic variation:

These knowledge representations often overlap on some aspects of their representation components, but generally are not identical.

What does a knowledge representation look like?

When we have several proposals that satisfy the first criterion (accounting for cross-linguistic variation), it seems sensible to focus on the second criterion (learnability).

What does a knowledge representation look like?

Argument from acquisition: Is a language's specific grammar in that knowledge representation learnable from the kind of data children of the language encounter?

Road map

Empirically grounding & quantifying learnability

Case study:

Knowledge representations in metrical phonology

- Knowledge representation comparison
- English as a tricky learning scenario
- ❖ Learnability results & implications

Road map

Empirically grounding & quantifying learnability

Case study:

Knowledge representations in metrical phonology

- Knowledge representation comparison
- English as a tricky learning scenario
- Learnability results & implications

Learnability

How easily does a knowledge representation allow children to learn their specific language's grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: Rational learners

Learnability

How easily does a knowledge representation allow children to learn their specific language's grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: Rational learners

A learner trying to learn which grammar is the right one for the language will choose the grammar perceived to be the best.

Learnability

How easily does a knowledge representation allow children to learn their specific language's grammar, when given realistic data?

Learnability analysis provides a quantitative way to compare competing knowledge representations (Pearl 2011, Legate & Yang 2012)

Working premise: Rational learners

A learner trying to learn which grammar is the right one for the language will choose the grammar perceived to be the best.

able to account for the most data perceived as relevant

Theoretical methods will define the knowledge representations, the set of grammars defined by a knowledge representation, and the language-specific grammar for a knowledge representation.

Field work methods will define the set of data that a language's grammar should maximally account for, while experimental methods can define the data children are learning from.

Computational methods can analyze how much data any grammar defined by a knowledge representation can account for, including the one that's intended to be that language's grammar.

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Compatibility with a data point: A grammar is compatible with a data point if the grammar can account for that data point.

A grammar that can account for 70% of the data is better than a grammar that can only account for 55% of the data.

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Raw compatibility for a grammar: The amount of data that grammar can account for.

Example: A grammar that can account for 70% of the data has an raw compatibility of 0.70.

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Relative compatibility for a grammar: The proportion of other grammars that this grammar is better than. This indicates how easy it would be for a rational learner looking for the best grammar to choose it.

Example: A grammar with 1.00 relative compatibility is better than all other grammars defined by the knowledge representation.

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Learnability potential for a knowledge representation: The amount of data the best grammar (relative compatibility = 1.00) is compatible with. This is how much of the data that knowledge representation is capable of accounting for.

Example: If the best grammar can account for 70% of the data, this knowledge representation can account for 70% of the data at best.

Once we define the data set the child is learning from, we can then ask which grammar in the hypothesis space defined by the knowledge representation is best, assuming a rational learner that will choose the grammar compatible with the most data.

Working assumption:

The language-specific grammar should be the best grammar (relative compatibility = 1.00) for the data of that language, assuming a rational learner that's looking for the best grammar.

It would be good if this grammar also had a high raw compatibility so that it would be useful to have, once learned.

Road map

Empirically grounding & quantifying learnability

Case study:

Knowledge representations in metrical phonology

- Knowledge representation comparison
- English as a tricky learning scenario
- ❖ Learnability results & implications

Case study: A generative system of metrical phonology

Observable data: stress contour

OCtopus

Underlying representation determined by grammar?

Case study: A generative system of metrical phonology

Parametric systems

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

oc to pus

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Are syllables all identical, or are they differentiated by syllable weight (into Heavy and Light syllables)?

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Are all syllables included in the larger units of metrical feet, or are some excluded?

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Are feet constructed from the left or from the right?

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

How big are metrical feet?

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Which syllable in a foot is stressed?

Parametric systems

HV: Halle & Vergnaud 1987, Dresher 1999

5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Grammar = set of parameter values used to build a stress contour

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

oc to pus

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Are metrical feet created before wordlevel stress is assigned to the edge syllables or after?

(...feet first...)
oc to pus

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Are syllables on the edge (or parts of syllables) excluded from metrical feet?

oc to pus

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Syllables are distinguished into Heavy and Light. Are syllables ending in VC (like <u>oc</u>) Heavy or Light?

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Are metrical feet constructed from the left or the right?

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Are Light syllables skipped when building feet?

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

How big are metrical feet?
Where does the stress fall within them?

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

What do you do with leftover Light syllables if you have any?

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Where does word-level stress go if there are multiple stressed syllables? Can leftover Light syllables have word-level stress?

