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Method: “a systematic procedure, technique, or mode of inquiry employed by
...a particular discipline or art” — Merriam Webster Online Dictionary

...to tell us something we didn’t know before.



Method: “a systematic procedure, technique, or mode of inquiry employed by
...a particular discipline or art” — Merriam Webster Online Dictionary

...to tell us something we didn’t know before.

Theoretical methods:
What knowledge of language is (and what children have to learn)
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Method: “a systematic procedure, technique, or mode of inquiry employed by
...a particular discipline or art” — Merriam Webster Online Dictionary

...to tell us something we didn’t know before.

Experimental methods:
When knowledge is acquired & plausible capabilities about how
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Method: “a systematic procedure, technique, or mode of inquiry employed by
...a particular discipline or art” — Merriam Webster Online Dictionary

...to tell us something we didn’t know before.

Computational methods:
Strategies that are both useful and useable for how children
acquire knowledge
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Computational methods often rely on the results of
theoretical and experimental methods, and can be used to
inform both theory and the learning process.

Computational methods

Experimental methods

Theoretical methods



Road map: Two good ways

* Informing theory: Arguments from acquisition

— Investigating Universal Grammar

— Testing theories of knowledge representation

* Informing the learning process: Useful, useable, and better than
adults?

— Comparing ideal and non-ideal approaches to discover how “less is more”



Road map: Two good ways

* Informing theory: Arguments from acquisition

— Investigating Universal Grammar



Informing Theory: Arguments from Acquisition

One explicit motivation for Universal Grammar is that it explains how
children solve the induction problem inherent in language acquisition.
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Informing Theory: Arguments from Acquisition

Specifically, Universal Grammar consists of the necessary learning biases
that are both innate and domain-specific (chomsky 1965, Chomsky 1975).

domain-specific

Universal
Grammar

derived innate

domain-general



Informing Theory: Arguments from Acquisition

Open question: For any given piece of linguistic knowledge, what biases
are necessary to learn it from child-directed data? Are any of them
necessarily both innate and domain-specific?

domain-specific

derived innate

domain-general



Syntactic islands

 Why? Central to UG-based syntactic theories.

 What? Dependencies can exist between two non-adjacent items. They
do not appear to be constrained by length (Chomsky 1965, Ross 1967), but
rather by whether the dependency crosses certain structures (called
“syntactic islands”).

What does Jack think _ ?

What does Jack think that Lily said that Sarah heard that Jareth believed  ?

Pearl & Sprouse submitted



Syntactic islands

 Why? Central to UG-based syntactic theories.

 What? Dependencies can exist between two non-adjacent items. They
do not appear to be constrained by length (Chomsky 1965, Ross 1967), but
rather by whether the dependency crosses certain structures (called
“syntactic islands”).

Some example islands

Complex NP island:

*What did you make [the claim that Jack bought _ ]?
Subject island:

*What do you think [the joke about ] offended Jack?

Whether island:

*What do you wonder [whether Jack bought __ ]?
Adjunct island:

*What do you worry [if Jack buys _ ]?
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Syntactic islands

* Predominant theory in generative syntax:
syntactic islands require innate, domain-specific learning biases

Example: Subjacency (chomsky 1973, Huang 1982, Lasnik & Saito 1984)
A dependency cannot cross two or more bounding nodes.

Bounding nodes: language-specific (CP, IP, and/or NP)

Wh o [ o Loy )
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Syntactic islands

* Predominant theory in generative syntax:
syntactic islands require innate, domain-specific learning biases

Subjacency learning biases:
(1) Innate, domain-specific knowledge of hypothesis space: Exclude
hypotheses that allow dependencies crossing 2+ bounding nodes.

Wh o [ o Loy )
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Syntactic islands

Predominant theory in generative syntax:
syntactic islands require innate, domain-specific learning biases

Subjacency learning biases:
(1) Innate, domain-specific knowledge of hypothesis space: Exclude
hypotheses that allow dependencies crossing 2+ bounding nodes.

(2) Innate, domain-specific knowledge of hypothesis space: Hypothesis space

consists of bounding nodes for all languages, and the child must identify the
ones applicable to his language.

[BN2 [BNl ]]
\/(7 —

{CP, IP, NP}?
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Syntactic islands

Predominant theory in generative syntax:

syntactic islands require innate, domain-specific learning biases...in
addition to whatever else they might require.

domain-specific
Not 2+ bounding nodes (BNs)
BN = {CP, IP, NP}

derived innate

domain-general
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Syntactic islands

e How do we test this?

(1) Explicitly define the target knowledge state, using adult
acceptability judgments.

(2) Identify the data available in the input, using realistic samples. (Is
there an induction problem?)

(3) Implement a probabilistic learner that can learn about syntactic
islands and see what kind of learning biases it requires.

