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Language learning as ongoing mental computation

Language learning = given the available input, information processing
done by human minds to build a system of linguistic knowledge whose
output we observe

abstraction &

generalization
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lokaetdakiri <
Input Output
Who dié’"he-ﬁnd?.. .......... Where’s the kitty?

What happened?
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Investigating language learning

??7?7?77?7

Many different questions about this mental computation

What learning strategies comprise it?

What learning biases do children need to succeed at it?

What knowledge representations can be learned using it?

When do children learn different aspects of the linguistic system using
it, what data are available to them to do so, and what factors underlie

their output?
(Pearl & Sarnecka in prep., Pearl & Braunwald in prep., Caponigro, Pearl et al. 2012,
Caponigro, Pearl et al. 2011)
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Methods of empirical investigation

Theoretical methods:
What knowledge of language is (and what children have to learn)

LOOK at the Klitty |00/|<>>\

the Kkitty

lokaetdakiri

+stop

+vowel
+consonant | — [f]

+stressed [——
+alveolar
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-stressed



Methods of empirical investigation

Experimental methods:
When knowledge is acquired, what the input looks like, & plausible
capabilities underlying how acquisition works

p(ki tty)
p(ki)

| H1) p(H1)

Performance

Age




Methods of empirical investigation

Computational methods:
Strategies for how children acquire knowledge,
sophisticated quantitative analysis of children’s input & output
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Today’s Plan

PPPP??

Using computational methods to look at two questions
about children’s mental computation

What learning strategies comprise it?

. . Case study:
Looking for strategies that a?re gseful, Word segmentation
useable, and work better with limited
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Investigating learning strategies

For any potential strategy:
Is it useful?

What is possible to learn from the available data?
* |deal/rational models, computational-level approach

 What data representations are useful? What learning
assumptions are useful?



Investigating learning strategies

For any potential strategy:
Is it useful?

Is it useable?

What is possible for children to learn from the available data?

* Constrained/process models, algorithmic-level approach

* Are these representations and assumptions still useful if cognitive
resources are limited?



Investigating learning strategies

For any potential strategy:
Is it useful?
Is it useable?
Does it work better when cognitive resources are constrained?

“Less is more” hypothesis of Newport (1990): Children do better
precisely because they have more limited cognitive abilities.

» Also adults (sometimes) when their abilities are inhibited
(Cochran et al. 1999, Kersten et al. 2001 but see Perfors 2011)

* What learning strategies have this property?



Case study: Word segmentation

look at the kitty

A big deal: Basis for more complex linguistic knowledge

look at  the kitty
IOO/I(>>\ g | | :
LOOK at the Kltty at : '

the kitty

phonology syntax semantics




Case study: Word segmentation

look at the kitty

Also, we have pretty good empirical grounding.
We know a lot about
(1) the data available (CHILDES)

(2) what cues children are sensitive to when
(Saffran et al. 1996, Mattys et al. 1999,
Juszcyk et al. 1999, Johnson & Jusczyk 2001,
Thiessen & Saffran 2003, Thiessen & Saffran 2007)




Case study: Word segmentation

:

look

at the kitty

Cognitive modeling: Given a corpus of fluent speech or text, we want to

identify the words (units useful for mapping meaning).

whatsthat
thekitty

yeah
wheresthekitty

—)

whats that

the kitty

yeah

wheres the kitty



Word segmentation strategies

* Language-dependent cues: phonotactics, allophonic variation,
metrical (stress) patterns, effects of coarticulation

Problem: Since these vary cross-linguistically,
need to know some words in the language to
figure them out. But these cues are used to
help identify words in the first place...




Word segmentation strategies

* Language-independent cue: probability of sequences of units like
phonemes or syllables

* Potential: Early bootstrapping
— Thiessen & Saffran 2003: statistical information used earlier than other cues




Bayesian inference:
A strategy that can use sequence probabilities

 The Bayesian learner seeks to identify an explanatory linguistic
hypothesis that

— accounts for the observed data
— conforms to prior expectations

P(hld)x P(d|h) P(h)

posterior likelihood prior
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Bayesian inference:
A strategy that can use sequence probabilities

 The Bayesian learner seeks to identify an explanatory linguistic
hypothesis that

— accounts for the observed data
— conforms to prior expectations

P(hld)ox P(d|h) P(h)
posterior likelihood prior

Ideal learner: Is this a useful strategy for word segmentation?

Constrained learner: Is this a strategy useable by children? Is there any
evidence it’s better when the learner is constrained?



Bayesian segmentation
(Goldwater et al. 2009)

Data: unsegmented corpus (transcriptions)
Hypotheses: sequences of word tokens

P(hld)x P(d|h) P(h)

posterior likelihood prior
whatsthat whats that
thekitty — the kitty
yeah yeah

wheresthekitty wheres the kitty



Bayesian segmentation
(Goldwater et al. 2009)

Data: unsegmented corpus (transcriptions)
Hypotheses: sequences of word tokens

P(hld)x P(d|h) P(h)

posterior likelihood prior

Implicit task: Identify the list of lexicon items that make up the sequences of word
tokens, which make up the observed fluent speech data.

whatsthat whats that
thekitty - the kitty Lexicon: whats, that,
yeah yeah the, kitty, yeah, wheres

wheresthekitty wheres the kitty



Bayesian segmentation
(Goldwater et al. 2009)

Data: unsegmented corpus (transcriptions)
Hypotheses: sequences of word tokens

P(hld)x P(d|h) P(h)

posterior likelihood prior

= 1 if concatenating words forms corpus

= 0 otherwise.

Corpus: “lookatthekitty” P(d|h) =1 P(d|h)=0
loo k atth eki tty i like penguins
lookat thekitty look at thedoggie

look at the kitty a b c



Bayesian segmentation
(Goldwater et al. 2009)

Data: unsegmented corpus (transcriptions)

Hypotheses: sequences of word tokens

P(hld)o«< P(d|h)

posterior likelihood

P(h)

prior

[y

= 1 if concatenating words forms corpus

= 0 otherwise.

Encodes learning assumptions
or biases in the learner:

* prefer short words

 prefer fewer words




Bayesian segmentation
(Goldwater et al. 2009)

Data: unsegmented corpus (transcriptions)
Hypotheses: sequences of word tokens

Optimal solution is the segmentation with highest posterior probability.