Parametric systems

Hayes: Hayes 1995

8 parameters

Hypothesis space: 768 grammars

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Best candidate for the correct grammar has a compatible contour

OCtopus

Premise: Many different candidates for a word's stress representation and contour are generated and then ranked according to which constraints are violated. Violating higher-ranked constraints is worse than violating lower-ranked constraints.

	C1	C2	C3	C4	
(OC to) pus			*	*	
oc (TO pus)	*		*		
(oc TO) pus		*	*		

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Grammar = ranked ordering of all constraints

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

OCtopus

Official grammars for actual languages are often described as partial orderings of constraints.

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Best candidate for the correct grammar has a compatible contour

This means the "grammar" for a language is often a set of the possible rankings (grammars) that obey those orderings.

Ex: The English "grammar" is compatible with 26 rankings.

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should the final syllable not be in a metrical foot?

(OC to) (PUS) (OC to) pus

(oc TO) (PUS) oc (TO pus)

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should all syllables be in

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should all metrical feet consist of two units?

(OC to) (PUS)

(oc TO) (PUS)

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should metrical feet have stress on the leftmost syllable?

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should all VV syllables be stressed?

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should all VC syllables be stressed?

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should metrical feet include the leftmost syllable?

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should metrical feet include the rightmost syllable?

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Should syllables not have sonorants (m, n, η, l, r) as the nucleus?

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Best candidate for the correct grammar has a compatible contour

OCtopus

Sample candidates

A sample grammar:

(OC to) (PUS)

(OC to) pus

(oc TO) (PUS)

oc (TO pus)

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Most important: Metrical feet have stress on the leftmost syllable.

Sample candidates

A sample grammar:

(OC to) (PUS)

(OC to) pus

oc (TO pus)

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

Constraint-ranking systems

OT: Hammond 1999, Pater 2000, Tesar & Smolensky 2000

9 violable constraints

Hypothesis space: 9! rankings = 362,880 grammars

Principle (Rooting): All words must have stress

A sample grammar:

Knowledge representation comparison

HV: 5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Hayes: 8 parameters

Hypothesis space: 768 grammars

OT: 9 violable constraints

Hypothesis space: 362,880 grammars

Non-trivial because there are many data that are ambiguous for which parameter value or constraint ranking they implicate

This is generally a problem for acquisition.

Non-trivial because there are many irregularities. This is less common for acquisition – usually there aren't a lot of exceptions to the system being acquired.

Non-trivial because there are many irregularities. This is less common for acquisition – usually there aren't a lot of exceptions to the system being acquired.

Some causes of irregularity:

Interactions with morphology (Chomsky & Halle 1968, Hayes 1982, Kiparsky 1979)

Example: Adding productive morphology doesn't change the stress pattern, even though all grammars base their stress patterns on the syllables present in the word.

EARly EARlier PREtty

PREttiest

senSAtion

senSAtional

senSAtionally

Non-trivial because there are many irregularities. This is less common for acquisition – usually there aren't a lot of exceptions to the system being acquired.

Some causes of irregularity:

Interactions with grammatical category (Hammond 1999, Hayes 1982, Cassidy & Kelly 2001, Christiansen & Monaghan 2006)

Stress contours may be different across grammatical categories, even though the syllabic word form doesn't change.

NOUNS	VERBS
CONduct	conDUCT
DEsert	deSERT
SUspect	suSPECT

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations...

Syllabic word form: V VV

KI tty a WAY UH OH
V vv VV VV

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations, since a grammar can only generate a single stress contour per syllabic word form...

Syllabic word form: V VV

Generate KI tty a WAY UH OH
one of these... V vv v VV VV

These irregularities can cause multiple stress contours to be associated with a syllabic word form. This is problematic for the grammars in these knowledge representations, since a grammar can only generate a single stress contour per syllabic word form or select a single stressed syllabic word form as the best candidate.

Syllabic word form: V VV

Select KI tty a WAY UH OH one of these... V vv v VV

Upshot of multiple stress contours: No one grammar can account for all the stressed words in the input.

But how big of a problem is this in English child-directed speech?

Syllabic word form: V VV

KI tty a WAY UH OH
V vv VV VV

Analysis of Brent corpus (CHILDES database): 4780 word types (99,968 tokens) of American English speech directed at children between the ages of 6 and 12 months

Syllabic word form: V VV

KI tty

a WAY

V vv

v VV

UH OH

V VV

Multiple stress contours

HV: 95 of 186 syllabic word forms

Hayes: 86 of 149 syllabic word forms

OT: 166 of 452 syllabic word forms

This occurs a lot!