Pearl & Sprouse submitted



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)
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The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Complex NP islands

Who  claimed that Lily forgot the necklace? matrix | non-island
What did the teacher claim that Lily forgot  ? embedded | non-island
Who  made the claim that Lily forgot the necklace? matrix | island

*What did the teacher make the claim that Lily forgot  ? embedded | island

Pearl & Sprouse submitted



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Subject islands

Who _ thinks the necklace is expensive? matrix | non-island
What does Jack think __ is expensive? embedded | non-island
Who  thinks the necklace for Lily is expensive? matrix | island

*Who does Jack think the necklace for __ is expensive? embedded | island

Pearl & Sprouse submitted



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Whether islands

Who _ thinks that Jack stole the necklace? matrix | non-island
What does the teacher think that Jack stole  ? embedded | non-island
Who  wonders whether Jack stole the necklace? matrix | island

*What does the teacher wonder whether Jack stole  ? embedded | island

Pearl & Sprouse submitted



The target state:
Adult knowledge of syntactic islands

Sprouse et al. (2012) collected magnitude estimation judgments for four
different islands, using a factorial definition that controlled for two salient
properties of island-crossing dependencies:

- length of dependency (matrix vs. embedded)

- presence of an island structure (non-island vs. island)

Adjunct islands

Who  thinks that Lily forgot the necklace? matrix | non-island

What does the teacher think that Lily forgot  ? embedded | non-island

Who _ worries if Lily forgot the necklace? matrix | island
*What does the teacher worry if Lily forgot  ? embedded | island

Pearl & Sprouse submitted



The target state:
Adult knowledge of syntactic islands

Syntactic island = superadditive interaction of the two factors (additional
unacceptability that arises when the two factors are combined, above and

beyond the independent contribution of each factor).
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The target state:

Adult knowledge of syntactic islands

Sprouse et al. (2012)’s data on the four island types (173 subjects)

Superadditivity

present for all islands
tested

Knowledge that
dependencies cannot
cross these island
structures is part of the
adult knowledge state
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The input: Assessing the induction problem

Data from five corpora of child-directed speech (Brown-Adam, Brown-Eve,
Brown-Sarah, Suppes, Valian) from CHILDES (MacWhinney 2000): speech to
25 children between the ages of one and five years old.
Total words: 813,036
Utterances containing a wh-dependency: 31,247
Sprouse et al. (2012) stimuli types:

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse submitted



The input: Assessing the induction problem

These kinds of utterances are fairly rare in general - the most frequent
appears about 0.9% of the time (295 of 31,247.)

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0 0
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0
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The input: Assessing the induction problem

Being grammatical doesn’t necessarily mean an utterance will appear in
the input at all.

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX+ EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0
Subject 7 29 0
Whether 7 295 0
Adjunct 7 295 15 0
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The input: Assessing the induction problem

Unless the child is sensitive to very small frequencies, it’s difficult to tell
the difference between grammatical and ungrammatical dependencies
sometimes...

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 295 0 0
Subject 29 0 0
Whether 295 0 0

U
o

Adjunct 295 @ )
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The input: Assessing the induction problem

...and impossible to tell no matter what the rest of the time. This looks
like an induction problem for the language learner if we’re looking for
direct evidence in the input.

Sprouse et al. (2012) stimuli types (out of 31,247):

ungrammatical

MATRIX + EMBEDDED + MATRIX + EMBEDDED +

NON-ISLAND NON-ISLAND ISLAND ISLAND

Complex NP 7 295 0 y
Subject 7 29 0 0
Whether 7 295 0 0
Adjunct 7 295 15 0

Pearl & Sprouse submitted



Building a computational learner

Idea: Use indirect positive evidence, too.

Similar in spirit to linguistic parameters: Data are deemed informative, even
if they are not data about the specific phenomenon of interest.
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Knowledge,_ -=-—"" Knowledge,
P
Data,

Here: Dependencies other than the ones of interest (the Sprouse et al.
2012 stimuli) are useful to learn from.
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Building a computational learner

Learning Bias: Children track the occurrence of structures that can be
derived from phrase structure trees during parsing - container nodes.

[» Who did [;, she [, like __11]?
P VP

Container node sequence: IP-VP

[cp Who did [|; she [, think [, [;p [y the gift] [,p was [pp from __]]1111117
P VP CPIP VP PP

Container node sequence: IP-VP-CP-IP-VP-PP

Pearl & Sprouse submitted



Building a computational learner

Children’s hypotheses are about what container node sequences are

grammatical for dependencies in the language.

""""""

Ungrammatical
IP-VP-NP-CP-IP-VP

Grammatical

IP-VP
IP-VP-NP

|P-V/P-CP-IP-V/P-IP-VP-IP-VP

IP-VP-PP

IP-VP-CP-IP-NP-PP



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands

IP matrix | non-island IP

|P-VP-CP-IP-VP embedded | non-island |P-VP-CP-IP

IP matrix | island IP
*IP-VP-NP-CP-IP-VP embedded | island *IP-VP-CP-IP-NP-PP

All the ungrammatical dependencies are distinct from all the grammatical
dependencies for these syntactic islands.

Pearl & Sprouse submitted



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
|P-VP-CP-IP-VP embedded | non-island |P-VP-CP-IP-VP
IP matrix | island IP

*|P-VP-CP-1P-VP embedded | island *IP-VP-CP-IP-VP

Pearl & Sprouse submitted



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
|P-VP-CP-IP-VP embedded | non-island |P-VP-CP-IP-VP
IP matrix | island IP

*IP-VP-CP-IP-VP embedded | island *IP-VP-CP-IP-VP

Uh oh - the ungrammatical dependencies look identical to some of the
grammatical dependencies for these syntactic islands.

Pearl & Sprouse submitted



Building a computational learner

Learning bias solution:

Have CP container nodes be more specified for the learner:
Use the lexical head to subcategorize the CP container node.
CP

CP,pger CP CP,, etc.

null? whether?

The learner can then distinguish between these structures:

IP-VP-CP,,,y/por- | P-VP
IP-VP-CP,etper /i IP-VP

Pearl & Sprouse submitted



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Complex NP islands Subject islands
IP matrix | non-island IP
IP-VP-CP,, -IP-VP embedded | non-island IP-VP-CP,,-IP
IP matrix | island IP
*IP-VP-NP-CP,, -IP-VP embedded | island *IP-VP-CP, ,-IP-NP-PP

All the ungrammatical dependencies are still distinct from all the
grammatical dependencies for these syntactic islands.