P(hld)x P(d|h) P(h)

posterior likelihood prior
= 1 if concatenating words forms corpus Encodes learning assumptions

B e e or biases in the learner:

* prefer short words

 prefer fewer words




Bayesian segmentation:
ldeal vs. Constrained

Learner assumptions:
e Basic unit of representation = phoneme
* Very naive language model:
Words are independent units (unigram assumption)
or

Words are units that predict other words (bigram assumption)

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian learners

Bayesian learners examined:

ldeal Constrained

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian learners

Ideal learner (Batch Optimal: BatchOpt)
— Process data in a batch (perfect memory)

— Have enough processing resources to exhaustively search
potential segmentations

— Select optimal segmentation

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian learners

Constrained learner (Online Optimal: OnlineOpt)

— Process data incrementally
— Have enough processing resources to exhaustively search potential
segmentations

— Select optimal segmentation

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian learners

Constrained learner (Online Sub-optimal: OnlineSubOpt)

— Process data incrementally

— Have enough processing resources to exhaustively search
potential segmentations

— Select segmentation probabilistically

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian learners

Constrained learner (Online Limited Working Memory: OnlineMem)

— Process data incrementally

— Limited working memory buffer, so cannot do exhaustive search:
Focus instead on more recent data (recency bias)

— Select optimal segmentation

Pearl, Goldwater, & Steyvers 2011, 2010



Learner input

Pearl-Brent derived American English corpus, sub-section of
speech directed at children 9 months or younger

— 28,391 utterances, 96,723 words
— 3.4 words per utterance, 4.2 syllables per utterance

hear the kitty Morgie
Sammy wants out
okay the kitty is out
what's Morgie gonna do
what's Morgie gonna

oh no no

no eating dog food
what was that
was a grunt

okay

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian segmentation:
ldeal vs. Constrained

There’s a “less is more” effect for some constrained (OnlineMem)
learners who have a unigram assumption.

Correct word token identification: 54% ideal vs. 64% constrained

Correct segmentation: “look at the doggie. look at the kitty.”
Best guess of learner: “lookat the doggie. lookat thekitty.”
Word Token Precision (P) = 2/5 (0.4), Word Token Recall (R) = 2/8 (0.25)
Word Token F-score = 2 * (P*R)/(P+R) = 0.31

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian segmentation:
ldeal vs. Constrained

Why?
Their cognitive limitations caused them not to notice frequently
occurring predictable sequences of short words. So, they didn’t try to

make them one word, which is an undersegmentation error that the
ideal learners often made.

“at the” ... moving along..:
No! It must be “atthe”. attne oving along

Pearl, Goldwater, & Steyvers 2011, 2010



Bayesian segmentation:
Cognitive plausibility

What happens if we make the learning process we’re modeling look
even more like the learning process children are using?

To do this, maybe we should revisit some of our modeling assumptions:

Basic unit of representation = phoneme?

Q]

Phillips & Pearl 2012, in prep



Perceptual units for infants

Word segmentation timeline:
Statistical learning at the beginning of segmentation, before 7.5 months

What representations do infants have at this point?
 Phonemes around ~10 months (Werker & Tees 1984)
* Syllables around 3 months (Eimas 1999, Jusczyk & Derrah 1987)

Phillips & Pearl 2012, in prep



Bayesian segmentation:
ldeal vs. Constrained

Updated learner assumptions:
e Basic unit of representation = syllable
* Very naive language model:
Words are independent units (unigram assumption)
or

Words are units that predict other words (bigram assumption)

Phillips & Pearl 2012, in prep



Bayesian learning over syllables

Word token F-scores

Unigram Bigram
BatchOpt 53.1 77.1
OnlineOpt 58.8 75.1
OnlineSubOpt 63.7 77.8
OnlineMem 55.1 86.3

F=2*Prec * Rec

Prec + Rec

Precision:

#correct / #found

Recall:

#found / #true

Results averaged over 5 randomly generated test sets (~2800 utterances) that
were separate from the training sets (~25200 utterances), all generated from the

Pearl-Brent derived corpus.

Phillips & Pearl 2012, in prep



Bayesian learning over syllables

Word token F-scores

Unigram Bigram F=2*Prec* Rec
Prec + Rec
BatchOpt 53.1 77.1
. Precision:

OnlineOpt 58.8 75.1

#correct / #found

OnlineSubOpt 63.7 77.8 recall
OnlineMem 55.1 86.3 #found / #true

A learner who assumes words are not predictive of other words
performs significantly better when its abilities are constrained.

More robust “less is more” effect than the phoneme-based unigram learner:
All three constrained learners do better.

Phillips & Pearl 2012, in prep



Bayesian learning over syllables

Word token F-scores

Unigram Bigram F=2*Prec* Rec
Prec + Rec
BatchOpt 53.1 77.1
. Precision:

OnlineOpt 58.8 75.1

#correct / #found

OnlineSubOpt 63.7 77.8 recall
OnlineMem 55.1 86.3 #found / #true

One of the more constrained learners who assumes words are
predictive of other words performs significantly better than the ideal
learner.

New “less is more” effect: Phoneme-based bigram learners didn’t show this.

Phillips & Pearl 2012, in prep



The utility of cognitively plausible modeling assumptions

In learners with either the unigram or the bigram assumption, we find
what looks like a “less is more” effect.

By trying to make the model represent the input the way we think
children do, we have reproduced behavior that we think children have.

View input as streams of syllables

Perform better with limited abilities

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

Unigram learners benefit in a similar way to the phoneme-based learners
in Pearl et al. 2011, 2010:

Constrained learners don’t create the undersegmentation errors that ideal
learners do for frequently occurring sequences of short words. (They
don’t notice them as much.)

“at the” X > “agtthe”

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

Bigram learners wouldn’t make this error though, because they have a
way to represent predictable sequences. But the constrained OnlineMem
bigram learner is significantly outperforming the ideal BatchOpt bigram
learner (86.3 to 77.1)...

“at the” X > “atthe”

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

If we look at the recall scores for these bigram learners, we notice that
token recall is higher for the constrained learner while lexicon recall (word

types) is higher for the ideal learner.

(Lexicon scores factor out frequency of word tokens.)
Token recall Lexicon recall

Ideal Bigram 72.5 79.7

OnlineMem Bigram 85.4 76.8

Correct segmentation: “look at the doggie. look at the kitty.”

Best guess of learner: “lookat the doggie. lookat thekitty.”

Word Token Precision = 2/5 (0.4), Word Token Recall = 2/8 (0.25)
Lexicon Precision = 2/4 (0.5), Lexicon Recall = 2/5 (0.4)

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

One idea: The constrained learner is correctly segmenting more frequent
words (with more tokens per word) while the ideal learner is correctly
segmenting more word types (words in the lexicon).

Token recall Lexicon recall
Ideal Bigram 72.5 79.7

OnlineMem Bigram 85.4 76.8

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

It turns out that the constrained learner does identify words that are on
average more frequent than the ideal learner’s words.

Avg Log Frequency of
Words Identified

Ideal Bigram -5.99

OnlineMem Bigram -5.74

Note: Smaller negative number indicates more frequent
(-5.99 = probability 10~-%%, -5.74 = probability 10->74)

Possible interpretation: Constrained learner does well on more
“important” words that occur more often.

Phillips & Pearl 2012, in prep



Understanding the learning process

Case study: Bayesian inference as an initial strategy for word segmentation

/ s it useful?

Ideal learners using this strategy perform fairly well, given realistic child-
directed speech data.

Phillips & Pearl 2012, in prep



Understanding the learning process

Case study: Bayesian inference as an initial strategy for word segmentation

/ Is it useful?
/ s it useable?

Constrained learners can still use this strategy and do quite well.

f

Phillips & Pearl 2012, in prep



Understanding the learning process

Case study: Bayesian inference as an initial strategy for word segmentation

/ Is it useful?
/ s it useable?

/ Does it work better when cognitive resources are constrained?

By representing the input in a way infants are likely to do, we find a
stronger “less is more” effect, with constrained learners outperforming
ideal learners.

