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Presented by Lisa Pearl

The Basic Question

•• ThemThem: Given one example xx with consequential
property cc, how do you determine if example yy also
has cc?

•• Equivalent for UsEquivalent for Us: Given one utterance xx with
consequential property c c = “in the languagein the language”, how do
you determine if utterance yy is also in the languagein the language?
(useful for production, for instance, or determining if
the current hypothesized language is the correct one
given x and y as input)

Basic Scenarios (ThemThem)

• Doctor’s Dilemma: If a hormone level of 6060
yields a healthy patienthealthy patient, what other values inother values in
the range of 0 to 100the range of 0 to 100 also yield a healthyhealthy
patientpatient?

• Hungry Birdie: If a worm with skin
pigmentation of 6060 is good to eatgood to eat, what otherother
values of skin pigmentation in the range of 0values of skin pigmentation in the range of 0
to 100to 100 also mean a worm is good to eatgood to eat?

Shephard’s (1987, 1994) Ideal
Generalization Problem

Given an encounter with a single stimulusa single stimulus that can be
represented as a point in some psychological spacea point in some psychological space
and that has been found to have some particular
consequenceconsequence, what other stimuliother stimuli in that space should
be expected to have the same consequencesame consequence?

Assumption: Answer is interval in continuousinterval in continuous
psychological spacepsychological space, i.e. “between 50 and 70”

Basic Question for any stimulus y: Does yy fall in thatthat
intervalinterval?

T & G’s take on Shephard

• Shephard deals with generalization from a
single encountered stimulus, and assumes
the stimulus can be represented as points in
a continuous metric psychological space

• …But more interesting problems often involve
inferences from multiple examples, or from
stimuli that are not easily represented in
spatial terms (i.e. acquiring appropriateacquiring appropriate
grammar grammar from E-language input)

T & G observation
• When you have multiple input stimuli, the

likelihood of a particular generalization depends
on what the realm of hypotheses iswhat the realm of hypotheses is

Ex: Input = {60, 30, 5060, 30, 50}
• Hypothesis realm = hormone levels

–– 4747 likely to be better than 8080 for “healthy patienthealthy patient”
• Hypothesis realm = mathematical concepts

–– 8080 likely to be better than 4747 for “shared conceptshared concept”
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But back to Shephard…
• Shephard’s (1987) formulation of the problem of

generalization:
• Given: one example x x with consequential property cc
• Assumptions:

–– xx can be represented as a point in continuous
psychological space

–– CC corresponds to some region of that space =
consequential region (all points in region have property cc)

• Task: find p(yy ∈ CC | xx)
– Probability that yy has property cc (is an element of CC), given

that we’ve just seen xx

Three Questions
1) ThemThem: What consitutes the learner’s knowledge about the

consequential region?
UsUs: What does a learner know about a grammar/parameter
option/set of utterances that can be parsed?

2) ThemThem: How does the learner use that knowledge to decide
how to generalize?
UsUs: How does the learner use the grammar/parameter
option to classify input?

3) ThemThem: How can the learner acquire that knowledge from the
example encountered?
UsUs: How does the input get parsed & assigned to a
particular grammar/parameter option?

Learner’s Knowledge About CC
•• ThemThem: Represented as a probability distribution p(hh|xx)

over an a priori-specified hypothesis space H of
possible consequential regions, where hh ∈ H.
–– UsUs: H = a priori-specified space of possible

grammars/parameter options [UG]; hh = single
grammar/parameter option

• One and only one element of H (hhcorrectcorrect) is assumed to
be true

•• ThemThem: Using Shephard’s (1964) suggestion that H is
made up of connected subsets of psychological space
(i.e. intervals for hormone levels/pigementation)

Example H, for |h| <= 6

H contains all these hh

But before we see x…

• A Reasonable Question: What is the state of H
before observing x (prior probability of any
hh ∈ H = p(hh))?

•• UsUs: What is specified by UG before a learner
gets any input? Is p(hh) higher for some
grammars/parameter options than others?