Pearl & Sprouse submitted



What does the target knowledge look like?

Sprouse et al. (2012) stimuli:

Whether islands Adjunct islands
IP matrix | non-island IP
IP-VP-CP,, -IP-VP embedded | non-island IP-VP-CP,, -IP-VP
IP matrix | island IP

*IP-VP-CP,, ..., |P-VP embedded | island *IP-VP-CP-IP-VP

Now the ungrammatical dependencies are distinct from all the grammatical
dependencies for these syntactic islands, too.

Pearl & Sprouse submitted



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

Pearl & Sprouse submitted



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

[cp Who did [, she [, think [ [}p [yp the gift] [\, Was [ from __]1]1111117

IP VP CP,,, IP VP PP
start-IP-VP-CP, ,-IP-VP-PP-end =
start-IP-VP
IP-VP-CP,,
VP-CP,,-IP
CP,,-IP-VP
IP-VP-PP
VP-PP-end

Pearl & Sprouse submitted



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

[cp Who did [, she [, think [ [}p [yp the gift] [\, Was [ from __]1]1111117

IP VP CP,,, IP VP PP
start-IP-VP-CP, ,-IP-VP-PP-end =
start-IP-VP
IP-VP-CP,,
VP-CP,,-IP
CP,,-IP-VP
IP-VP-PP
VP-PP-end

Probability(IP-VP-CP, ,-IP-VP-PP) = p(start-IP-VP-CP, ,-IP-VP-PP-end)
= p(start-IP-VP) * p(IP-VP-CP,,)*p(VP-CP

*p(IP-VP-PP)*p(VP-PP-end)

null

null_I P)*p(CPnull_I P-VP)
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Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed
product of its trigrams.

What this does:
e longer dependencies are less probable than shorter dependencies, all other
things being equal

e individual trigram frequency matters: short dependencies made of infrequent
trigrams will be less probable than longer dependencies made of frequent trigrams

Effect: the frequencies observed in the input can temper the detrimental effect of
dependency length.

Pearl & Sprouse submitted



Learning process

/Hear utterance Parse utterance, characterizing Identify trigrams and updg
dependencies as container trigram frequencies
node sequences

start-XP-YP + 1

— XP-YP-ZP... ——>

\ \Repeat until learning period ends /

Pearl & Sprouse submitted



Generating grammaticality preferences

/Parse structure,

characterizing dependencies
as container node sequences

XP-YP-ZP...

-

——>

Identify trigrams

start-XP-YP
XP-YP-ZP

Calculate probability of
container node sequence
from trigrams

———>

Probability =
p(start-XP-YP) *
p(XP-YP-ZP) *

/

Pearl & Sprouse submitted



Building a computational learner:
Empirical grounding
Child-directed speech (Brown-Adam, Brown-Eve, Suppes, Valian) from CHILDES:

What kind of dependencies are present?

76.7% IP-VP What did you see __?

12.8% IP What __ happened?
5.6% |P-VP-IP-VP What did she wanttodo __?
2.5% |P-VP-PP What did she read from __?

1.1% IP-VP-CP_ -IP-VP  What did she think he said __?

null

Pearl & Sprouse submitted



Success metrics

Compare learned grammaticality preferences to Sprouse et al. (2012) judgment
data.

Then, for each island, we plot the predicted grammaticality preferences from the
modeled learner on an interaction plot, using log probability of the dependency on
the y-axis. Non-parallel lines indicate knowledge of islands.
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Learning results

Complex NP Island Subject Island
ey e e 0 — 0 —
Superadditivity
-5 -5 AN
observed for all four 2 g .
1 . g -1 — E -1 ] N R
islands: 5710 5710
Q Q S
o o N
6-15 — . a-15 — S~
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Proposed learning biases

Only one learning bias is potentially both innate and domain-specific.

Innate Derived Domain- Domain-

specific  general

Attend to container nodes ? ? *

Extract container node trigrams * *
Update trigram probabilities * *
Calculate dependency probability from trigrams * *

Pearl & Sprouse submitted



Container nodes

What kind of bias is this?
Identifying container nodes

- applies to language data: domain-specific
- derived from ability to parse utterances

Pearl & Sprouse submitted



Container nodes

What kind of bias is this?

Identifying container nodes
- applies to language data: domain-specific
- derived from ability to parse utterances

Attending to container nodes (among all the other data out there)
- applies to language data: domain-specific
- innate vs. derived?

* could be specified innately (like bounding nodes)
 could be derived from a bias to use representations that are already

being used for parsing

Pearl & Sprouse submitted



Specifying CP container nodes

What kind of learning bias is this?
About a linguistic representation: domain-specific

Innate vs. derived?

Pearl & Sprouse submitted



Specifying CP container nodes

What kind of learning bias is this?
About a linguistic representation: domain-specific

Innate vs. derived?
* Could be specified innately
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Specifying CP container nodes

What kind of learning bias is this?
About a linguistic representation: domain-specific

Innate vs. derived?
* Could be specified innately

* Could be derived from prior linguistic experience:
* Uncontroversial to assume children learn to distinguish different
types of CPs since the lexical content of CPs has substantial

consequences for the semantics of a sentence.

* Also, adult speakers are sensitive to the distribution of that
versus null complementizers (Jaeger 2010).

Pearl & Sprouse submitted



Main implications of this learner

(1) Even though there is an induction problem for
these syntactic islands, it may not require Universal
Grammar learning biases to solve it.