Phillips & Pearl 2012, in prep



Now what?

Cross-linguistic investigation:

Does this learning strategy have these properties for languages

besides English (especially languages with different morphology
and syllable properties)?

Underway: Phillips & Pearl, in prep b

— Spanish, Italian, German, Hungarian, Japanese, Farsi




Now what?

We know that infants are sensitive to additional information in the
input. These cues can be incorporated into the learning process. Do
we then find that Bayesian inference still performs well? Do other
strategies?

— Ex: Input representation. Infants represent stressed and unstressed
syllables separately (Pelucchi, Hay, & Saffran 2009)

tea=/ti/+1
pretty=/ti/+1




Now what?

There are more ways to implement cognitive limitations. Do we find
a stronger “less is more” effect when we implement other kinds?

— Ex: What if memory limitations also cause the lexicon items the learner is
hypothesizing (and their respective counts) to decay?

tea = 15 times...or 18...or 12...
pretty = 100 times...or 120...or 80...




Now what?

Target state issue:

Even the ideal learners don’t achieve perfect (adult-like)
word segmentation. How do we know if the lexicon any
of the learners produce is “good enough”?

Sequential task check: Even if the results aren’t perfectly
adult-like, is the lexicon obtained still useful for tasks that
rely on that lexicon?

Ex: Identifying language-dependent doggie over  watching
cues to word segmentation baby prettykitty

Ex: word-meaning mapping prettykitty < >

Ex: grammatical categorization The preﬂyk'uv ® over there.
The doggie is over here.

The baby is watching.




Now what?

We know that infants are solving multiple language learning
problems simultaneously. Do we find that Bayesian inference is
useable and better with cognitive limitations when multiple
learning tasks are involved?

Ex: word segmentation & phoneme identification

(We have some indication it could be useful: Feldman et al. 2009)

pretty kitty?
prettykitty?




Now what?

ldentifying learning strategies that are not only useful, but useable
and better with cognitive limitations for the many different tasks of

language acquisition.

III

How to do this: Translate computational-level (“rational”) learning
strategies to algorithmic-level (“process”) learning strategies — can
also show us which demonstrate a “less is more” effect.




Today’s Plan

Using computational methods to look at two questions 700
about children’s mental computation

v

Case study:
Syntactic Islands

What learning biases do children />\
need to succeed at it?

Understanding the nature of
children’s language learning toolkit /x

N



Children’s language learning toolkit:
Some relevant dimensions

What kinds of learning biases could there be?

Pearl & Sprouse 2013, Pearl & Mis in rev.
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What kinds of learning biases could there be?
— innate vs. derived from prior (language) experience

derived innate
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Children’s language learning toolkit:
Some relevant dimensions

What kinds of learning biases could there be?
— innate vs. derived from prior (language) experience
— domain-specific vs. domain-general

domain-specific

derived innate

domain-general

Pearl & Sprouse 2013, Pearl & Mis in rev.



Children’s language learning toolkit:
Some relevant dimensions

What kinds of learning biases could there be?
— innate vs. derived from prior (language) experience

— domain-specific vs. domain-general

— hypothesis space vs. learning mechanism

domain-specific

hypothesis space

derived

mechanism

domain-general

innate

Pearl & Sprouse 2013, Pearl & Mis in rev.



Children’s language learning toolkit:
Universal Grammar connections

Universal Grammar is a particular kind of learning bias:
innate & domain-specific.

(It doesn’t specify hypothesis space vs. learning mechanism.)

domain-specific

Universal
Grammar

derived innate

domain-general

Pearl & Sprouse 2013, Pearl & Mis in rev.



Children’s language learning toolkit:
Universal Grammar connections

Ideas for the biases in Universal Grammar often come from examining
specific language learning problems, and figuring out what learning biases
would be needed to solve those problems.

domain-specific

Universal
Grammar

derived innate

domain-general

Pearl & Sprouse 2013, Pearl & Mis in rev.



Children’s language learning toolkit:
ldentifying the necessary biases

Note: This methodology can be used to simply identify the necessary biases,
whatever kind they might be.

domain-specific

hypothesis space

derived

mechanism

domain-general

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

innate

Pearl & Sprouse 2013, Pearl & Mis in rev.



Specifying learning problems

Initial state:

Pearl & Mis in rev.



Specifying learning problems

Initial state:
- initial knowledge state

ex: grammatical categories exist and can be identified ~ N° N’, NP, DP, ...
ex: phrase structure exists and can be identified

Pearl & Mis in rev.



Specifying learning problems

Initial state:
- initial knowledge state

ex: grammatical categories exist and can be identified ~ N° N’, NP, DP, ...
ex: phrase structure exists and can be identified

- learning biases & capabilities

ex: frequency information can be tracked N°= NO+1
ex: distributional information can be leveraged

XP XP

/ \ p=012 /" yp =012*05=006

A YP A / \
B Z

P

YP
/ \p= 0.5
B /P

al

Pearl & Mis in rev.



Specifying learning problems

Initial state: initial knowledge state + learning biases & capabilities

Data intake:

Pearl & Mis in rev.



Specifying learning problems

Initial state: initial knowledge state + learning biases & capabilities

Data intake:

- data perceived as relevant for learning (rodor 1998)

ex: all wh-utterances for learning about wh-dependencies

ex: syntactic data for learning syntactic knowledge

[can be defined by knowledge & biases/capabilities in the initial state]

Pearl & Mis in rev.



Specifying learning problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning

Learning period:

Pearl & Mis in rev.



Specifying learning problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning

Learning period:

- how long children have to reach the target knowledge state
Ex: 3 years, ~1,000,000 data points

Pearl & Mis in rev.



Specifying learning problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn

Target state:

Pearl & Mis in rev.



Specifying learning problems
Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn
Target state:

- the knowledge children are trying to attain
Ex: *Where did Jack think the necklace from __ was too expensive?

z-score rating Sso

Pearl & Mis in rev.



Specifying learning problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn

Target state: the knowledge children must attain

Pearl & Mis in rev.



Specifying learning problems

Initial state: initial knowledge state + learning biases & capabilities
Data intake: data perceived as relevant for learning
Learning period: how long children have to learn

Target state: the knowledge children must attain

knowledge
state 2

knowledge
—
NS O
=~

. tate 1
Hard learning problem (induction problem): Py NS

. i . , 7 7 \

Given a specific initial state, data intake, and ,7 1 | .\ \ |
i i - \ intak

learning period, the target state is not the AN JiELeE 5 //

only knowledge state that could be reached. ST =-=T7 -~

target state

L]

Pearl & Mis in rev.



Case study: Syntactic islands

Why?

/’h

|
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Syntactic islands are a type of linguistic knowledge that has been
used to argue that innate, domain-specific (Universal Grammar)
learning biases are necessary.

Pearl & Sprouse 2013



Syntactic islands

Dependencies can exist between two non-adjacent items. They do not
appear to be constrained by length (Chomsky 1965, Ross 1967), but rather by
whether the dependency crosses certain structures (called “syntactic

islands”).

Pearl & Sprouse 2013



Syntactic islands

Dependencies can exist between two non-adjacent items. They do not
appear to be constrained by length (Chomsky 1965, Ross 1967), but rather by
whether the dependency crosses certain structures (called “syntactic

islands”).

