
 

 26 
 

Chapter 3: The Case of Anaphoric One 

3.1 Anaphoric One: The Necessity of Domain-Specific Constraints 
 
 The phenomenon under investigation is the interpretation of the anaphoric 
element one in English.   Previous work has argued that infants’ knowledge of 
anaphoric one could not be derived from their experience with this form (Lidz & 
Waxman, 2004; Lidz, Waxman, & Freedman, 2003).  Instead, it was argued that 
the learner must be equipped with prior constraints on the hypothesis space.  
Because of these constraints, certain interpretations are simply never considered 
as potential hypotheses – specifically for anaphoric one, the learner would not 
consider the hypothesis that one is anaphoric to N0.  These constraints were 
described as being part of the domain-specific representational format for 
language learning.  However, subsequent work (Regier & Gahl, 2004) replied 
that a probabilistic learner could acquire this knowledge using the domain-
general learning procedure of Bayesian updating.  No constraints on the 
hypothesis space (or domain-specific constraints of any other kind) would then be 
required. Regier and Gahl (henceforth R&G) provided their learning model with 
a small set of hypotheses to choose from that were derived from domain-specific 
representational content.  Because there are no constraints on the hypothesis 
space, R&G’s model considers more hypotheses than the learner of Lidz, 
Waxman, and Freedman (henceforth, LWF). 
 The two sides are then set up.  The LWF learner requires a hypothesis 
space defined over domain-specific representations, as well as domain-specific 
constraints that preclude certain hypotheses from being considered. No filters on 
data intake are posited, and the learner is compatible with a Bayesian updating 
procedure. The R&G learner also requires a hypothesis space defined over 
domain-specific representations, but does not require additional constraints on the 
hypothesis space.  Instead, the R&G learner rules out the incorrect hypotheses 
using a particular implementation of Bayesian updating that exploits the layout of 
the hypothesis space.  R&G also do not explicitly posit filters on data intake, and 
thus claim that no additional information beyond probabilistic updating is 
required to converge on the correct interpretation of anaphoric one. 
 However, I will argue that R&G’s conclusion was too quick.  In 
particular, the R&G learner considers only a restricted source of evidence, which 
inflates the estimate of the learner’s success. By restricting the data intake this 
way, this model in fact implicitly implements two domain-specific filters on the 
learner’s data intake, which will be discussed in detail later in the chapter.  
However, when a model of a learner that is in the true spirit of the R&G proposal 
is set up, i.e. one that has no filters on data intake, we will find that this 
unconstrained Bayesian learning model does not display the correct behavior.  If 
the learner considers the full array of evidence in the input, the learner will fail to 
learn the correct interpretation of anaphoric one. 
 A Bayesian model without domain-specific constraints is plagued by a 
particularly pernicious problem in language learning.  Specifically, representations 
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across domains are aligned (e.g. strings of words project to interpretations about 
referents in the world).  In the case studied here, when we allow the learner to 
consider the correspondences across levels of representation (syntax and semantic 
reference), we find that an unrestricted Bayesian model fares very poorly.  This 
conclusion casts doubt on Bayesian learning as the sole source of constraints on 
learners.  In short, this case suggests that the overly general nature of domain-general 
learning must be reigned in by domain-specific representations and domain-specific 
filters on data intake. 