Innate Derived Domain- Domain-

specific  general

Attend to container nodes ? ? *

Extract container node trigrams * *
Update trigram probabilities * *
Calculate dependency probability from trigrams * *

Pearl & Sprouse submitted



Main implications of this learner

(2) Even if a Universal Grammar learning bias is
required, it is different from the biases previously
proposed.

In particular, while it also specifies a particular linguistic

representation, there is no bias defining the “theory”.
This falls out from the other non-UG learning biases.

Innate Derived Domain- Domain-

specific  general

Attend to container nodes ? ?
VS.
Attend to bounding nodes (BNs) * *

Dependencies crossing 2+ BNs are not allowed

Pearl & Sprouse submitted



Making an argument from acquisition

Universal Grammar: a theory of linguistic knowledge that is
explicitly motivated by the induction problems during
acquisition.

How to use computational methods effectively:

* |dentify induction problemes.

» Test learning strategies comprised of many learning biases
to solve these induction problems.

* When these strategies work, examine the nature of the
learning biases that define them.



Road map: Two good ways

* Informing theory: Arguments from acquisition

— Testing theories of knowledge representation



Knowledge representation motivations

® One traditional motivation for proposals of knowledge representation
(such as parameters or constraints): The knowledge representation helps
explain the constrained variation observed in adult linguistic knowledge
across the languages of the world.

Argument from constrained cross-linguistic variation

Pearl 2011



Knowledge representation motivations

® Another (sometimes implicit) motivation for proposals of knowledge
representation: Having this knowledge representation pre-specified
allows children to quickly acquire the right generalizations from the data.

Argument from acquisition

Easier if knowledge structure
available beforehand knowledge

\ 5
%:.tau% °
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Knowledge representation motivations

® Another (sometimes implicit) motivation for proposals of knowledge
representation: Having this knowledge representation pre-specified
allows children to quickly acquire the right generalizations from the data.

Argument from acquisition

Using computational and quantitative methods along with available
empirical data, we can explicitly test different proposals for knowledge
representation.

Pearl 2011



Case study:
A generative system of metrical phonology

Observable data: stress contour OCtopus

(H L) H
OC to pus

OC to pus OC to pus
Underlying representation/analysis? (S S S)

OC to pus

Pearl 2011



Two knowledge representations

" Tractable explorations

" Parametric system: 5 parameters & 4 sub-
parameters (Halle & Vergnaud 1987, Dresher & Kaye 1990,
Dresher 1999)

" Hypothesis space: 156 legal grammars

" Optimality theoretic system: 10 constraints
(Hammond 1999, Prince & Smolensky 1993, Tesar & Smolensky

2000)
" Hypothesis space: 10! grammars (3,628,800)
]
o
c ]
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Comparing knowledge representations

Feet Headedness
Quantity Sensitivity

. Boundedness
- O ' Correct grammar
- produces compatible
Extrametricality  contour i

OCtopus

Weight-To-Stress Principle

T . Best candidate for the !
Align-Left, Align-Right e correct grammar has a

. compatible contour

FootBin

Trochaic, lambic
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Non-trivial language: English

" Non-trivial because there are many data that are ambiguous for
which parameter value or constraint ranking they implicate

OCtopus ?

® This is generally a problem for acquisition.

Pearl 2011



Non-trivial language: English

® Non-trivial because there are many irregularities. This is less common
for acquisition — usually there aren’t a lot of exceptions to the system
being acquired.

Pearl 2011



Non-trivial language: English

® Non-trivial because there are many irregularities. This is less common
for acquisition — usually there aren’t a lot of exceptions to the system
being acquired.

Analysis of child-directed speech (8 -15 months) from Brent corpus (Brent &
Siskind 2001) from CHILDES (MacWhinney 2000): 504,084 tokens, 7390 types

For words with 2 or more syllables:

® 174 unique syllable-rime type combinations (ex: closed-closed (VC VC))
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Non-trivial language: English

® Non-trivial because there are many irregularities. This is less common
for acquisition — usually there aren’t a lot of exceptions to the system
being acquired.

Analysis of child-directed speech (8 -15 months) from Brent corpus (Brent &
Siskind 2001) from CHILDES (MacWhinney 2000): 504,084 tokens, 7390 types

For words with 2 or more syllables:
® 174 unique syllable-rime type combinations (ex: closed-closed (VC VC))

B 85 of these 174 have more than one stress contour associated with them
(unresolvable): no one grammar can cover all the data

® Ex for VC VC type: her SELF
AN swer

SOME WHERE
Pearl 2011



Cognitively inspired learners using parameters

" Target state = grammar for

English (Halle & Vergnaud 1987, Dresher . ‘
) <P @D
& Kaye 1990, Dresher 1999) derived
from cross-linguistic variation and .
- <D

adult linguistic knowledge

Premise: This is the grammar that best describes the systematic data of
English, even if there are exceptions.

Pearl 2011



Cognitively inspired learners using parameters

::x}-‘-

®  Only one cognitively plausible learner of the many variants tried was ever
successful at converging on the adult English grammar when given realistic
child-directed input, and then only once every 3000 runs! This seemed like
very poor performance.

Pearl 2011



Where the problem lies

Premise: The English grammar is the grammar that best describes the
systematic data of English, even if there are exceptions.

Implication: The adult English grammar is the grammar that is best
able to generate the stress contours for the English data (most

compatible with empirical data).

Is this true?

Pearl 2011



Where the problem lies

®  English grammar compatibility with data:
® Generates contours matching 73.0% observable data tokens (62.1% types)

" Note: not expected to be at 100% because of irregularities in English data

®  Average compatibility of grammars selected by cognitively plausible learners
using realistic input:

" 73.6% by tokens (63.3% by types)

Pearl 2011



Where the problem lies

This isn’t true for the kind of data children encounter!