What does Jack think _ ?

What does Jack think that Lily said that Sarah heard that Jareth believed _ ?

Pearl & Sprouse 2013



Syntactic islands

Dependencies can exist between two non-adjacent items. They do not
appear to be constrained by length (Chomsky 1965, Ross 1967), but rather by
whether the dependency crosses certain structures (called “syntactic

islands”).

Some example islands

g
Complex NP island: [/
*What did you make [the claim that Jack bought  ]?

Subject island:
*What do you think [the joke about ] offended Jack?

Whether island:

*What do you wonder [whether Jack bought  ]?
Adjunct island:

*What do you worry [if Jack buys  ]?

Pearl & Sprouse 2013



Syntactic islands

Predominant theory in generative syntax:

Syntactic islands require innate, domain-specific learning biases about
the hypothesis space

Example: Subjacency (Chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

Wh o [ o Loy )

Pearl & Sprouse 2013



Syntactic islands

Predominant theory in generative syntax:

Syntactic islands require innate, domain-specific learning biases about
the hypothesis space

Example: Subjacency (Chomsky 1973, Huang 1982, Lasnik & Saito 1984)
(1) A dependency cannot cross two or more bounding nodes.

(2) Bounding nodes: language-specific
(CP, IP, and/or NP — must learn which ones are relevant for language)

7Y R A A ]

{CP, IP, NP}?

Pearl & Sprouse 2013



Syntactic islands

Predominant theory in generative syntax:

Syntactic islands require innate, domain-specific learning biases about
the hypothesis space...in addition to whatever else they might require

domain-specific
hypothesis space
Not 2+ bounding nodes (BNs)
BN ={CP, IP, NP}

derived innate

mechanism

domain-general

Pearl & Sprouse 2013



Syntactic islands

How do we investigate this?

(1) Explicitly define the target knowledge state, using adult acceptability
judgments.

(2) Identify the data available in the input, using realistic samples. (Is there
an induction problem, given what we think children’s data intake is?)

(3) Implement a probabilistic learner that can learn about syntactic islands
and see what kind of learning biases it requires. This requires making the
initial state and learning period explicit.

Pearl & Sprouse 2013



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)
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The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Complex NP islands

Who _ claimed that Lily forgot the necklace? matrix | non-island
What did the teacher claim that Lily forgot  ? embedded | non-island
Who _ made the claim that Lily forgot the necklace? matrix | island

*What did the teacher make the claim that Lily forgot  ? embedded | island
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The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Subject islands

Who _ thinks the necklace is expensive? matrix | non-island
What does Jack think _is expensive? embedded | non-island
Who _ thinks the necklace for Lily is expensive? matrix | island

*Who does Jack think the necklace for _ is expensive?  embedded | island

Pearl & Sprouse 2013



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Whether islands

Who _ thinks that Jack stole the necklace? matrix | non-island
What does the teacher think that Jack stole  ? embedded | non-island
Who _ wonders whether Jack stole the necklace? matrix | island

*What does the teacher wonder whether Jack stole ~ ? embedded | island

Pearl & Sprouse 2013



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Adjunct islands

Who _ thinks that Lily forgot the necklace? matrix | non-island

What does the teacher think that Lily forgot  ? embedded | non-island

Who _ worries if Lily forgot the necklace? matrix | island
*What does the teacher worry if Lily forgot  ? embedded | island

Pearl & Sprouse 2013



The target state:
Adult knowledge of syntactic islands

Syntactic island = superadditive interaction of the two factors (additional
unacceptability that arises when the two factors are combined, above and
beyond the independent contribution of each factor).
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The target state:

Adult knowledge of syntactic islands

Sprouse et al. (2012)’s data on the four island types (173 subjects)

Superadditivity
present for all islands tested

Knowledge that
dependencies cannot cross
these island structures is
part of the adult knowledge
state
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Specifying the learning problem:

Syntactic islands

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data
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The data in the input

Data from five corpora of child-directed speech (Brown-Adam, Brown-Eve,
Brown-Sarah, Suppes, Valian) from CHILDES (MacWhinney 2000): speech to
25 children between the ages of one and five years old.

Total words: 813,036

Utterances containing a wh-dependency: 31,247

Sprouse et al. (2012) stimuli types:

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND  ISLAND ISLAND
Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse 2013



The data in the input

wh-dependency rarity
These kinds of wh-dependencies are fairly rare in general - the most
frequent appears about 0.9% of the time (295 of 31,247).

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND  ISLAND ISLAND
Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse 2013



The data in the input

Being grammatical doesn’t necessarily mean a wh-dependency will
appear in the input at all.

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + M/A.TRIX + EMBEDDED +

NON-ISLAND NON-ISLAND  IS-AND ISLAND
Complex NP 7 295 0
Subject 7 29 0
Whether 7 295 0
Adjunct 7 295 15 0

Pearl & Sprouse 2013



The data in the input

Unless the child is sensitive to very small frequencies, it’s difficult to tell
the difference between grammatical and ungrammatical dependencies
sometimes...

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND  ISLAND ISLAND
Complex NP 295 0 0
Subject 29 0 0
Whether 295 0 0
Adjunct 295 Q 0 >
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The data in the input

...and impossible to tell no matter what the rest of the time.

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND  ISLAND ISLAND
Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse 2013



The data in the input

If children are relying only on direct evidence and keying grammaticality
directly to frequency, this looks like a hard learning problem.

Sprouse et al. (2012) stimuli types (out of 31,247):

MATRIX +

EMBEDDED +

NON-ISLAND NON-ISLAND

MATRIX +

ISLAND

ungrammatical

EMBEDDED +
ISLAND

Complex NP
Subject
Whether
Adjunct

295
29
295
295

15

o O O O
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Specifying the learning problem:
Syntactic islands

initial state:
Bias: Learn only from direct evidence.

data intake: examples of specific wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse 2013



Building a computational learner

Idea: Use indirect positive evidence, too.

Similar in spirit to linguistic parameters: Data are deemed informative,
even if they are not data about the specific phenomenon of interest.

~~" Linguistic parameter ~«

-—

Knowledge,

v
Knowledge,_

’ I
1-

Data, '\ !‘\2,
S |

—
——_
’——
-
-
-

Here: Dependencies other than the ones of interest (the Sprouse et al.
2012 stimuli) are useful to learn from.
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Specifying the learning problem:
Syntactic islands

initial state:

+Bias: Learn from both direct and indirect evidence coming from wh-
dependencies.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse 2013



Building a computational learner

Learning Bias: Children track the occurrence of structures that can be
derived from phrase structure trees during parsing - container nodes.

[» Who did [;, she [, like __1]1?
P VP

Container node sequence: IP-VP

[cp Who did [, she [\, think [ [;p [y the gift] [,p was [ from __]1]111117
P VP CPIP VP PP

Container node sequence: |P-VP-CP-IP-VP-PP

Pearl & Sprouse 2013



Building a computational learner

Children’s hypotheses are about what container node sequences are
grammatical for dependencies in the language.