So what's the best any grammar in a given knowledge representation actually does, given these data?

Learnability potential = proportion of data the best grammar (relative compatibility = 1.00) can account for

So what's the best any grammar in a given knowledge representation actually does, given these data?

Learnability potential = proportion of data the best grammar (relative compatibility = 1.00) can account for

Raw compatibility of best grammar

HV: 0.668 types (0.739 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.657 types (0.729 tokens)

Around 2/3 of the word types

Implication:

The best grammar is pretty useful to have. It allows a learner to account for a good proportion of the input, even if there's a significant chunk that can't be accounted for.

Raw compatibility of best grammar

HV: 0.668 types (0.739 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.657 types (0.729 tokens)

Around 2/3 of the word types

So how does the (best) English grammar in a given knowledge representation do, given these data?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

So how does the (best) English grammar in a given knowledge representation do, given these data?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar

HV: 0.593 types (0.716 tokens)

Hayes: 0.485 types (0.531 tokens)

OT: 0.573 types (0.574 tokens)

Significantly less than the best grammar

So how does the (best) English grammar in a given knowledge representation do, given these data?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar

HV: 0.593 types (0.716 tokens)

Hayes: 0.485 types (0.531 tokens)

OT: 0.573 types (0.574 tokens)

Significantly less than the best grammar

Raw compatibility of best grammar

HV: 0.668 types (0.739 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.657 types (0.729 tokens)

Implication:

A rational learner would not pick the English grammar for any of these knowledge representations. It would pick the best grammar instead.

Raw compatibility of English grammar

HV: 0.593 types (0.716 tokens)

Hayes: 0.485 types (0.531 tokens)

OT: 0.573 types (0.574 tokens)

Significantly less than the best grammar

Raw compatibility of best grammar

HV: 0.668 types (0.739 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.657 types (0.729 tokens)

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than

Relative compatibility of English grammar

HV: 0.673 by types (0.673 by tokens) out of 156 grammars

Hayes: 0.676 by types (0.685 by tokens) out of 768 grammars

OT: 0.817 by types (0.785 by tokens) out of 362,880 grammars

Better than many...but many are still better

Implication:

There are many other grammars in the hypothesis space that are more compatible with the data. Even if children aren't optimal learners, it would be easier to pick one of these other more compatible grammars.

Relative compatibility of English grammar

HV: 0.673 by types (0.673 by tokens) out of 156 grammars

Hayes: 0.676 by types (0.685 by tokens) out of 768 grammars

OT: 0.817 by types (0.785 by tokens) out of 362,880 grammars

Better than many...but many are still better

Interim conclusion:

Learnability issues exist for the English grammar in all three knowledge representations.

The learnability problem

The learnability problem: One option

Change the (immediate) target state. Assume there is a transitory state in learning that the learner reaches and then leaves once additional knowledge is acquired.

One solution: The learner has derived additional knowledge that helps guide learning.

General knowledge: Interactions with morphology

(Chomsky & Halle 1968, Hayes 1982, Kiparsky 1979)

Specific knowledge: Adding productive morphology doesn't change the stress pattern, even though all grammars base their stress patterns on the syllables present in the word.

EARly

EARlier

PREtty

PREttiest

senSAtion

senSAtional

senSAtionally

One solution: The learner has derived additional knowledge that helps guide learning.

English children seem to use inflectional morphology productively around 3 (Brown 1973) — so they may be aware it doesn't get stressed, based on their prior linguistic experience.

senSAtion senSAtional senSAtionally

So what's the best any grammar in a given knowledge representation actually does, given these data and the knowledge that inflectional morphology is stressless?

Learnability potential = proportion of data the best grammar (relative compatibility = 1.00) can account for

So what's the best any grammar in a given knowledge representation actually does, given these data and the knowledge that inflectional morphology is stressless?

Learnability potential = proportion of data the best grammar (relative compatibility = 1.00) can account for

Raw compatibility of best grammar

HV: 0.662 types (0.738 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.677 types (0.749 tokens)

Still around 2/3 of the word types...

Implication:

The best grammar is still pretty useful to have. It allows a learner to account for a good proportion of the input, even if there's a significant chunk that can't be accounted for. However, knowing inflectional morphology is stressless doesn't seem to help it account for any more than it could before...

Raw compatibility of best grammar

HV: 0.662 types (0.738 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.677 types (0.749 tokens)

Still around 2/3 of the word types...