—

Premise: The English grammar is the grammar that best describes the
systematic data of English, even if there are exceptions.

® English grammar compared to other 155 grammars in the hypothesis space
® Ranked 52nd by tokens, 56th by types

® English grammar is barely in the top third - unsurprising that modeled
learners rarely select this grammar, given the child-directed speech
data!

Pearl 2011



Problem for any parametric learner

®  Parametric child learner has a learnability problem:
can’t get to adult target state given the data available to
children

What about a child learner using the OT knowledge representation?



OT system test

® 10 constraints (Hammond 1999, Prince & Smolensky 1993, Tesar & Smolensky 2000)

" Hypothesis space: 10! grammars (3,628,800)

Weight-To-Stress Principle: VV, VC

Parse, Non-Final
Align-Left, Align-Right
FootBin: syllables, moras

Trochaic, lambic




OT system test

" Adult English grammar (Hammond 1999, Pater 2000):
® Combination of constraint orderings, such as Non-Final > WSP(VC)

® 720 grammars of 3,628,800 follow these orderings (720 ways to be English)

" Compatibility of English OT grammars with child-directed speech data

® Compatible grammar’s best candidate has a stress contour that matches the
observed stress contour for any given data point

C1 C2 C3 C4
(OC to) pus & &

oc (TO pus)

(oc TO) pus




Parameters vs. OT comparison

Parameters oT
Grammars in hypothesis space 156 3,628,800
Best grammar type compatibility 70.3% 67.5%
% of hypothesis space (best) English grammar 31.1% 34.8%
scores lower than [types]
(Best) English grammar compatibility [types] 62.1% 26.6%

Comparable, except the best English grammar compatibility is very low for
OT, compared to the English grammar in the parametric system. Also, the
hypothesis space size is much larger for OT.



Problem for both learners

®  Parametric child learner has a learnability problem: can’t get to adult
target state given the data available to children

® OT child learner has a learnability problem, too (possible an even greater
one): can’t get to adult target state given the data available to children, and
adult grammar accounts for a much smaller portion of the available data



Getting out of the learnability problem: 3 options

Child-directed
speech

Initial knowledge _@_’ Adult knowledge
state of learner (target state)

Option 1: Change the initial state & the target state

Child-directed
speech

Initial knowledge Adult knowledge
state of learner (target state)

Pearl 2011



A different initial & target state for knowledge

Theoretical + computational/quantitative investigations for metrical phonology:
Perhaps different parameters, constraints, or other representations make the

adult English grammar more acquirable from child-directed speech (ex: Hayes
1995, Heinz 2007)

Pearl 2011



Getting out of the learnability problem: 3 options

Child-directed
speech

Initial knowledge _@_’ Adult knowledge
state of learner (target state)

Option 2: change the initial state

Child-directed
speech
Initial knowledge | Adult knowledge
state of learner (target state)

Pearl 2011



A different (richer) initial state for learning

® Maybe young children have additional boosts from useful learning biases

® Pearl 2008 (computational): learners biased to learn only from
unambiguous data can learn the parametric system examined here from
child-directed speech data, as long as the parameters are set in a
particular order.

Pearl 2011



A different (richer) initial state for learning

® Maybe young children have additional boosts from useful learning biases

® Pearl 2008 (computational): learners biased to learn only from
unambiguous data can learn the parametric system examined here from
child-directed speech data, as long as the parameters are set in a
particular order.

® Required learning biases at the initial state:

® Use unambiguous data (and have a method for identifying these data
for each parameter value)

" Follow parameter-setting order constraints (and potentially have a
method for deriving these constraints)

Pearl 2011



Getting out of the learnability problem: 3 options

Child-directed
speech

Initial knowledge
state of learner

s

Adult knowledge

Option 3: change the (immediate) target state

Initial knowledge
state of learner

(target state)
Child-di
ild-directed Other data
speech
Adult knowledge
—
Other target state F" (target state)

Pearl 2011




The learning trajectory: Knowledge change over time

" |dea: These knowledge representations are fine. It’s just that there’s an
intermediate target state.

® Maybe young children don’t acquire the adult English grammar until later,
after they are exposed to more word types and realize the connection

between stress contour and the English morphological system (connection to
English morphological system: Chomsky & Halle 1968, Kiparsky 1979, Hayes 1982)

Brown 1973: morphological inflections
not used regularly till 36 months

Pearl 2011



The learning trajectory: Knowledge change over time

Prediction: Children initially select non-English grammars, given these
data. If so, we should be able to use experimental methods to observe
them using non-English grammars for an extended period of time.

Experimental support: elicitation task with English 34-month-olds used
items that were compatible with the parametric grammars modeled
learners often chose here (Kehoe 1998) .

Pearl 2011



Making arguments from acquisition

Different theoretical proposals can be
motivated and tested via computational and
quantitative methods + empirical child-directed
speech data

At the same time, we may need to
draw on experimental work to
make sure children are acquiring
these representations when we
think they are.



Road map: Two good ways

* Informing theory: Arguments from acquisition

Investigating Universal Grammar

Testing theories of knowledge representation

* Informing the learning process: Useful, useable, and better than
adults?

— Comparing ideal and non-ideal approaches to discover how “less is more”



Investigating learning strategies

For any potential strategy:
Is it useful?

What is possible to learn from the available data?
* |deal/rational models, computational level approach

 What data representations are useful? What assumptions are
useful?



Investigating learning strategies

For any potential strategy:
Is it useful?
Is it useable?