L

S
-

Ungrammatical
IP-VP-NP-CP-IP-VP

Grammatical

IP-VP
IP-VP-NP

v
| IP-VP-CP-IP-VP-IP-VP-IP-VP
IP-VP-PP

IP-VP-CP-IP-NP-PP



Specifying the learning problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-

dependencies.
+Capability: Be able to parse data in the input into phrase structure trees.
+Bias: Characterize dependencies as sequences of container nodes.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data
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What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands

IP matrix | non-island IP

|P-VP-CP-IP-VP embedded | non-island IP-VP-CP-IP

IP matrix | island IP
*IP-VP-NP-CP-IP-VP embedded | island *IP-VP-CP-IP-NP-PP

All the ungrammatical dependencies are distinct from all the grammatical
dependencies for these syntactic islands.

Pearl & Sprouse 2013



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
|P-VP-CP-IP-VP embedded | non-island |P-VP-CP-IP-VP
IP matrix | island IP

*IP-VP-CP-IP-VP embedded | island *IP-VP-CP-IP-VP

Pearl & Sprouse 2013



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
|P-VP-CP-IP-VP embedded | non-island |P-VP-CP-IP-VP
IP matrix | island IP

*IP-VP-CP-IP-VP embedded | island *IP-VP-CP-IP-VP

Uh oh - the ungrammatical dependencies look identical to some of the
grammatical dependencies for these syntactic islands.

Pearl & Sprouse 2013



Building a computational learner

Learning bias solution:
Have CP container nodes be more specified for the learner:
Use the lexical head to subcategorize the CP container node.

CP,,,, CP, .., CP CP,, etc.

null’ whether?

The learner can then distinguish between these structures:

IP-VP-CP, ;) ot~ P-VP
IP-VP-CP,,othersir|P-VP

Pearl & Sprouse 2013



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands
IP matrix | non-island IP
IP-VP-CP,, .-IP-VP embedded | non-island IP-VP-CP_ -IP
IP matrix | island IP
*IP-VP-NP-CP,, -IP-VP embedded | island *IP-VP-CP, ,-IP-NP-PP

All the ungrammatical dependencies are still distinct from all the
grammatical dependencies for these syntactic islands.

Pearl & Sprouse 2013



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
IP-VP-CP,, .-IP-VP embedded | non-island IP-VP-CP,, .-IP-VP
IP matrix | island IP
*IP-VP-CP,,....,-IP-VP embedded | island *IP-VP-CPIP-VP

Now the ungrammatical dependencies are distinct from all the grammatical
dependencies for these syntactic islands, too.

Pearl & Sprouse 2013



Specifying the learning problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-

dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
+Bias: Subcategorize container nodes by CP lexical content.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse 2013



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

Pearl & Sprouse 2013



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

[cp Who did [, she [, think [ [;p [yp the gift] [, Was [, from __]1]111117

IP VP CP,,, IP VP PP
start-IP-VP-CP, -IP-VP-PP-end =
start-IP-VP
IP-VP-CP,,,
VP-CP,,-IP
CP,,-IP-VP
|P-VP-PP
VP-PP-end

Pearl & Sprouse 2013



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

[cp Who did [, she [, think [ [;p [yp the gift] [, Was [, from __]1]111117

IP VP CP,,, IP VP PP
start-IP-VP-CP, -IP-VP-PP-end =
start-IP-VP
IP-VP-CP,,,
VP-CP,,-IP
CP,,-IP-VP
|P-VP-PP
VP-PP-end

Probability(IP-VP-CP, ,-IP-VP-PP) = p(start-IP-VP-CP, -IP-VP-PP-end)
= p(start-IP-VP) * p(IP-VP-CP,,)*p(VP-CP

*p(IP-VP-PP)*p(VP-PP-end)

null

-IP)*p(CP,,,-IP-VP)

null null
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Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

What this does:
e longer dependencies are less probable than shorter dependencies, all other
things being equal

e individual trigram frequency matters: short dependencies made of infrequent
trigrams will be less probable than longer dependencies made of frequent trigrams

Effect: the frequencies observed in the input can temper the detrimental effect of
dependency length.

Pearl & Sprouse 2013



Specifying the learning problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-

dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
Bias: Subcategorize container nodes by CP lexical content.
+Bias: Track trigrams of container nodes in the input.
+Capability: Generate probability of wh-dependency from trigrams of
container nodes characterizing it.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse 2013



Learning process

/Hear utterance

Parse utterance, characterizing
dependencies as container

node sequences

— XP-YP-ZP...

\ wt until learning perM /

——

Identify trigrams and upd@
trigram frequencies

start-XP-YP + 1
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Generating grammaticality preferences

/Parse structure,

characterizing dependency
as container node sequence

Calculate probability of
Identify trigrams container node sequence
from trigrams

start-XP-YP —————> | Probability =
XP-YP-ZP... — XP-YP-ZP p(start-XP-YP) *

p(XP-YP-ZP) *

- y
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Building a computational learner:
Empirical grounding
Child-directed speech (Brown-Adam, Brown-Eve, Suppes, Valian) from CHILDES:

What kind of dependencies are present?

76.7% IP-VP What did you see __?

12.8% IP What __ happened?
5.6% IP-VP-IP-VP What did she wanttodo __?
2.5% |P-VP-PP What did she read from _?
1.1% IP-VP-CP_ ,-IP-VP  What did she think he said _?

Pearl & Sprouse 2013



Specifying the learning problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-
dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
Bias: Subcategorize container nodes by CP lexical content.
Bias: Track trigrams of container nodes in the input.
Capability: Generate probability of wh-dependency from trigrams of
container nodes characterizing it.

data intake: all wh-dependencies in the input

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse 2013



Building a computational learner:
Empirical grounding

Hart & Risley 1995: Children hear approximately one million utterances in their
first three years.

Assumption: learning period for modeled learners is 3 years (ex: between 2 and 5
years old for modeling children’s acquisition), so they would hear one million

utterances.

| P \'),,.‘
-

Total learning period: 200,000 wh-dependency data points (wh-dependencies
make up approximately 20% of the input)

Pearl & Sprouse 2013



Specifying the learning problem:
Syntactic islands

initial state:
Bias: Learn from both direct and indirect evidence coming from wh-
dependencies.
Capability: Be able to parse data in the input into phrase structure trees.
Bias: Characterize dependencies as sequences of container nodes.
Bias: Subcategorize container nodes by CP lexical content.
Bias: Track trigrams of container nodes in the input.
Capability: Generate probability of wh-dependency from trigrams of
container nodes characterizing it.

data intake: all wh-dependencies in the input
learning period: ~3 years = ~200,000 wh-dependency data points

target state: knowledge of grammatical and ungrammatical dependencies, as
indicated by Sprouse et al. (2012) judgment data

Pearl & Sprouse 2013



Success metrics

Compare learned grammaticality preferences to Sprouse et al. (2012) judgment
data.

Then, for each island, we plot the predicted grammaticality preferences from the
modeled learner on an interaction plot, using log probability of the dependency on
the y-axis. Non-parallel lines indicate knowledge of islands.
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Superadditivity
observed for all four
islands:

This learner has
knowledge of these
syntactic islands!

That means this learner
can solve this learning
problem.

Now...what did it need
to do so?