3.2 Why Learning Anaphoric One Is Interesting 
 
 To learn the correct interpretation of anaphoric one, it is believed that the 
learner must consider both the syntactic level of representation and the semantic level 
of representation.  At the syntactic level, the learner must learn what the linguistic 
antecedent of one is; at the semantic level, the learner must determine what object in 
the world the noun phrase containing one refers to.  Both of these levels contribute to 
the information a Bayesian learner would use when converging on the correct 
representation of one. A linguistic antecedent (syntax) can be translated into a 
reference to an object in the world (semantics) and so both syntactic and semantic 
representations are implicated in knowledge of one.  As we will see below, the correct 
syntactic representation for English adults is that the linguistic antecedent of one is a 
string classified as the category N’.  This syntactic knowledge has semantic 
consequences, which are what LWF used to determine if 18-month olds preferred that 
specific syntactic representation. In this way, we can see that the knowledge that one 
refers to N’ strings traverses both the syntactic domain and the semantic domain. 
 Acquisition of anaphoric one is an interesting learning problem because the 
data that would lead a learner to the correct representation are quite sparse. In 
particular, LWF estimated that less than 0.3% of the child’s input containing 
anaphoric one provided unambiguous evidence for the correct representation. 
Moreover, the rate of ungrammatical sentences containing anaphoric one was twice 
this amount, making the occurrence of useful (unambiguous) data below noise level. 
Given this pattern of data, LWF argued (following Baker (1979) and Hornstein & 
Lightfoot (1981)) that constraints on the representation of anaphoric one must be built 
into the learner’s domain-specific representations.  The learner should never consider 
hypotheses where one refers to categories smaller than N’, such as N0. 
 R&G countered that a learner using a domain-general Bayesian learning 
procedure could converge on this knowledge by using ambiguous data with certain 
properties. This particular class of ambiguous data functions as indirect negative 
evidence for the correct hypothesis10.  Using this ambiguous data, they argued, would 
make the proposed constraint on the linguistic representations unnecessary. The 
appeal of a domain-general learning procedure without domain-specific filters resides 
in the lack of biases found inside the learner.  However, R&G’s model made use of 
only some of the available ambiguous data and of only semantic data to converge on 
the syntactic representation. This decision implements two domain-specific filters on 

                                                
10 But see Lasnik (1987) for comments about indirect negative evidence in language learning. 
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the learner’s data intake. I will investigate the results of a probabilistic Bayesian 
learning procedure that removes these filters.  
 The procedure I develop uses all the available ambiguous data as well as both 
syntactic and semantic data to converge on the probabilities of competing 
representations. I will show that, even under the most generous estimates of the 
various parameters involved in such a model, a Bayesian learner lacking domain-
specific filters on data intake will fail to converge on the syntactic knowledge that one 
is anaphoric to N’ strings and fail to have the standard adult interpretation of what set 
of referents in the world one can refer to.  In short, the unconstrained Bayesian 
learner will not learn the preferred adult interpretation of anaphoric one, in contrast to 
what real children do. 
 The chapter proceeds as follows.  First, I will briefly describe the relevant 
parts of the grammar of anaphoric one.  I will then review the behavioral evidence 
indicating 18-month olds have acquired the adult representation of anaphoric one and 
the argument by LWF that the input available to children is too sparse to support 
acquisition of this knowledge.  Then, I address various proposals to circumvent the 
sparse data problem, and detail how the R&G proposal about a domain-general 
solution to this problem implicitly implements domain-specific filters on the data 
intake. Following that, I describe a Bayesian learning model that is truly domain-
general, in that it removes all implicit filtering on the data.  I show that such a model 
fails to acquire the adult interpretation of anaphoric one.  In addition, I describe how 
under a less charitable assumption of a certain parameter value, the Bayesian learning 
model would perform even more poorly. Then, I identify the source of the model’s 
failure. One contributing factor to the spectacular failure of the model derives from 
the link between syntax and semantics. A second contributor to this failure is the 
abundance of ambiguous data, which given Bayesian learning techniques, causes to 
the learner to misconverge. I argue that successful acquisition depends on a domain-
specific filter on the data. Finally, I speculate on the origin of the necessary domain-
specific filter, suggesting that its roots may lie in a syntactocentric approach to 
learning anaphoric one. 