What is possible for children to learn from the available data?

* Constrained/process models, algorithmic level approach

* Are these representations and assumptions still useful if cognitive
resources are limited?



Investigating learning strategies

For any potential strategy:
s it useful?
Is it useable?
Does it work better when cognitive resources are constrained?

“Less is more” hypothesis of Newport (1990): Children do better
precisely because they have more limited cognitive abilities.

* Also adults (sometimes) when their abilities are inhibited (Cochran
et al. 1999, Kersten et al. 2001 but see Perfors 2011)

* What learning strategies have this property?



Case study:
Word segmentation

see the doggie

m A big deal: basis for more complex linguistic knowledge

SEE the DOGgie See/>\ . see’(the doggie)(Xjistener)
the doggie

phonology syntax semantics




Case study:
Word segmentation

see the doggie

e Cognitive modeling: Given a corpus of fluent speech or text (no

utterance-internal word boundaries), we want to identify the words.

whatsthat whats that
thedoggie - the doggie
yeah yeah

wheresthedoggie wheres the doggie



Word segmentation strategies

* Language-dependent cues: phonotactics, allophonic variation,
metrical (stress) patterns, effects of coarticulation

Problem: Since these vary cross-linguistically,
need to know some words in the language to
figure them out. But these cues are used to
help identify words in the first place...



Word segmentation strategies

* Language-independent cue: probability of sequences of units
like phonemes or syllables

* Potential: Early bootstrapping
— Thiessen & Saffran 2003: statistical information used very early



Bayesian inference:
A strategy that can use sequence probabilities

 The Bayesian learner seeks to identify an explanatory linguistic
hypothesis that

— accounts for the observed data
— conforms to prior expectations

m |deal learner: Is this information useful?

m Constrained learner: Is this information useable? Is there any
evidence it’s better when the learner is constrained?



Bayesian segmentation
(Goldwater et al. 2009)

Data: unsegmented corpus (transcriptions)
Hypotheses: sequences of word tokens

/\

= 1 if concatenating words forms corpus,

= 0 otherwise.

Corpus: “lookatthedoggie” P(d|h) =1 P(d|h)=0
loo k atth ed oggie i like penguins
lookat thedoggie look at thekitty
look at the doggie abc




Bayesian segmentation
(Goldwater et al. 2009)

Data: unsegmented corpus (transcriptions)
Hypotheses: sequences of word tokens

Optimal solution is the segmentation with highest posterior probability.

VANEIAN

= 1 if concatenating words forms corpus, Encodes assumptions or biases

: in the learner:
= 0 otherwise.

e prefer short words

e prefer fewer words




Bayesian segmentation:
ldeal vs. Constrained

Learner assumptions:
* Basic unit of representation = phoneme
 Words are either independent units (unigram assumption)

or
Words are units that predict other words (bigram assumption)

Pearl, Goldwater, & Steyvers 2011



Bayesian segmentation:
ldeal vs. Constrained

Bayesian learners examined:

|deal Constrained
perfect memory decaying memory
large processing capabilities limited processing capabilities
batch data processing incremental data processing

Pearl, Goldwater, & Steyvers 2011



Bayesian segmentation:
ldeal vs. Constrained

Find a “less is more” effect for some constrained learners who have a
unigram assumption, learning from English data.

Correct token identification: 64% constrained vs. 54% ideal

Why?

Their cognitive limitations caused them not to notice
frequently occurring predictable sequences of short
words like “at the”. So, they didn’t try to make them
one word (“atthe”) — an undersegmentation error that
the ideal learners often made.

Pearl, Goldwater, & Steyvers 2011



Bayesian segmentation:
ldeal vs. Constrained

Cognitive plausibility: Make the learning process we’re modeling look
more like the learning process children are using.

Maybe we should revisit some of our modeling assumptions:

Basic unit of representation = phoneme?

Phillips & Pearl 2012, in prep



Perceptual units for infants

Word segmentation timeline:
Statistical learning at the beginning of segmentation, before 7.5 months

What representations do infants have at this point?
 Phonemes around ~10 months (Werker & Tees 1984)
* Syllables around 3 months (Eimas 1999, Jusczyk & Derrah 1987)

Phillips & Pearl 2012, in prep



Bayesian segmentation:
ldeal vs. Constrained

Updated learner assumptions:
* Basic unit of representation = syllable
 Words are either independent units (unigram assumption)

or
Words are units that predict other words (bigram assumption)

Phillips & Pearl 2012, in prep



Bayesian learners

|deal learner:
— Process data in a batch (perfect memory)

— Have enough processing resources to exhaustively search
potential segmentations

— Select optimal segmentation

Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Dynamic Programming + Maximization [DPM]):

— Process data incrementally

— Have enough processing resources to exhaustively search potential
segmentations

— Select optimal segmentation

Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Dynamic Programming + Sampling [DPS]):
— Process data incrementally

— Have enough processing resources to exhaustively search
potential segmentations

— Select segmentation probabilistically

Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Decayed Markov Chain Monte Carlo [DMCMC]):
— Process data incrementally

— Have limited processing resources and decaying memory, so cannot
do exhaustive search

— Select segmentation probabilistically

Phillips & Pearl 2012, in prep



Bayesian learning over syllables

Word token F-scores

Unigram Bigram F=2*Prec* Rec
Ideal 53.1 77.1 Prec + Rec
Precision:
DPM 58.8 75.1
#correct / #found
DPS 63.7 77.8 Recall:
DMCMC 55.1 86.3 #found / #true

Results averaged over 5 randomly generated test sets (~2800 utterances) that
were separate from the training sets (~25200 utterances), all generated from the
Pearl-Brent derived corpus.