Learning results

log probabilities

log probabilities

Complex NP Island

matrix

o
—— non-island structure T
- - island structure 4
[ |
embedded
Whether Island
—— non-island structure
- - island structure +
[ |
embedded

matrix

N
o

N
o

log probabilities

|
(¢)]

log probabilities

Subject Island

— non-island structure ~~.
- - - island structure

[
matrix

|
embedded

Adjunct Island

—— non-island structure
island structure +

[
matrix

embedded

Pearl & Sprouse 2013



The nature of children’s toolkit

Now that the biases have been identified, we can think about what kind of biases
they are.

Learn from all wh-
dependencies

Parse data into phrase
structure trees

Attend to container nodes &
subcategorize by CP

Extract & track container
node trigrams

Calculate dependency
probability from trigrams
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The nature of children’s toolkit

Are they innate or derived? (It may not be so clear for some biases.)

Innate | Derived

Learn from all wh- ? ?
dependencies

Parse data into phrase ? ?
structure trees

Attend to container nodes & ? ?
subcategorize by CP

Extract & track container *
node trigrams

Calculate dependency *
probability from trigrams
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The nature of children’s toolkit

Are they domain-specific or domain-general?

Innate Derived FDomain-  Domain-

specific  general

Learn from all wh- ? ? *
dependencies

Parse data into phrase ? ?
structure trees

Attend to container nodes & ? ? *
subcategorize by CP

Extract & track container *
node trigrams

Calculate dependency *
probability from trigrams
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The nature of children’s toolkit

Are they about the hypothesis space or the learning mechanism?

Innate Derived Domain- Domain- | Hypothesis Learning

specific  general | space mechanism

Learn from all wh- ? ? * *
dependencies
Parse data into phrase ? ? * *
structure trees
Attend to container nodes & ? ? * *
subcategorize by CP
Extract & track container * * *
node trigrams

* *

Calculate dependency *
probability from trigrams
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The nature of children’s toolkit

The Universal Grammar question:
Are any necessarily both innate and domain-specific? Maybe.

Innate Derived [Domain- | Domain- Hypothesis Learning

Specific | general space mechanism

Learn from all wh- ? ? * *
dependencies
Parse data into phrase ? ? * *
structure trees
Attend to container nodes & ? ? * *
subcategorize by CP
Extract & track container * * *
node trigrams

* *

Calculate dependency *
probability from trigrams
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Main implications of this learner
for Universal Grammar

(1) Even though there is a hard learning problem
for these syntactic islands, it may not require
Universal Grammar learning biases to solve it.

Innate Derived [Domain-specific | Domain-general

Learn from all wh-dependencies ? ? *

Parse data into phrase structure trees ? ? *

Attend to container nodes & subcategorize by CP ? ? *

Extract & track container node trigrams * *
% *

Calculate dependency probability from trigrams
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Main implications of this learner
for Universal Grammar

(2) Even if Universal Grammar (UG) learning biases are
required, they are different from (and less specific than) the
biases previously proposed.

Innate  Derived Domain-specific " | Domain-general

Learn from all wh-dependencies ? ? *

Parse data into phrase structure trees ? ? *

Attend to container nodes & subcategorize by CP ? ? *

Extract & track container node trigrams * *
% *

Calculate dependency probability from trigrams
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Main implications of this learner
for Universal Grammar

Ex: Even though an abstract linguistic representation is
required (container nodes), no “constraint” on the number
of these nodes in a""dependency is required. This falls out
automatically from other non-UG learning biases.

Innate  Derived Domain-specific " | Domain-general

Learn from all mﬁ/’fl““:—deper}d’énc’_sié‘s ? ? *

Parse data intgf phrasﬁe”;truﬁc{ure trees ? ? *

Attend to con‘{aing.r";modgsj& subcategorize by CP ? ? *

Extract & track cgntair&éfr node trigrams * *
% *

Calculate dependency probability from trigrams
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Now what?

ey ook Investigate the biases that may
be either innate or derived.

Learn from all wh- ? ?

. Can we create a learner that can derive
dependencies

them from the available linguistic

Parse data into phrase ? ? ) )
P information?

structure trees

Attend to container nodes & ? ?

subcategorize by CP If we can, what are the underlying

biases that are required to do so, and

Extract & track container ) . .
what is the nature of those biases?

node trigrams

Calculate dependency *
probability from trigrams




Now what?

This learning strategy for wh-dependencies makes some
developmental predictions — can we verify these experimentally?

“that-trace” effect prediction:
Children initially disprefer all dependencies containing that, even ones adults allow
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Now what?

This learning strategy for wh-dependencies makes some
developmental predictions — can we verify these experimentally?

“that-trace” effect prediction:
Children initially disprefer all dependencies containing that, even ones adults allow

Subject extraction ‘%.
*Who do you think that __ read the book?

Who do you think ___read the book?
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Now what?

This learning strategy for wh-dependencies makes some
developmental predictions — can we verify these experimentally?

“that-trace” effect prediction:
Children initially disprefer all dependencies containing that, even ones adults allow

Subject extraction !}
*Who do you think that __ read the book? [

Who do you think ___read the book?

Object extraction
What do you think that he read
What do you think heread °?

Pearl & Sprouse 2013



Now what?

How does this learning strategy for wh-dependencies measure up
cross-linguistically?

Island effects vary.
Ex: Italian does not have a subject island effect when the wh-dependency is part of

a relative clause, though it does when the wh-dependency is part of a question.

(Sprouse et al. submitted)

Would the input naturally lead our kind of learner to this distinction?




Now what?

Can we extend this learning strategy to create an integrated theory
of syntactic acquisition?

Related phenomena: The distribution of gaps

Parasitic gaps: Dependencies that span an island (and so should be ungrammatical) but
which are somehow rescued by another dependency in the utterance.

*Which book did you laugh [before reading __]? Adjunct island
Which book did you judge [before reading

—true —parasitic] :

Pearl & Sprouse 2013



Now what?

Can we extend this learning strategy to create an integrated theory
of syntactic acquisition?

Related phenomena: The distribution of gaps

Across-the-board (ATB) extraction: Similar situation.

Which book did you [[read __] and [then review __]]? Coordinate structure island
dependency for both gaps: IP-VP-VP

*Which book did you [[read the paper] and [then review _ ]]?
dependency for gap: IP-VP-VP

*Which book did you [[read ] and [then review the paper]]?
dependency for gap: IP-VP-VP

Pearl & Sprouse 2013



Now what?

Can we extend this learning strategy to create an integrated theory
of syntactic acquisition?

Semi-related phenomena: Binding dependencies

There don’t appear to be the same restrictions on binding dependencies that
there are on wh-dependencies.

The boy thought the joke about himself was really funny.
*Who did the boy think [the joke about ] was really funny?  Subjectisland

-
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Now what?

Can we extend this learning strategy to create an integrated theory
of syntactic acquisition?

Not-so-related phenomena: Distribution of NPs

There are restrictions on where NPs can appear, sometimes based on the lexical
item/class of verb or the syntactic construction.

It seems/*tries/*believes thatJack is clever.
Jack *seems/*tries/*believes is clever.

Jack seems/ tries/*believes to be clever.