3.3 Anaphoric One 

3.3.1 Adult Knowledge: Syntactic Categories and Semantic Referents 
 
 For English adults, the element one is anaphoric to strings that are classified 
as N’ (i.e., the antecedent for one is an N’ string), as in example (1) below.  The 
structures for the N’ strings are represented in figure 11.11 
 
(1a) One is anaphoric to N’ (ball is antecedent) 
 “Jack likes this ball and Lily likes that one.” 
(1b) One is anaphoric to N’ (red ball is antecedent) 
 “Jack likes this red ball and Lily likes that one.” 
 
                                                
11 Note that the precise labels of the constituents here are immaterial. If the structure is [DP this [NP red 
[NP ball]]], the conclusions reached in this chapter would not be changed. 
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Figure 11. Structures for the N’ strings this ball and this red ball. 
 
 These representations encode two kinds of information: constituency structure 
and category structure. The constituency structure tells us that in a Noun Phrase (NP) 
containing a determiner (det), adjective (adj) and noun (N0), the adjective and noun 
form a unit within the larger Noun Phrase. The fact that one can be interpreted as a 
replacement for those two words (as in (1b)), tells us that those two words form a 
syntactic unit. The category structure tells us which pieces of phrase structure are of 
the same type. That is, both ball and red ball are of the type N’. The following 
argument explains how we can conclude this. 
 Consider the following examples in which one cannot be anaphoric to a noun 
(cf. Baker (1979)): 
 
(2i) a. Jack met the member of Congress… 
 b.    *  …and Lily met the one of the Society for Creative Anachronism. 
 c. [NP the [N’ [N0 member] [PP of Congress]]] 
 
(2ii) a. Jack reached the conclusion that syntax is innate… 
 b.    *  …and Lily reached the one that learning is powerful. 
 c. [NP the [N’ [N0 conclusion] [CP that syntax is innate]]] 
 
These contrast with cases in which what follows the head noun is an adjunct/modifier. 
Here, one can substitute for what appears to be only the head noun. 
 
(2iii) a. Jack met the student from Peoria… 
 b. … and Lily met the one from Podunk. 
 c. [NP the [N’ [N’ [N0 student]] [PP from Peoria]]] 
 
(2iv) a. Jack met the student that Lily invited to the party 
 b. … and Lily met the one that Jack invited.  
 c. [NP the [N’ [N’ [N0 student]] [CP that Lily invited to the party]]] 
 
These cases differ with respect to the status of what follows the noun. In (2i) and (2ii) 
what follows the noun is a complement, but in (2iii) and (2iv) what follows the noun 
is a modifier. We can see that one can take a noun as its antecedent only when that 
noun does not take a complement. I will represent this by saying that one must take 
N’ as its antecedent and that in cases in which there is no complement, the noun by 
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itself is categorized as both N0 and N’.  In other words, in cases like (1a), it must be 
the case that ball = N’, as in the structure in Figure 11.  If it weren’t, we would have 
no way to distinguish this case from one in which one cannot substitute for a single 
word, as in (2i) and (2ii). 

3.3.2 The Pragmatics of Anaphoric One 
 
 In addition, when there is more than one N’ to choose from (as in (1b) above), 
adults generally prefer the N’ corresponding to the longer string (red ball).  For 
example, in (1b) an adult (in the null context) would often assume that the ball Lily 
likes is red – that is, the referent of one is a ball that has the property red (cf. Akhtar 
et al. (2004)).  This semantic consequence is the result of the syntactic preference for 
the larger N’ red ball.  If the adult preferred the smaller N’ ball, the semantic 
consequence would be no preference for the referent of one to be red, but rather for it 
to have any property at all. Importantly, though, this preference is not categorical. It is 
straightforward to find cases where it is overridden, as in (3): 
 
(3) Jack likes the yellow bean but Lily likes that one. 
 
Here, it is quite easy to take one to refer to bean and not yellow bean. 