Phillips & Pearl 2012, in prep



Bayesian learning over syllables

Word token F-scores

Unigram Bigram F=2*Prec* Rec
Ideal 53.1 77.1 Prec + Rec
Precision:
DPM 58.8 75.1
#correct / #found
DPS 63.7 77.8 Recall:
DMCMC 55.1 86.3 #found / #true

A learner who assumes words are not predictive of other words
performs significantly better when its abilities are constrained.

More robust effect than Pearl et al. 2011 observed for unigram learner:
All three constrained learners do better. Phillips & Pearl 2012, in prep



Bayesian learning over syllables

Word token F-scores

Unigram Bigram F=2*Prec* Rec
Ideal 53.1 77.1 Prec + Rec
Precision:
DPM 58.8 75.1
#correct / #found
DPS 63.7 77.8 Recall:
DMCMC 55.1 86.3 #found / #true

One constrained learner who assumes words are predictive of other
words performs significantly better than the ideal learner.

New effect: Pearl et al. 2011 did not observe this effect in bigram learners.
Phillips & Pearl 2012, in prep



The utility of cognitively plausible modeling assumptions

In learners with either the unigram or the bigram assumption, we find
what looks like a “less is more” effect.

By trying to make the model represent the input the way we think
children do, we have reproduced behavior that we think children have.

View input as streams of syllables

Perform better with limited abilities

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

Still under investigation, but...

Unigram learners could be benefiting in a similar way to the learners in
Pearl et al. 2011:

Constrained learners don’t create the undersegmentation errors that ideal
learners do for frequently occurring sequences of short words. (They don’t
notice them as much.)

“at the” X > “atthe”

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

Still under investigation, but...

Bigram learners wouldn’t make this error though, because they have a
way to represent predictable sequences. But the DMCMC bigram learner
is significantly outperforming the ideal bigram learner...

“at the” X > “atthe”

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

Still under investigation, but...

If we look at the recall scores for these bigram learners, we notice that
token recall is higher for the DMCMC learner while lexicon recall (word

types) is higher for the ideal learner.

Token recall Lexicon recall
Ideal Bigram 72.5 79.7

DMCMC Bigram 85.5 76.8

Phillips & Pearl 2012, in prep



What’s causing “less is more”?

Still under investigation, but...

One interpretation: The constrained learner is correctly segmenting more
frequent words (with more tokens per word) while the ideal learner is
correctly segmenting more word types.

Token recall Lexicon recall
Ideal Bigram 72.5 79.7

DMCMC Bigram 85.5 76.8

Constrained learner does well on more “important” words that occur more often?

Phillips & Pearl 2012, in prep



Understanding the learning process

Case study: Bayesian inference as an initial strategy for word segmentation

/ s it useful?

Ideal learners using this strategy perform fairly well, given realistic child-
directed speech data.

Phillips & Pearl 2012, in prep



Understanding the learning process

Case study: Bayesian inference as an initial strategy for word segmentation

/ s it useful?
/ Is it useable?

Constrained learners can still use this strategy and do quite well.

Phillips & Pearl 2012, in prep



Understanding the learning process

Case study: Bayesian inference as an initial strategy for word segmentation

/ s it useful?
/ Is it useable?

/ Does it work better when cognitive resources are constrained?
By representing the input in a way infants are likely to do, we find a

stronger “less is more” effect, with constrained learners outperforming
ideal learners.

Phillips & Pearl 2012, in prep



Recap: Two good ways
to use computational methods

Make arguments from acquisition for theory.

ldentify learning strategies that are useful, useable, and can explain
surprisingly superior child learning.

Computational methods

Experimental methods

Theoretical methods



Thank you!

Jon Sprouse Lawrence Phillips
Diogo Almeida Misha Becker Bob Berwick lvano Caponigro  Alexander Clark
Bob Frank Michael Frank Heather Goad Sharon Goldwater Tom Griffiths
Norbert Hornstein  Bill Idsardi Roger Levy  Jeff Lidz Diane Lillo-Martin
Amy Perfors  Colin Phillips William Sakas Mark Steyvers Virginia Valian

Amy Weinberg Charles Yang



Extra Material



Building a computational learner

Learning Bias: Implicitly assign a probability to a container node sequence by
tracking trigrams of container nodes. A sequence’s probability is the smoothed

product of its trigrams.

What kind of bias is this?
* have enough memory to hold the utterance and its dependency in mind:

innate and domain-general

* have enough memory to hold three units in mind (Mintz 2006, Wang & Mintz 2008,
Saffran et al. 1996, Aslin et al. 1996, Saffran et al. 1999, Graf Estes et al. 2007, Saffran et al. 2008,

Pelucchi et al. 2009a, 2009b):
innate and domain-general

* track trigrams of units:
innate and domain-general

Pearl & Sprouse submitted



Building a computational learner:
Empirical grounding

Hart & Risley 1995: Children hear approximately 1 million utterances in their first
three years.

Assumption: learning period for modeled learners is 3 years (ex: between 2 and 5
years old for modeling children’s acquisition), so they would hear one million
utterances.

Total learning period: 200,000 wh-dependency data points (wh-dependencies
make up approximately 20% of the input)

Pearl & Sprouse submitted



OT system test

®  Maximum compatibility score for any English grammar:
24.2% of data tokens (26.6% of types)

(32 grammars with this score)

Maybe we simply can’t find grammars that are much better,
given these constraints?