It *seems/*tries/*believes Jack to be clever.

|  *seem/ *try / believe Jackis clever.

| *seem [/ *try / believe Jack to be clever.

Jack climbed the beanstalk.
*It was climbed the beanstalk by Jack.



Take away points from today
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Take away points from today

PPPP??

Using computational methods to look at two questions

about children’s ongoing mental computation during
language learning am

What learning biases do children need

Case study:

to succeed at it? Syntactic Islands
Understanding the nature of children’s
language learning toolkit /X

P
Impacts our understanding of the @
fundamental building blocks children N
use, and also helps define what is and is A\

not part of Universal Grammar.



Recap:
Understanding children’s ongoing mental computation
using computational methods

Computational methods are part of an arsenal of empirical
investigation methods that we can use to help us understand language
learning. This includes the learning strategies children use, the learning
biases children have, the knowledge representations that are
learnable, and the time course of language development.

Computational methods

" Experimental methods
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Extra material for word segmentation



Bayesian learners

Constrained learner (Online + Optimal decisions [OnlineOpt]):

For each utterance:
* Use dynamic programming to compute probabilities of all segmentations, given
the current lexicon.
e Choose the best segmentation.
* Add counts of segmented words to lexicon.

did you wanna sit down

=P 0.33 d1d(yuiwa/n6 5It don

0.21 dId/yu wa/n6 sIt dQOn
0.15 dId/yu wa n6 sIt dOn



Bayesian learners

Constrained learner (Online + Sub-optimal decisions [OnlineSubOpt]):

For each utterance:
* Use dynamic programming to compute probabilities of all segmentations, given

the current lexicon.
* Sample a segmentation probabilistically.

* Add counts of segmented words to lexicon.

did you wanna sit down

0.33 dId yu wa/n6 sIt dOn

—> 021 ard/yawa/as sté don

0.15 dId/yu wa n6 sIt dOn



Bayesian learners

Constrained learner (Online + Limited Working Memory [OnlineMem)])
(using Decayed Markov Chain Monte Carlo):

For each utterance:
* Probabilistically sample s boundaries from all utterances encountered so far.
* Prob(sample b) o b_ @ where b, is the number of potential boundary locations
between b and the end of the current utterance and d is the decay rate (Marthi et al.
2002).
* Update lexicon after each boundary sample.

did you wanna sit down |

Probability of /
_ s samples
sampling boundary

dIdéquwaZnGEsItEdQn

Boundaries Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Online + Limited Working Memory [OnlineMem])
(using Decayed Markov Chain Monte Carlo):

For each utterance:
* Probabilistically sample s boundaries from all utterances encountered so far.
* Prob(sample b) o b_ @ where b, is the number of potential boundary locations
between b and the end of the current utterance and d is the decay rate (Marthi et al.
2002).
* Update lexicon after each boundary sample.

did you wanna sit down lthat’s okay therd
|

Utterance 1 Utterance 2

Probability of

|
|
|
sampling boundary !

s samples

dId/yuiwa/n6:sIt:don | D&tsio/ke iDEn
A A T A

Boundaries Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Online + Limited Working Memory [OnlineMem])
(using Decayed Markov Chain Monte Carlo):

For all DMCMC learners:

d = 1.5 (¥77% chance of sampling a boundary in the current utterance)
s = 20000 samples per utterance (78% fewer samples than ideal learner)

did you wanna sit down lthat’s okay therd
|

Utterance 1 Utterance 2

Probability of

|
|
|
sampling boundary !

s samples

dId/yuiwa/n6:sIt:don | D&tsio/ke iDEn
A A T A

Boundaries Phillips & Pearl 2012, in prep



Understanding the impact of cognitive limitations

One effect of the constrained learner’s cognitive limitations is to
push the learner away from the very naive underlying language
models (the unigram or bigram assumption).

Bigram syllable-based learners

Log Posterior Token F-score
BatchOpt -552732 77.1
OnlineOpt -623216 75.1
OnlineSubOpt -631540 77.8
OnlineMem -577879 86.3

Log posterior: How close to the underlying naive model
Smaller negative numbers = closer (1037232 closer than 107787%)

Phillips & Pearl in prep
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Observation: BatchOpt vs. OnlineMem
Being further away from the underlying naive model

= better word segmentation performance.

Bigram syllable-based learners
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Understanding the impact of cognitive limitations

Interpretation:

Cognitive limitations seems to push the learner away from the
underlying naive language model, and also in the right direction.

Bigram syllable-based learners

Log Posterior Token F-score
BatchOpt -552732 77.1
OnlineOpt -623216 75.1
OnlineSubOpt -631540 77.8
OnlineMem -577879 86.3

Log posterior: How close to the underlying naive model
Smaller negative numbers = closer (1037232 closer than 107787%)

Phillips & Pearl in prep



Understanding the impact of cognitive limitations

Caveat:

It’s not just about being pushed far away from the underlying naive
language model — it’s important to also be pushed in the right direction
(OnlineSubOpt vs. OnlineMem).

Bigram syllable-based learners

Log Posterior Token F-score
BatchOpt -552732 77.1
OnlineOpt -623216 75.1
OnlineSubOpt -631540 77.8
OnlineMem -577879 86.3

Log posterior: How close to the underlying naive model
Smaller negative numbers = closer (1037232 closer than 107787%)

Phillips & Pearl in prep



Extra material for syntactic islands



Innate Derived Domain- | Domain-

specific " general

Learn from all wh-dependencies ? ? *

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific " general

Learn from all wh-dependencies ? ? *

Clearly domain-specific, since this is language data.

May seem reasonable to attend to wh-dependency data when learning about
wh-dependencies (and so this would be derived)

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific " general

Learn from all wh-dependencies ? ? *

Clearly domain-specific, since this is language data.

May seem reasonable to attend to wh-dependency data when learning about
wh-dependencies (and so this would be derived)

...but then why not attend to all dependencies (ex: relative clause dependencies,
binding dependencies) since wh-dependencies are a kind of dependency?

Empirical necessity of just using wh-dependency data:

There are different island effects for relative clauses (Sprouse et al. submitted) and no
island effects for binding dependencies, so the learner needs to know to pay
attention just to wh-dependencies.

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific | general

Parse data into phrase structure trees ? ? *
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Innate Derived Domain- | Domain-

specific | general

Parse data into phrase structure trees ? ? *

Clearly domain-specific, since the structure is specific to language.

May be possible to bootstrap this information (acquiring syntactic categories: Mintz
2003, 2006; acquisition of hierarchical structure given syntactic categories as input: Klein & Manning

2002). If so, this would be derived...

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific | general

Parse data into phrase structure trees ? ? *

Clearly domain-specific, since the structure is specific to language.

May be possible to bootstrap this information (acquiring syntactic categories: Mintz
2003, 2006; acquisition of hierarchical structure given syntactic categories as input: Klein & Manning

2002). If so, this would be derived...

...but it’s currently unclear if all the necessary phrase structure knowledge can
be bootstrapped.

Important:

The need for this capability is not specific to learning islands — it’s (presumably)
needed for learning any kind of syntactic knowledge.