So how does the (best) English grammar in a given knowledge representation do, given these data and the knowledge that inflectional morphology is stressless?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

So how does the (best) English grammar in a given knowledge representation do, given these data and the knowledge that inflectional morphology is stressless?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar

HV: 0.605 types (0.719 tokens)

Hayes: 0.550 types (0.552 tokens)

OT: 0.578 types (0.575 tokens)

Still significantly less than the best grammar

So how does the (best) English grammar in a given knowledge representation do, given these data and the knowledge that inflectional morphology is stressless?

Raw compatibility of the English grammar = proportion of data the (best) English grammar can account for

Raw compatibility of English grammar

HV: 0.605 types (0.719 tokens)

Hayes: 0.550 types (0.552 tokens)

OT: 0.578 types (0.575 tokens)

Still significantly less than the best grammar

Raw compatibility of best grammar

HV: 0.662 types (0.738 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.677 types (0.749 tokens)

Implication:

A rational learner would still not pick the English grammar for any of these knowledge representations, even with knowledge that inflectional morphology is stressless. It would pick the best grammar instead.

Raw compatibility of English grammar

HV: 0.605 types (0.719 tokens)

Hayes: 0.550 types (0.552 tokens)

OT: 0.578 types (0.575 tokens)

Still significantly less than the best grammar

Raw compatibility of best grammar

HV: 0.662 types (0.738 tokens)

Hayes: 0.683 types (0.750 tokens)

OT: 0.677 types (0.749 tokens)

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation, once the learner knows inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than

So how does the (best) English grammar compare to the other grammars defined by the knowledge representation, once the learner knows inflectional morphology is stressless?

Relative compatibility of the English grammar = proportion of grammars in the hypothesis space the (best) English grammar is better than

Relative compatibility of English grammar

HV: 0.712 by types (0.673 by tokens) out of 156 grammars

Hayes: 0.704 by types (0.685 by tokens) out of 768 grammars

OT: 0.786 by types (0.777 by tokens) out of 362,880 grammars

Better than many...but many are still better

Implication:

There remain many other grammars in the hypothesis space that are more compatible with the data, even though the learner knows inflectional morphology is stressless. Even if children aren't optimal learners, it would be easier to pick one of these other more compatible grammars.

Relative compatibility of English grammar

HV: 0.712 by types (0.673 by tokens) out of 156 grammars

Hayes: 0.704 by types (0.685 by tokens) out of 768 grammars

OT: 0.786 by types (0.777 by tokens) out of 362,880 grammars

Better than many...but many are still better

Continuing conclusion:

The same learnability issues persist for the English grammar in all three knowledge representations, even when the learner has some knowledge of the interactions between morphology and metrical phonology.

The learnability problem: One option that didn't work

Additional knowledge that inflectional morphology is stressless in English didn't seem to help. Why not?

The learnability problem: One option that didn't work

One problem:

All English grammars generally want long syllables (VV syllable nucleus) to be stressed (though the HV parametric grammar allows some exceptions). However, many English words have long syllables that aren't stressed. These remain problematic even with knowledge about inflectional morphology.

proper names	diminuitives	
EL mo	KI tty	SWEE tie
MAN dy	DA ddy	DO ggie
	BLAN kie	SO ckie

The learnability problem: One option that didn't work

One problem:

All English grammars generally want long syllables (VV syllable nucleus) to be stressed (though the HV parametric grammar allows some exceptions). However, many English words have long syllables that aren't stressed. These remain problematic even with knowledge about inflectional morphology.

The learnability problem: One option that didn't work ...yet

One solution: Additional knowledge

Perhaps children learn that the /i/ ("ee") diminuitive ending behaves like inflectional morphology. Then, syllables containing this ending are expected to be stressless.

The learnability problem: One option that didn't work ...yet

One solution: Additional knowledge

Perhaps children learn that proper names are a coherent (semantic) class that may have different stress properties. This is similar to recognizing that grammatical categories may have different effects on stress.

The learnability problem: Another option

The learnability problem: Another option

The initial state of the learner includes prior knowledge that helps the learner learn in a more sophisticated way.

What kind of prior knowledge?

Helpful prior knowledge: Learning biases

Pearl 2008: The HV parametric English grammar can be learned from child-directed speech (in principle) if children are biased to learn only from data perceived as unambiguous for a particular parameter value.

In addition, children must learn the parameter values in particular orders (obeying certain order constraints).

Previous working assumption: The learner will try to learn a generative system that can account for all the data encountered.

Updated working assumption: The learner will try to learn a generative system that can account for all the unambiguous data encountered.