After seeing x…

• p(hh|xx) = posterior probability, the probability
that hh = hhcorrectcorrect after seeing xx

•• UsUs: The probability that one
grammar/parameter option is the correctcorrect one
after seeing x
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p(h|x) = Degree of “belief” that
h is true

• Height of bar indicates level of “belief” (also
uniform distribution over interval)

How does the learner use x to generalize?

• Generalization function
p(yy ∈ CC | x x)

• Computed by summing probabilities
p(hh|xx) of all hypothesized consequential
regions that contain yy (hypothesis
averaging)

P(y ∈ C | x), x = 60 Using the input

• How do we update p(hh) to p(hh|xx)?

• Use Bayes’ rule:

p(hh|xx) = (p(xx|hh) * p(hh))
     p(xx)

Using the input

• How do we update p(hh) to p(hh|xx)?

• Use Bayes rule:

p(hh|xx) = (p(xx|hh) * p(hh))
     p(xx)

prior probabilityprior probability
likelihood of seeing x, given this hlikelihood of seeing x, given this h

likelihood of seeing x, given likelihood of seeing x, given HH

So how does Bayes’ rule work exactly?
• Let’s do an example.  Suppose, in our world of

possible events, we have two events xx = “Lisa
watches the movie Labyrinth” and h h = “It’s too
hot to read outside”.  They may occur
separately or concurrently.

x hx and h
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So how does Bayes’ rule work exactly?
• p(xx) and p(hh) occuring in general is given.
• What is the probability that Lisa watches the

movie Labyrinth, given that it’s too hot to read
outside? [p(xx|hh)]

x hx and h

So how does Bayes’ rule work exactly?
• Want pp(xx and hh) given that hh is true

So p(xx|hh) =
p(xx and hh)
     p(hh)

x hx and h

So how does Bayes’ rule work exactly?

• p(xx|hh) = p(xx and hh)
       p(hh)

Therefore

p(xx|hh) * p(hh) = p(xx and hh)

So how does Bayes’ rule work exactly?
• We can do the very same thing for p(hh|xx)

x hx and h

  So p(hh|xx) =
p(xx and hh)
     p(xx)

So how does Bayes’ rule work exactly?
• p(hh|xx) = p(xx and hh)

       p(xx)

Therefore
p(hh|xx) * p(xx) = p(xx and hh)

From before:
p(xx|hh) * p(hh) = p(xx and hh)

Therefore
p(hh|xx) * p(xx) = p(xx|hh) * p(hh)

p(hh|xx) = p(xx|hh) * p(hh)
 p(xx)

How do we get these probabilities?
p(hh|xx) = (p(xx|hh) * p(hh))

     p(xx)

p(hh) = given by knowing about H (given by UG)

p(xx) = given all the hh ∈ H, sum the weighted
probabilities for seeing xx in them

     so p(xx)  = Σhh’’∈Hp(xx|hh’’)*p(hh’’)
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The likelihood, p(x|h)
• Shephard (1987): weak sampling

– p(xx|hh) = 1 if xx ∈ hh, 0 otherwise

• Tenenbaum (1997, 1999): strong sampling
– p(xx|hh) = 1/|hh| if xx ∈ hh, 0 otherwise
(works out to same as weak sampling if |hh| = 1,
such as if HH = set of competing grammarsset of competing grammars or

parameter valuesparameter values)
- hh could be thought of as a set of utterances a set of utterances

generated by a grammar. generated by a grammar. (E-language of a
grammar) Then, |hh| > 1 makes sense.

The impact of strong sampling

• p(xx|hh) depends on |hh|, so more specific
hypotheses (smaller intervalsintervals, sets of
relevant numbersrelevant numbers, or utterancesutterances)
receive higher probabilities.

