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Basic Scenarios (Them)

» Doctor’s Dilemma: If a hormone level of 60
yields a healthy patient, what other values in
the range of 0 to 100 also yield a healthy
patient?

Hungry Birdie: If a worm with skin
pigmentation of 60 is good to eat, what other
values of skin pigmentation in the range of 0
to 100 also mean a worm is good to eat?

T & G’s take on Shephard

Shephard deals with generalization from a
single encountered stimulus, and assumes
the stimulus can be represented as points in
a continuous metric psychological space

...But more interesting problems often involve
inferences from multiple examples, or from
stimuli that are not easily represented in
spatial terms (i.e. acquiring appropriate
grarmar from E-language input)

The Basic Question

» Them: Given one example x with consequential

property ¢, how do you determine if example y also
has c?

> Equivalent for Us: Given one utterance x with

consequential property ¢ = “in the language”, how do
you determine if utterance y is also in anguage?

(useful for production, for instance, or determining if
the current hypothesized language is the correct one
given x and y as input)

Shephard’s (1987, 1994) Ideal
Generalization Problem

Given an encounter with a single stimulus that can be

represented as a point in some psychological space
and that has been found to have some particular
consequence, what other stimuli in that space should
be expected to have the same consequence?

Assumption: Answer is interval in continuous

psychological space, i.e. “between 50 and 70”

Basic Question for any stimulus y: Does y fall in that

interval?

T & G observation

When you have multiple input stimuli, the
likelihood of a particular generalization depends
on what the realm of hypotheses is

Ex: Input = {60, 30, 50}

Hypothesis realm = hormone levels

— 47 likely to be better than 80 for “healthy patient”
Hypothesis realm = mathematical concepts

— 80 likely to be better than 47 for “shared concept”




Three Questions

Them: What consitutes the learner’s knowledge about the
But baCk tO Shephard. .e consequential region?

Us: What does a learner know about a grammar/parameter

Shephard’s (1987) formulation of the problem of option/set of utterances that can be parsed?

generalization:

Given: one example x with consequential property ¢ Them: How does the learner use that knowledge to decide

Assumptions: how to generalize?
— x can be represented as a point in continuous Us: How does the learner use the grammar/parameter

psychological space option to classify input?
— C corresponds to some region of that space =
consequential region (all points in region have property c) Them: How can the learner acquire that knowledge from the

Task: find p(y EC|x) example encountered?

. g . Us: How does the input get parsed & assigned to a
- Probab!hty _that y has property ¢ (is an element of C), given particular grammar/parameter option?
that we’ve just seen x

Learner’'s Knowledge About C

Them: Represented as a probability distribution p(h|x) Example H, for |h| <=6
over an a priori-specified hypothesis space H of —
possible consequential regions, where h € H. e« B

— Us: H = a priori-specified space of possible wl —
grammars/parameter options [UG]; h = single ws[ —
grammar/parameter option L

One and only one element of H (h_.) iS assumed to .
be true -

=6

Them: Using Shephard’s (1964) suggestion that H is
made up of connected subsets of psychological space .
(i.e. intervals for hormone levels/pigementation) H contains all these h

But before we see x... After seeing x...

* A Reasonable Question: What is the state of H * p(h|x) = posterior probability, the probability
before observing x (prior probability of any that h = h . after seeing x
h € H =p(h))?
> Us: The probability that one
> Us: What is specified by UG before a learner grammar/parameter option is the correct one
gets any input? Is p(h) higher for some after seeing x
grammars/parameter options than others?




p(h|x) = Degree of “belief’ that
h is true

®"T85 56 57 58 59 60 61 62 63 64 65
e -

* Height of bar indicates level of “belief’ (also
uniform distribution over interval)

P(y € C | x), x =60

Using the input
* How do we update p(h) to p(h|x)?

» Use Bayes rule:

likelihood of seeing x, given this h

< prior probability
p(hlx) = p(xh)]*[p(h)) '

likelihood of seeing x, given H

How does the learner use x to generalize?

* Generalization function
p(yeC|x)

» Computed by summing probabilities
p(h|x) of all hypothesized consequential
regions that contain y (hypothesis
averaging)

Using the input
* How do we update p(h) to p(h|x)?

» Use Bayes’ rule:

p(h|x) = (p(x|h) * p(h))
p(x)

So how does Bayes’ rule work exactly?
» Let’'s do an example. Suppose, in our world of
possible events, we have two events x = “Lisa
watches the movie Labyrinth” and h = “It’s too
hot to read outside”. They may occur
separately or concurrently.




So how does Bayes’ rule work exactly?
* p(x) and p(h) occuring in general is given.
» What is the probability that Lisa watches the

movie Labyrinth, given that it'’s too hot to read
outside? [p(x|h)]

So how does Bayes’ rule work exactly?
* p(x|h) = p(x and h)
p(h)

Therefore

p(x|h) * p(h) = p(x and h)

So how does Bayes’ rule work exactly?
* p(h|x) = p(x and h)
px)

Therefore
p(hlx) * p(x) = p(x and h)

From before:
p(x|h) * p(h) = p(x and h)

Therefore
p(hlx) * p(x) = p(x|h) * p(h)

p(hlx) = p(x]h) * p(h)
p(x)

So how does Bayes’ rule work exactly?