®  Maximum compatibility score for any non-English grammar:
74.6% of data tokens (67.5% of types)

(1600 grammars with this score)

The English OT grammars are clearly sub-optimal for this data set - but how
do they compare overall to the other grammars in the hypothesis space?



OT system test

®  Grammars with higher compatibility than best English grammar:
1,157,538 (token compatibility)
1,263,130 (type compatibility)

Upshot: The OT system representation doesn’t look much
better for learners trying to acquire an adult English
grammar from child-directed speech.




Parameters vs. OT comparison

Parameters OoT
Grammars in 156 3,628,800
hypothesis space
Best grammar 76.5% (tokens) 74.6% (tokens)
compatibility

70.3% (types) 67.5% (types)

Either knowledge representation contains grammars that are compatible with a
reasonable majority of the English child-directed speech data.



Parameters vs. OT comparison

Parameters OoT
Grammars in 156 3,628,800
hypothesis space
Best grammar 76.5% (tokens) 74.6% (tokens)

compatibility
70.3% (types) 67.5% (types)

% of hypothesis space | 28.3% (tokens) 31.9% (tokens)
(best) English grammar

scores lower than 31.1% (types) 34.8% (types)

The ranking in the hypothesis space for the (best) English grammar for either
knowledge representation is fairly similar (around the top third of the
hypothesis space).



Parameters vs. OT comparison

Parameters

OT

Grammars in
hypothesis space

156

3,628,800

Best grammar 76.5% (tokens) 74.6% (tokens)
compatibility

70.3% (types) 67.5% (types)
% of hypothesis space | 28.3% (tokens) 31.9% (tokens)
(best) English grammar
scores lower than 31.1% (types) 34.8% (types)
(Best) English grammar | 73.0% (tokens) 24.2% (tokens)
compatibility

62.1% (types) 26.6% (types)

However, the best English grammar compatibility is very low for OT,
compared to the English grammar in the parametric system.




Bayesian learners

|deal learner:
— Process data in a batch (perfect memory)

— Have enough processing resources to exhaustively search
potential segmentations

— Select optimal segmentation

Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Dynamic Programming + Maximization [DPM]):

— Process data incrementally

— Have enough processing resources to exhaustively search potential
segmentations

— Select optimal segmentation

Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Dynamic Programming + Maximization [DPM]):

For each utterance:
e Use dynamic programming to compute probabilities of all segmentations, given
the current lexicon.
e Choose the best segmentation.
* Add counts of segmented words to lexicon.

did you wanna sit down

> (.33 1d(yu wa/né It don

0.21 dId/yu wa/n6 sIt dOn
0.15 dId/yu wa n6 sIt dQn



Bayesian learners

Constrained learner (Dynamic Programming + Sampling [DPS]):
— Process data incrementally

— Have enough processing resources to exhaustively search
potential segmentations

— Select segmentation probabilistically

Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Dynamic Programming + Sampling [DPS]):

For each utterance:
e Use dynamic programming to compute probabilities of all segmentations, given
the current lexicon.
 Sample a segmentation probabilistically.
* Add counts of segmented words to lexicon.

did you wanna sit down

0.33 dId yu wa/n6 sIt dOn

—> 021 a5a/yswa/ab 6t an

0.15 dId/yu wa n6 sIt dQn



Bayesian learners

Constrained learner (Decayed Markov Chain Monte Carlo [DMCMC]):
— Process data incrementally

— Have limited processing resources and decaying memory, so cannot
do exhaustive search

— Select segmentation probabilistically

Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Decayed Markov Chain Monte Carlo [DMCMC]):

For each utterance:
* Probabilistically sample s boundaries from all utterances encountered so far.
* Prob(sample b) « b, @ where b, is the number of potential boundary locations
between b and the end of the current utterance and d is the decay rate (Marthi et al.
2002).
* Update lexicon after each boundary sample.

did you wanna sit down |

Probability of /
_ s samples
sampling boundary

dIdéquwaZnGEsItEdQn

Boundaries Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Decayed Markov Chain Monte Carlo [DMCMC]):

For each utterance:
* Probabilistically sample s boundaries from all utterances encountered so far.
* Prob(sample b) « b, @ where b, is the number of potential boundary locations
between b and the end of the current utterance and d is the decay rate (Marthi et al.
2002).
* Update lexicon after each boundary sample.

did you wanna sit down lthat’s okay therd
|

Utterance 1 Utterance 2

Probability of

|
|
|
sampling boundary I

s samples

dId/yuiwa/n6:sIt:don | D&tsio/ke iDEn
A A T A

Boundaries Phillips & Pearl 2012, in prep



Bayesian learners

Constrained learner (Decayed Markov Chain Monte Carlo [DMCMC]):

For all DMCMC learners:

d = 1.5 (¥77% chance of sampling a boundary in the current utterance)
s = 20000 samples per utterance (78% fewer samples than ideal learner)

did you wanna sit down lthat’s okay therd
|

Utterance 1 Utterance 2

Probability of

|
|
|
sampling boundary I

s samples

dId/yuiwa/n6:sIt:don | D&tsio/ke iDEn
A A T A

Boundaries Phillips & Pearl 2012, in prep



Learner input

* Pearl-Brent corpus (9 months or younger section)

— 28,391 utterances of phonemically transcribed child-directed
speech (96,920 tokens, 3,213 types), which was then syllabified.

— Average utterance length: 3.4 words, 4.2 syllables

Example input:

dId/yu/sIt/dQOn did/you/sit/down
dId/yu/wa/n6/sIt/dQn did/you/wa/nna/sit/down
D&ts/o/ke/DEn ~ thats/o/kay/then

kAm/h) come/here

Phillips & Pearl 2012, in prep