This is a small subset of the available data which can be viewed as maximally informative.

Updated working assumption: The learner will try to learn a generative system that can account for all the unambiguous data encountered.

Why would this occur?

Perhaps the learner prioritizes data that are viewed as highly informative. The goal then becomes to learn a system that can account for all these data.

Updated working assumption: The learner will try to learn a generative system that can account for all the unambiguous data encountered.

How would this occur?

The learner may look for cues that signal a data point is unambiguous for a particular parameter value or constraint ordering (Pearl 2008, Pearl 2011). These cues may be derived from attempting to analyze a data point with the existing parametric/constraint-ordering options (Fodor 1998, Pearl 2007) — if only one parameter value or constraint ordering is present in successful analyses, this is a cue.

What kind of prior knowledge?

Helpful prior knowledge: Learning biases

Potentially helpful: A bias to learn only from data viewed as regular (Legate & Yang 2012).

Previous working assumption: The learner will try to learn a generative system that can account for all the data encountered.

Updated working assumption: The learner will try to learn a generative system that can account for all the regular data encountered.

Updated working assumption: The learner will try to learn a generative system that can account for all the regular data encountered.

Why would this occur?

Perhaps the learner realizes that some data are irregular and therefore unpredictable. The goal then becomes to learn a system that can account for all the data that are regular and therefore predictable.

Updated working assumption: The learner will try to learn a generative system that can account for all the regular data encountered.

How would this occur?

For every syllable word form (ex: V VV) that has multiple stress patterns associated with it, the learner assumes that one of these patterns may be the regular pattern and the others are exceptions to this general "rule".

Updated working assumption: The learner will try to learn a generative system that can account for all the regular data encountered.

How would this occur?

A formal way for identifying if there is a dominant rule for a set of items is the Tolerance Principle (Yang 2005, Legate & Yang 2012). This is used to estimate how many exceptions a rule can tolerate in a set before it's no longer useful for the learner to have the rule. If there are too many exceptions, it's better not to have a rule and learn patterns on an individual item basis instead of having a rule that keeps getting violated.

Updated working assumption: The learner will try to learn a generative system that can account for all the regular data encountered.

How would this occur?

The number of exceptions a rule can tolerate for a set of N items is

$$\frac{N}{ln(N)}$$

(Yang 2005, Legate & Yang 2012)

The Tolerance Principle in action

For every syllable word form with multiple stress patterns, the learner could assess whether any of those patterns is the dominant pattern (the "rule" for that syllable word form), using the Tolerance Principle.

The Tolerance Principle in action

For every syllable word form with multiple stress patterns, the learner could assess whether any of those patterns is the dominant pattern (the "rule" for that syllable word form), using the Tolerance Principle.

If one pattern is dominant, the learner should focus on accounting for that pattern, since it's regular. The underlying generative system should be able to generate it. The other patterns can be ignored for purposes of learning the system.

The Tolerance Principle in action

For every syllable word form with multiple stress patterns, the learner could assess whether any of those patterns is the dominant pattern (the "rule" for that syllable word form), using the Tolerance Principle.

If no pattern is dominant, the learner should ignore this syllable word form for the purposes of learning the underlying generative system since there is no obvious regularity to account for.

The learnability problem: A third option

The learnability problem: A third option

The target grammar is different than we think, and we should update our theories about the definition of the English grammar.

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: HV

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: HV

If we examine the grammars with high compatibility, it turns out that the values used by the English grammar are the values used by the majority of these grammars.

Example:

Extrametricality on the rightmost syllable is used by 53 of 58 high compatibility grammars.

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: HV Countity sensitivity Boundedness Extrametricality Foot directionality

If we examine the grammars with high compatibility, it turns out that the values used by the English grammar are the values used by the majority of these grammars.

Example:

Extrametricality on the rightmost syllable is used by 53 of 58 high compatibility grammars.

Upshot: Unclear for the HV knowledge representation that the learning problem can be fixed by simply switching one parameter value here or there.

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes Stress analysis direction Degenerate feet Extrametricality Syllable weight Foot directionality Parsing locality

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes

Optimal: 0.683 types (0.750 tokens)

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

(1) Change the Foot inventory value.

This boosts compatibility from 0.485 types (0.531 tokens) to 0.644 types (0.733 tokens).

Relative compatibility = 0.910

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes

Optimal: 0.683 types (0.750 tokens)

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

- (1) Change the Foot inventory value.
- (2) Change the Extrametricality and Degenerate feet values.

This boosts compatibility from 0.485 types (0.531 tokens) to 0.652 types (0.729 tokens).