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific | general

Attend to container nodes & subcategorize by CP ? ? *
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Derived Domain- | Domain-

specific | general

Attend to container nodes & subcategorize by CP ? ? *

Identifying container nodes
- applies to language data: domain-specific
- derived from ability to parse utterances
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Innate Derived Domain- | Domain-

specific | general

Attend to container nodes & subcategorize by CP ? ? *

Identifying container nodes
- applies to language data: domain-specific
- derived from ability to parse utterances

Attending to container nodes (among all the other data out there)
- applies to language data: domain-specific
- innate vs. derived?

e could be specified innately (like bounding nodes)

 could be derived from a bias to use representations that are already

being used for parsing

Pearl & Sprouse 2013
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Innate Derived Domain- | Domain-

specific | general

Attend to container nodes & subcategorize by CP ? ? *
About a linguistic representation: domain-specific

Innate vs. derived?
* Could be specified innately
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Innate Derived Domain- | Domain-

specific | general

Attend to container nodes & subcategorize by CP ? ? *
About a linguistic representation: domain-specific

Innate vs. derived?
* Could be specified innately

* Could be derived from prior linguistic experience:
* Uncontroversial to assume children learn to distinguish different
types of CPs since the lexical content of CPs has substantial

consequences for the semantics of a sentence.

* Also, adult speakers are sensitive to the distribution of that
versus null complementizers (Jaeger 2010).

...but still have to know this is the right thing to subcategorize.

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific " general

Extract & track container node trigrams * *

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific " general

Extract & track container node trigrams * *

Applied in different cognitive domains: domain-general

Likely innate — learning with sequences of three units (transitional
probabilities: Saffran et al. 1996, Aslin et al. 1998, Graf Estes et al. 2007, Pelucchi et al. 20093,
Pelucchi et al. 2009b; frequent frames for grammatical categorization: Mintz 2006, Wang &

Mintz 2008)

...though why trigrams instead of some other n-gram?

Pearl & Sprouse 2013



Why learning from container node trigrams works

For each island-spanning dependency, there is at least one extremely low
probability container node trigram in the dependency.

Complex NP island Subject island
start-IP-VP-NP-CP,, _.-IP-VP-end start-IP-VP-CP_ .+IP-NP-PP-end
Whether island Adjunct island

start-IP-VP:CP -IP-VP-end start-IP-VP-CP,+IP-VP-end

whether!

These trigrams are never observed in the input — which is crucially different
than being observed rarely. Thus, these islands are worse than dependencies
involving trigrams that are rarely seen (e.g., dependencies with CP,, .,) and even
longer dependencies that involve more frequenct trigrams (e.g., triply
embedded object dependencies using CP, )

Pearl & Sprouse 2013



The empirical necessity of trigrams

Not unigrams
A unigram model will successfully learn Whether and Adjunct islands, as there

are container nodes in these dependencies that never appear in grammatical
dependencies (CP; .her and CPy)....but it will fail to learn Complex NP and
Subject islands, as all of the container nodes in these islands are shared with

grammatical dependencies.

Complex NP:  *IP-VP-NP-CP,, -IP-VP

Subject: *IP-VP-CP, - IP-NP-PP
Whether: IP-VP-CP,,, ;... -IP-VP
Adjunct: IP-VP-CP,-IP-V/P

Pearl & Sprouse 2013



The empirical necessity of trigrams

Not bigrams
At least for Subject islands, there is no bigram that occurs in a Subject island

violation but not in any grammatical dependencies. The most likely candidate
for such a bigram is IP-NP...However, sentences such as What, again, about Jack
impresses you? or What did you say about the movie scared you? suggest that a
gap can arise inside of NPs, as long as the extraction is of the head noun (what),
not of the noun complement of the preposition.

Complex NP:  IP-VP-NP-CP,,_-IP-VP
Subject: *IP-VP-CP,-IP-NP-PP
Whether: IP-VP-CP,,, ;... -IP-VP
Adjunct: IP-VP-CP,-IP-V/P

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific | general

Calculate dependency probability from trigrams * *

Pearl & Sprouse 2013



Innate Derived Domain- | Domain-

specific | general

Calculate dependency probability from trigrams * *

Applied in different cognitive domains: domain-general

Likely innate

Pearl & Sprouse 2013



Complementizer that

that-trace effects

*Who do you think that _ read the book?
Who do you think ___read the book?

The current learning strategy captures this distinction.

Pearl & Sprouse 2013



Complementizer that

that-trace effects

...but the current learning strategy will also generate a preference for object gaps
without that compared to object gaps with that. (object that-trace effect)

What do you think that heread __ ?
What do you think he read __ ? [prefers this one]

Interestingly, Cowart 1997 finds an object that-trace effect, but it is much smaller
than the subject that-trace effect

The model generates an asymmetrical dispreference when using adult-directed
corpora, which contain more instances of that (5.40 versus 2.81). This could be
taken to be a developmental prediction of the current algorithm:

Children may disprefer object gaps in embedded that-CP clauses more than adults,
and this dispreference will weaken as they are exposed to additional tokens of that
in utterances containing dependencies.

Pearl & Sprouse 2013



Some cross-linguistic issues

High probability trigrams that may be ungrammatical

Rizzi (1982) reports situations in Italian where simply doubling a grammatical
sequence of trigrams leads to ungrammaticality...

IP-VP-CP,, -IP-VP
but
*|P-VPICP, -IP-VP:CP,, [IP-VP-IP-VP

\

But these involve the same trigrams, so the learner in Pearl & Sprouse (2013) will
treat both the same (either grammatical or ungrammatical). If humans do have
different judgments of these, then this cannot be accounted for by this learning
algorithm.

Pearl & Sprouse 2013



Parasitic gaps

The learner can’t handle parasitic gaps, which are dependencies that span an

island (and so should be ungrammatical) but which are somehow rescued by
another dependency in the utterance.

*Which book did you laugh [before reading  ]?
Which book did you judge __,. . [before reading

—parasitic] :

Adjunct island

*What did [the attempt to repair ] ultimately damage the car?
What did [the attempt to repair __, .| ultimately damage

?
—true*

Complex NP island

Pearl & Sprouse 2013



Parasitic gaps

Why not? The current learner would judge the parasitic gap as ungrammatical

since it is inside an island, irrespective of what other dependencies are in the
utterance.

*Which book did you laugh [before reading  ]?
Which book did you judge [before reading

—true —parasitic] :

Adjunct island

*What did [the attempt to repair ] ultimately damage the car?
What did [the attempt to repair __, .| ultimately damage

?
—true*

Complex NP island

This may be able to be addressed in a learner that is able to combine information
from multiple dependencies in an utterance (perhaps because the learner has
observed multiple dependencies resolved in utterances in the input).

Pearl & Sprouse 2013



Across-the-board constructions

A similar problem occurs for across-the-board constructions.

Which book did you [ [read __ ] and [then review __]]?
dependency for both gaps: IP-VP-VP

*Which book did you [[read the paper] and [then review _ ]]?
dependency for gap: IP-VP-VP

*Which book did you [[read ] and [then review the paper]]?
dependency for gap: IP-VP-VP

Again, this may be able to be addressed in a learner that is able to combine
information from multiple dependencies in an utterance (perhaps because the
learner has observed multiple dependencies resolved in utterances in the input).

Pearl & Sprouse 2013