3.3.3 Children’s Knowledge of Anaphoric One 
 
 But do children prefer one to be anaphoric to an N’ string (and more 
specifically the larger N’ string if there are two), rather than to an N0 string?  If so, the 
semantic consequence would be readily apparent: the antecedent for one would be 
phrasal, and hence the referent of one would be sensitive to properties mentioned by 
modifiers in the antecedent.  LWF conducted an intermodal preferential looking 
paradigm experiment (Golinkoff et al., 1987; Spelke, 1979) to see if infants did, in 
fact, have a preference for the referent of one to have properties mentioned by the 
modifier in the antecedent (i.e., for a red bottle if a potential antecedent of one is red 
bottle). 
 

 
 
Figure 12. LWF experimental set up.  
 
 The infant in the LWF experiment is first shown a bottle of one color while 
several utterances of the form “Look!  An adjective bottle.” are played 
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simultaneously.  Then, in the test stage, two bottles are shown – one of the adjective 
color and one of another color.  The utterance “Do you see another one?” is played 
simultaneously and the infant’s looking preferences are recorded.   
 The 18-month olds demonstrated a significant preference for looking at the 
bottle that had the same property mentioned in the N’ string – e.g. the bottle that was 
red when the N’ string red bottle was a potential antecedent.  These same results were 
obtained when the infants listened to, “Look!  An adjective bottle” followed by  “Do 
you see another adjective bottle?” (See Lidz & Waxman (in prep.) for more empirical 
data supporting this.)  This suggests that the infants were interpreting these utterances 
similarly, namely that one referred to adjective bottle in the original test condition.   
 Notably, the infants’ response differed from the baseline condition where they 
heard, “Look!  An adjective bottle” followed by  “What do you see now?”  In the 
baseline condition, the infants had a novelty preference and looked longer at the non-
adjective bottle, e.g. a non-red bottle if they had previously seen a red bottle and 
heard, “Look!  A red bottle”.  
 LWF explained this behavior as a semantic consequence of the syntactic 
preference that one be anaphoric to the larger N’ string (red bottle). If the children 
had allowed one to be anaphoric to N0 (bottle), they would have behaved similarly to 
the baseline condition and had a preference for the new bottle they hadn’t seen 
before.  Since infants preferred the larger N’ string (as adults do) and this larger N’ 
string could not be classified as N0, LWF concluded that the 18-month olds have the 
syntactic knowledge that one is anaphoric to N’ strings in general. 

3.3.4. Sparse Data for Anaphoric One 
 
 In order to determine whether children’s knowledge could have been acquired 
on the basis of experience with the relevant forms and structures, LWF conducted a 
corpus analysis on child-directed speech. The important empirical question was how 
frequently data appeared in child-directed speech that signaled that one was anaphoric 
to N’ instead of N0.  If the data were not frequent, learning this syntactic knowledge 
would be difficult.  The distribution LWF found is displayed in table 3.1 below. 
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Total Data in Corpus Total # with anaphoric one 
54,800 792 
 
Data Type # of data points 
Unambiguous 2 
“Jack wants a red ball, but Lily doesn’t have another one for him.”  
(Lily doesn’t have another ball with the property red.) 
Type I Ambiguous 36 
“Jack wants a red ball, and Lily has another one for him.” 
(Lily has another red ball for Jack.) 
Type II Ambiguous 750 
“Jack wants a ball, and Lily has another one for him.” 
(Lily has a ball with any number of properties.) 
Ungrammatical 4 
“…you must be need one.” (Adam19.cha, line 940) 
Table 3.1. The distribution of utterances in the corpus examined by LWF. 
 
 All data are defined by a pairing of utterance and environment.  I will now 
elaborate on the pairings for each data type.  Unambiguous antecedent data have the 
following form: 
 
(4) Unambiguous antecedent example 
Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him.” 
Environment: Jack wants a red ball, but Lily doesn’t have another red ball – she has 
another ball with different properties. 
 