Relative compatibility = 0.923

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Parametric: Hayes Stress analysis direction Degenerate feet Extrametricality Syllable weight Foot directionality Parsing locality

If we examine the grammars with high compatibility, it turns out that there are some parameter values that the majority of high compatibility grammars use, but which the English grammar does not use.

- (1) Change the Foot inventory value.
- (2) Change the Extrametricality and Degenerate feet values.

Upshot: For the Hayes knowledge representation, the learning problem could be ameliorated by simply switching a small number of parameter values.

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering English uses which none of these grammars use.

Weight-to-Stress VV >> Nonfinality

(Effect: Prefer long syllables to be stressed, even if they're at the right edge of the word)

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering English uses which none of these grammars use.

Implication: This ranking may be better for English data.

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering English uses which none of these grammars use.

Best English grammar compatibility with the original ranking is 0.574 types (0.573 tokens).

Optimal: 0.657 types (0.729 tokens)

Best English grammar compatibility with this swapped ranking is 0.655 types (0.729 tokens).

Relative compatibility = 0.988

One approach: What values/constraint rankings do the grammars have that are more compatible with the data than the official English grammar?

Constraint-based: OT

If we examine the grammars with high compatibility, it turns out that there is one constraint ordering English uses which none of these grammars use.

Upshot: For the OT knowledge representation, the learning problem could be alleviated by simply switching one constraint ordering.

Since learnability issues exist for all three knowledge representations, something else must be going on.

As it stands, they can explain cross-linguistic variation, but the Engilsh grammars don't seem to be learnable from English data.

Assume there is a transitory state in learning that the learner reaches and then leaves once additional knowledge is acquired.

Adding some knowledge about the interaction of stress with inflectional morphology is insufficient on its own, however.

Another thing we can do to help learnability:

Add in prior knowledge that helps the child perceive the input in a helpful way. Two potentially useful learning biases involve learning a system that accounts for a subset of the available data, rather than all of it. One parametric system (HV) has been shown to be learnable this way.

A third thing we can do to help learnability:

Update our ideas about the target grammar slightly (alter certain parameter values or constraint rankings).

Establishing a methodology for quantitatively evaluating competing linguistic knowledge representations

 based on an argument from acquisition (how learnable are they from realistic data?)

Establishing a methodology for quantitatively evaluating competing linguistic knowledge representations

 based on an argument from acquisition (how learnable are they from realistic data?)

Testing against hard cases, like learning English

Idea: If a representation can handle the hard cases, it can handle anything

Establishing a methodology for quantitatively evaluating competing linguistic knowledge representations

 based on an argument from acquisition (how learnable are they from realistic data?)

Testing against hard cases, like learning English

Idea: If a representation can handle the hard cases, it can handle anything

Provide insight on why current instantiations fail and what can be done about it

alter theory about how learning proceeds

 alter theory of language-specific grammars defined by knowledge representations

Thank you!

Zephyr Detrano

Tim Ho

Extra material

Knowledge representation comparison

HV: 5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Hayes: 8 parameters

Hypothesis space: 768 grammars

Each representation assumes certain syllabic distinctions.

OT: 9 violable constraints

Hypothesis space: 362,880 grammars

Knowledge representation comparison

HV: 5 parameters & 4 sub-parameters

Hypothesis space: 156 grammars

Syllabic distinctions: 3

(short, closed, long)

Hayes: 8 parameters

Hypothesis space: 768 grammars

Syllabic distinctions: 4

(short, potentially short, closed, long)

OT: 9 violable constraints

Hypothesis space: 362,880 grammars

Syllabic distinctions: 8

(short, sonorant, 4 closed variants, long,

super-long)

Learning English metrical phonology: Non-trivial

So what's the best any grammar could possibly do, given these data?

Answer: Syllabic learnability potential

Account for the most frequent stress pattern for each syllabic word form.

Syllabic word form: V VV

a WAY v VV

UH OH

Learning English metrical phonology: Non-trivial

So what's the best any grammar could possibly do, given these data?

Answer: Syllabic learnability potential

Account for the most frequent stress pattern for each syllabic word form.

Syllabic word form: V VV

a WAY

v VV

UH OH

V VV

Syllabic learnability potential by knowledge representation (proportion accounted for)

HV: 0.711 types (0.766 tokens)

Hayes: 0.719 types (0.769 tokens)

OT: 0.795 types (0.829 tokens)

Pretty good potential coverage, even if it isn't perfect

So what's the best any grammar could possibly do, given these data and the knowledge that inflectional morphology is stressless?