= “size principle”

What about multiple inputs?
• What if we have more than one example to generalize

from? (language: some memory for previous inputsome memory for previous input)
• Example variability comes into play

– Given: {60, 57, 5260, 57, 52}
– Task: generalize to interval

• p(7070 is in CC) is less here than if given {60, 50, 3060, 50, 30}
• p(7070 is in CC) is more here than if given {60, 58, 5960, 58, 59}

• Number of examples comes into play
– Given: {60, 52, 57, 5560, 52, 57, 55}
– Task: generalize to interval

• p(7070 is in CC) is less here than if given {60, 5260, 52}
• p(7070 is in CC) is more here than if given {60, 52, 57, 55, 58, 55, 53, 5660, 52, 57, 55, 58, 55, 53, 56}

Effects of Variability

Effects of Number of Examples
Extension of Theory

• Given: XX = {xx11, …, xxnn}
• Task: Is yy ∈ CC?
• P(yy ∈ CC | XX) = sum of p(hh|XX) for all hh that

contain yy

Use Bayes’ again:
• p(hh|XX) = p(XX|hh) * p(hh)

p(XX)
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Also works for 2 dimensions
But what if the points aren’t in a

continuous metric psychological space?
• For instance, where “objects are represented in

terms of presence or absence of primitive
binary features” = conjunctive feature structures

•• Consequential subsetsConsequential subsets = all objects sharing
different conjunctions of features

•• Parameterized grammarsParameterized grammars, anyone?

Discontinuous Points
• Example for ThemThem: Numbers sharing certain

mathematical concepts (i.e. “even number”, “divisible
by 3”, etc.)

• Example for UsUs: Utterances sharing certain parameter
values (i.e. “OV order”) or able to be parsed by certain
grammars (i.e. “g1”)

• Input: 6060, “We must Labyrinth watchWe must Labyrinth watch”
• Task: p(yy also shares this concept/is in the language)

Discontinuous Points
• Solving the MathMath Task: seems based on

similarity (how many math properties are
shared)

• Solving the LanguageLanguage Task: seems based on
utterance similarity (how many parameter
values are shared for grammar, if parameter
value is shared or not for individual parameter)

Solving the Math Task
• Identify each mathematical property that the

learner knows about with a possible
consequential subset in HH, then calculate
similarity for each yy to the input

Solving the Language Task

• Identify each grammar that the learner knows
about with a possible consequential subset in
HH (which contains the various grammars used
for parsing…or the collection of utterances
each grammar could parse),  then calculate
similarity for each yy to the input
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Calculating Similarity: Tversky’s
(1977) Contrast Model

• Similarity of xx to yy is a function of the features shared
by both xx and yy, as well as the features exhibited by xx
but not yy, and the features exhibited by yy and not xx
(parts in common and parts not in common)

• Size principle applicability: certain kinds of features
should receive higher weights in similarity
comparisons, if they belong to fewer objects

• Example of size bias in action for numerical cognition:
• {60} = “eveneven”, “multiple of 10multiple of 10”
• {60, 80, 10, 30} = “multiple of 10multiple of 10”

Size Principle With Language?
• Certain parameters/parameter values should receive

higher weights in similarity, if they can parse fewer
utterances (perhaps given preference in parsing
ambiguous utterances)

• Possible Implementation: Subset Learnability
(assume the subset value, until you’re forced into the
superset)

• Numerical equivalent: {60, 80, 10, 30, 60, 80, 10, 30, ……,42,42}

 A Caveat…
• Size principle is tempered by prior probability

• Example (ThemThem):
– Concept = “all multiples of 10, except 20 and 70all multiples of 10, except 20 and 70”
– More specific than “all multiples of 10”, so this might be

predicted to be more probable…but doesn’t seem to be true
psychologically ({60, 30, 10, 8060, 30, 10, 80})

– Why not? Because this concept has a lower prior than “allall
multiples of 10multiples of 10”

• A way to mathematically express dislike for rules +
exceptions? (“Its prior is low!”)

About Unsupervised Learning
• “A set of objects tends to cluster together (behave

similarly)” = increases learner’s prior probability that
the subset is likely to share some important but as-
yet-unencountered consequence

•• UsUs:
–– Structure alternationsStructure alternations based on specific lexical itemsspecific lexical items

(transitive/intransitive/ditransitive verbs, raising verbs,transitive/intransitive/ditransitive verbs, raising verbs,
control verbscontrol verbs) or registersregisters (subject-droppingsubject-dropping in casualcasual
speechspeech - “Want some?”)

– Syntactic-bootstrapping: same syntactic framesame syntactic frame = similarsimilar
semanticssemantics