 Because Lily does indeed have a ball, the antecedent of one cannot be ball.  
However, Lily’s ball is not red, so the antecedent of one can be red ball.  Since red 
ball can only be classified as N’, these data are unambiguous evidence that one can be 
anaphoric to N’.   
 An example of this type taken from the Adam corpus in CHILDES 
(MacWhinney, 2000) is given here. (Adam40.cha, line 890) 
 
(5) CHI: Do you have another flat tire? 
 MOT: No. I don’t think I have one. 
 
 In this context, the mother had a tire, but not a flat tire, so the antecedent of 
one is unambiguously flat tire. 
 
 Type I ambiguous antecedent data have the following form: 
 
(6a) Type I ambiguous antecedent example 
Utterance: “Jack wants a red ball, and Lily has another one for him.” 
Environment: Lily has a ball for Jack, and it has the property red. 
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(6b) Type I ambiguous antecedent example 
Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him .” 
Environment: Lily doesn’t have another ball at all. 
 
 For data of the form in (6a), Lily has a ball, so the antecedent of one could be 
ball.  However, Lily also has a ball that is red, so the antecedent of one could be red 
ball.  Because ball could be classified as either N’ or N0, these data are ambiguous 
between one anaphoric to N’ and one anaphoric to N0. 
 An example of this type taken from the Adam corpus in CHILDES 
(MacWhinney (2000)) is given here (Adam01.cha, line 291). 
 
(7) MOT: That’s a big truck. 
 MOT: There goes another one. 
 
 In this context, one could be taken to refer to either truck or big truck. 
 For data of the form in (6b), Lily does not have a ball – but it is unclear 
whether the ball she does not have has the property red.  For this reason, the 
antecedent of one is again ambiguous between red ball and ball, and one could be 
classified as either N’ or N0. There were no examples in either Adam or Nina’s 
corpus of this form. 
 Type II ambiguous antecedent data have the following form: 
  
(8a) Type II ambiguous antecedent example 
 Utterance: “Jack wants a ball, and Lily has another one for him.” 
 Environment: Lily has a ball for Jack, and it has various properties. 
 
(8b) Type II ambiguous antecedent example 
 Utterance: “Jack wants a ball, but Lily doesn’t have one for him.” 
 Environment: Lily does not have another ball. 
  
 For both forms of type II ambiguous data, the antecedent of one must be ball.  
However, since ball can be classified as either N’ or N0, such data are ambiguous 
with respect to what one is anaphoric to.  
 An example of this type taken from the Adam corpus of CHILDES 
(MacWhinney (2000)) is given here (Adam01.cha, line 566). 
 
(9)  CHI: my pillow my 
 MOT: That’s a good one to jump on. 
 
 Because there are no modifiers in the antecedent, my pillow, this data is 
uninformative about the structure of one. 
 There were no examples in either Adam or Nina’s corpus of the form (8b). 
 Ungrammatical data involve a use of anaphoric one that is not in the adult 
grammar, such as in (10): 
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(10) Ungrammatical antecedent example 
Utterance: “…you must be need one.” 
 