Syllabic learnability potential

Accounting for the most frequent stress pattern for each syllabic word form.

Syllabic word form: V VV

a WAY

v VV

UH OH

V VV

So what's the best any grammar could possibly do, given these data and the knowledge that inflectional morphology is stressless?

Syllabic learnability potential

Accounting for the most frequent stress pattern for each syllabic word form.

Syllabic word form: V VV

a WAY

v VV

UH OH

V VV

Syllabic learnability potential by knowledge representation (proportion accounted for)

HV: 0.708 types (0.766 tokens)

Hayes: 0.711 types (0.768 tokens)

OT: 0.820 types (0.852 tokens)

Still pretty good potential coverage...but it's also still not perfect.

Why wouldn't the best grammar's compatibility be equivalent to the syllabic learnability potential? What's preventing it?

A grammar is constrained by the specific parameters or constraints defined by the KR. These parameters/constraints may not be compatible with the most frequent stress contour every time.

Syllabic learnability potential: Choose these stress contours (which are opposite)

Why wouldn't the best grammar's compatibility be equivalent to the syllabic learnability potential? What's preventing it?

A grammar is constrained by the specific parameters or constraints defined by the KR. These parameters/constraints may not be compatible with the most frequent stress contour every time.

Grammar compatibility (preferring same contour): Choose these stress contours...

Why wouldn't the best grammar's compatibility be equivalent to the syllabic learnability potential? What's preventing it?

A grammar is constrained by the specific parameters or constraints defined by the KR. These parameters/constraints may not be compatible with the most frequent stress contour every time.

Syllabic word form: V VV

Syllabic word form: VV VV

Grammar compatibility (preferring same contour): ...or these stress contours.

HV English grammar outperforms Hayes English grammar in overall compatibility

Raw compatibilities by type for English grammar in parameter systems (with no knowledge of inflection):

```
HV Hayes 59.33% - 48.05% = 11.28% difference
```

Which common stressed wordforms are contributing to the relatively high performance of the HV English grammar?

The 10 most common stressed wordforms by type constitute 58.32% of total types in the input.

Stressed wordform	# Types	Examples
Lp	592	water, doing, going
Хр	472	little, getting, coming
LI	334	baby, sweetie, mommy
XI	309	kitty, daddy, very
Ap	235	goodness, handsome, helper
LL	188	okay, byebye, TV
AI	172	window, birdie, only
La	171	peanuts, secrets, highest
Xa	170	biggest, buckets, hiccups
xL	145	below, today, hurray

HV English grammar derives **8** of the 10 most common stressed wordforms.

Stressed wordform	# Types	Examples	HV
Lp	<i>592</i>	water, doing, going	Yes
Хр	472	little, getting, coming	Yes
LI	334	baby, sweetie, mommy	Yes
XI	309	kitty, daddy, very	Yes
Ap	235	goodness, handsome, helper	Yes
LL	188	okay, byebye, TV	No
Al	172	window, birdie, only	Yes
La	171	peanuts, secrets, highest	Yes
Xa	170	biggest, buckets, hiccups	Yes
xL	145	below, today, hurray	No

Hayes English grammar derives **5** of the 10 most common stressed wordforms.

Stressed wordform	# Types	Examples	Hayes
Lp	<i>592</i>	water, doing, going	Yes
Хр	472	little, getting, coming	Yes
LI	334	baby, sweetie, mommy	No
XI	309	kitty, daddy, very	No
Ap	235	goodness, handsome, helper	Yes
LL	188	okay, byebye, TV	Yes
Al	172	window, birdie, only	No
La	171	peanuts, secrets, highest	No
Xa	170	biggest, buckets, hiccups	No
xL	145	below, today, hurray	Yes

The **Hayes English grammar** misses **LI and XI**, two common patterns that together account for **13%** of the input by type.

However, it derives LL and xL, alternate contours for these wordforms that are also frequent, accounting for 7% of input by type.