* Want p(x and h) given that h is true

So p(x|h) =
p(x and h)

So how does Bayes’ rule work exactly?
+ We can do the very same thing for p(h|x)

So p(h|x) =
p(x and h)
p(x) -

How do we get these probabilities?

p(h|x) = (p(x|h) * p(h))
p(x)

p(h) = given by knowing about H (given by UG)

p(x) = given all the h € H, sum the weighted
probabilities for seeing x in them

80 p(x) = Zpeup(x|h’)"p(h’)




The likelihood, p(x|h) The impact of strong sampling
» Shephard (1987): weak sampling
—p(x|h) = 1if x € h, 0 otherwise

* p(x]h) depends on |h|, so more specific
« Tenenbaum (1997, 1999): strong sampling hypotheses (smaller intervals, sets of
—p(x|h) = 1/]n] if X € h, 0 otherwise rele\(ant r_1umbers, or L.J‘_Ltlerance;)
(works out to same as weak sampling if |h| = 1, receive higher probabilities.
f cormnpeting grarnmars or
= “size principle”
t of as a set of utterances
generated by a grammar. (E-language of a
grammar) Then, |h| > 1 makes sense.

What about multiple inputs?

» What if we have more than one example to generalize EffeCtS Of Varlablllty
from? (language: some mermory for previous input)
« Example variability comes into play
— Given: {60, 57, 52}
— Task: generalize to interval
* p(70isin C) is less here than if given {60, 50, 30}
« p(70isin C) is more here than if given {60, 58, 59}
* Number of examples comes into play
— Given: {60, 52, 57, 55}
— Task: generalize to interval
* p(70isin C) is less here than if given {60, 52}
« p(70is in C) is more here than if given {60, 52, 57, 55, 58, 55, 53, 56}

Extension of Theory

Effects of Number of Examples

* Given: X ={xy, ..., X}
» Task: Isy € C?

* P(y € C | X) = sum of p(h|X) for all h that
contain y

Use Bayes’ again:
* p(h|X) = p(X|h) * p(h)
p(X)




But what if the points aren’t in a
continuous metric psychological space?
» For instance, where “objects are represented in

terms of presence or absence of primitive
binary features” = conjunctive feature structures

Also works for 2 dimensions

* Consequential subsets = all objects sharing
different conjunctions of features

> Parameterized grammars, anyone?

Discontinuous Points Discontinuous Points

» Example for Them: Numbers sharing certain » Solving the Math Task: seems based on
mathematical concepts (i.e. “even number”, “divisible similarity (how many math properties are

by 3", etc.) shared)
« Example for Us: Utterances sharing certain parameter

values (i.e. “OV order”) or able to be parsed by certain )
grammars (i.e. “g1”) + Solving the Language Task: seems based on

utterance similarity (how many parameter
values are shared for grammar, if parameter

* Input: 60, “We must Labyrinth watch” > nmdt
value is shared or not for individual parameter)

+ Task: p(y also shares this concept/is in the language)

Solving the Math Task Solving the Language Task

* |dentify each mathematical property that the
learner knows about with a possible « Identify each grammar that the learner knows
consequential subset in H, then calculate about with a possible consequential subset in
similarity for each y to the input H (which contains the various grammars used
for parsing...or the collection of utterances
each grammar could parse), then calculate
similarity for each y to the input




Calculating Similarity: Tversky’s
(1977) Contrast Model

Similarity of x to y is a function of the features shared
by both x and y, as well as the features exhibited by x
but not y, and the features exhibited by y and not x
(parts in common and parts not in common)

Size principle applicability: certain kinds of features
should receive higher weights in similarity
comparisons, if they belong to fewer objects

Example of size bias in action for numerical cognition:
{60} = “even”, “multiple of 10”
{60, 80, 10, 30} = “multiple of 10”

A Caveat...

Size principle is tempered by prior probability

Example (Them):

— Concept = “all mt ; and 70"

— More specific than “all multiples o so this might be
predicted to be more probable...but doesn’t seem to be true
psychologically ({60, 30, 10, 80})

— Why not? Because this concept has a lower prior than “al
multiples of 10

» A way to mathematically express dislike for rules +
exceptions? (“Its prior is low!”)

Size Principle With Language?

» Certain parameters/parameter values should receive
higher weights in similarity, if they can parse fewer
utterances (perhaps given preference in parsing
ambiguous utterances)

Possible Implementation: Subset Learnability
(assume the subset value, until you're forced into the
superset)

Numerical equivalent: {60, 80, 10, 30, ...,42}

About Unsupervised Learning

“A set of objects tends to cluster together (behave
similarly)” = increases learner’s prior probability that
the subset is likely to share some important but as-
yet-unencountered consequence

» Us:
— Structure alternations based
(tra i /di , g
contro or regi (subject-dropping in
s ‘Want some?”)
bootstrapping: same syntactic frame = similar

sernantics