Stressed wordform	# Types	Examples	HV
Lp	592	water, doing, going	Yes
Хр	472	little, getting, coming	Yes
LI	334	baby, sweetie, mommy	No
XI	309	kitty, daddy, very	No
Ap	235	goodness, handsome, helper	Yes
LL	188	okay, byebye, TV	Yes
Al	172	window, birdie, only	No
La	171	peanuts, secrets, highest	No
Xa	170	biggest, buckets, hiccups	No
xL	145	below, today, hurray	Yes

HV vs. Hayes on most frequent word forms

Stressed wordform	# Types	Examples	HV	Hayes
Lp	<i>592</i>	water, doing, going	Yes	Yes
Хр	472	little, getting, coming	Yes	Yes
LI	334	baby, sweetie, mommy	Yes	No
XI	309	kitty, daddy, very	Yes	No
Ap	235	goodness, handsome, helper	Yes	Yes
LL	188	okay, byebye, TV	No	Yes
Al	172	window, birdie, only	Yes	No
La	<i>171</i>	peanuts, secrets, highest	Yes	No
Xa	<i>170</i>	biggest, buckets, hiccups	Yes	No
xL	145	below, today, hurray	No	Yes

The impact of morphological knowledge

Example: What happens to words of the La stressform when the child gets morphological knowledge? (for the Hayes grammar, which can't account for it without morphological knowledge)

Stressed wordform	# Types	Examples	HV	Hayes
Lp	<i>592</i>	water, doing, going	Yes	Yes
Хр	472	little, getting, coming	Yes	Yes
LI	334	baby, sweetie, mommy	Yes	No
XI	<i>309</i>	kitty, daddy, very	Yes	No
Ap	235	goodness, handsome, helper	Yes	Yes
LL	188	okay, byebye, TV	No	Yes
Al	172	window, birdie, only	Yes	No
La	171	peanuts, secrets, highest	Yes	No
Xa	170	biggest, buckets, hiccups	Yes	No
xL	145	below, today, hurray	No	Yes

The impact of morphological knowledge

Example: What happens to words of the La stressform when the child gets morphological knowledge? (for the Hayes grammar, which can't account for it without morphological knowledge)

```
Pre Morphology
171 La (island, giant, moment)
```

Post Morphology

```
57 La (54 of the 171 + 3 added from Lp form)

– Hayes still can't account for these
```

```
100 Lp (father's → father, pockets → pocket, slobbered → slobber)
17 L (cutest → cute, nicest → nice, weirdest → weird)
```

- Hayes can now account for these

In this case, inflectional morphology helps!

The impact of morphological knowledge

In general, the Hayes English benefits from morphology knowledge (6.95% more types accounted for, due to 322 types), unlike the HV and OT English grammars.

Where are these changes happening?

- 28 types: incorrectly derived bisyllabics become monosyllabic

 Examples: cleanest → clean (La→L); biggest → big (Xa→P); bestest → best (Aa→A)
- **100** types: incorrectly derived **La** becomes correctly-derived **Lp**<u>Examples</u>: father's → father; pockets → pocket; slobbered → slobber
- 112 types: incorrectly derived Xa becomes correctly-derived Xp <u>Examples</u>: sister's → sister; apples → apple; tickled → tickle;
- ~ **92** types: Changes in less common wordforms

 Examples: messages → message; promises → promise; modeling → model

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions 4 syllable distinctions

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions

4 syllable distinctions

These items are good for the HV English grammar.

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions

4 syllable distinctions

These items are good for the Hayes English grammar.

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions

4 syllable distinctions

These items aren't good for either English grammar.

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions 4 syllable distinctions

The Tolerance Principle looks at the **word types** with each stress pattern. Each represents an individual item that might follow the regular stress pattern rule (if there is one).

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions 4 syllable distinctions

How many items should the stress "rule" apply to? N = 162 + 325 + 19 = 506

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions

4 syllable distinctions

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions 4 syllable distinctions

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions

4 syllable distinctions

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions 4 syllable distinctions

Learner conclusion: No dominant stress pattern, so none of these syllable word form data should be used to learn the underlying generative system.

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions 4 syllable distinctions

This will end up helping both grammars, since they won't be penalized for the patterns they can't account for.

Parametric: HV & Hayes, with inflectional knowledge

HV: 148 syllable word forms Hayes: 185 syllable words forms

3 syllable distinctions 4 syllable distinctions

However, the Hayes grammar is helped a little more, since it couldn't account for the most frequent stress pattern before, while the HV grammar could.

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

These items are bad for all English grammars.

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

These items are good for most English grammars (21/26).

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

These items are good for a few English grammars (5/26).

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

How many items should the stress "rule" apply to? N = 25 + 316 + 14 = 355

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Under the OT syllable representation, there is a dominant stress pattern for this word form. Therefore, this pattern should be accounted for by the underlying generative system.

Constraint-based: OT, with inflectional knowledge

406 syllable word forms

8 syllable distinctions

Unfortunately, this is the only pattern the English grammars cannot account for....this means a learner using the regularity filter would have even more trouble learning the English OT grammar constraints.