 Since the utterance is already ungrammatical, it does not matter what 
environment it is paired with.  The child will presumably be unable to resolve the 
reference of one.  Such data is therefore noise in the input. 
 The vast majority of the anaphoric one input consists of type II ambiguous 
data (750 of 792, 94.7%).  Type I ambiguous data makes up a much smaller portion 
(36 of 792, 4.5%).  Ungrammatical data are quite rare (4 of 792, 0.5%), and 
unambiguous data rarer still (2 of 792, 0.25%).   Since LWF considered unambiguous 
data as the only informative data, they concluded that such data seemed far too sparse 
to definitively signal to a learner that one is anaphoric to N’.   
 This seems in line with theory-neutral estimations of the quantity of data 
required for acquisition by a certain age (Legate & Yang, 2002).  Specifically, other 
linguistic knowledge acquired by 20 months required at least 7% unambiguous 
signatures in the available data (Yang (2004) referencing Pierce (1992)).  At least 
1.2% unambiguous data was required for acquisition by 36 months (Yang (2004) 
referencing Valian (1991)). So, independent of what acquisition mechanism is 
assumed, having 0.25% unambiguous data makes it unlikely that the learner would be 
able to acquire the correct interpretation of anaphoric one by 18 months.    
 LWF’s experimental results, however, suggested that 18-month olds know 
that one is anaphoric to N’.  They therefore claimed that such knowledge does not 
need to be learned.  Instead, the learner would have other innate biases that would 
allow this knowledge to be derived from the data available.  One possibility (cf. 
Hornstein & Lightfoot (1981), Baker (1979)) would be that the child is constrained 
only to hypothesize phrasal antecedents for pronouns. Thus, once the child identified 
one as a pronominal form, the possibility that it was anaphoric to Nº would simply 
never be considered as a potential hypothesis.   
 

3.4  Learning Anaphoric One 

3.4.1 Suggestions for Learning that One is Anaphoric to N’ 
 
 Two replies to LWF made suggestions for how this syntactic knowledge could 
be learned from the available data.  The first reply by Akhtar et al. (2004) noted that 
even if the percentage of unambiguous data is quite small, 18-month olds have still 
been exposed to an estimated 1,000,000 utterances; this should yield a larger quantity 
of unambiguous data than the LWF corpus analysis obtained. So, a learner using only 
unambiguous data would encounter more unambiguous examples by 18 months.  
Still, the overall percentage of unambiguous data remains quite small (0.25%). 
 However, it is unlikely that this is even a fair estimate of the amount of data 
that the child has been exposed to. This is because much of the first year of life is 
spent learning phonological and lexical properties of the language which would be 
prerequisites to learning syntax. To derive a fairer estimate of the amount of relevant 
data an 18-month old might have been exposed to, I assume that learning the 
syntactic and semantic properties of one can only commence once the child has some 



 

 35 
 

repertoire of syntactic categories. Thus, I estimated that the learning period begins at 
14 months because there is experimental data supporting infant recognition of the 
category Noun and the ability to distinguish it from other categories such as Adjective 
at this age (Booth & Waxman, 2003).  If learners hear approximately 1,000,000 
sentences from birth until 18 months, they should hear approximately 278,000 
sentences of input between 14 months and 18 months.  The adjusted expected 
distribution of anaphoric one data is displayed in table 3.2. 
 
Total Data before 18 months Total # with anaphoric one 
~278,000 4017 
 
Data Type # of data points 
Unambiguous 10 
“Jack wants a red ball, but Lily doesn’t have another one for him.”  
(Lily doesn’t have another ball with the property red.) 
Type I Ambiguous 183 
“Jack wants a red ball, and Lily has another one for him.” 
(Lily has another red ball for Jack.) 
Type II Ambiguous 3805 
“Jack wants a ball, and Lily has another one for him.” 
(Lily has a ball with any number of properties.) 
Ungrammatical 19 
“…you must be need one.” 
Table 3.2. The expected distribution of utterances in the input to learners between 14 
and 18 months. 
 
 Perhaps the most striking feature of this distribution is that there are still 
pitifully few unambiguous data points available.  With only 10 chances to hear 
unambiguous data (on this estimate), a learner could well miss out due to fussiness, 
distraction, or other vagaries of toddler life.  Moreover, this is still 0.25% of the 
anaphoric one data, which is well below the estimate of the amount of unambiguous 
data needed to acquire knowledge by 36 months (estimated at 1.2%, Yang (2004)), let 
alone by 18 months. 
 R&G offer a solution: make use of the type I ambiguous data as well, which 
gives 183 additional data points (on this estimate).  Using a Bayesian learning model 
that implements the size principle of Tenenbaum & Griffiths (2001), R&G 
demonstrate how a learner could use both unambiguous and type I ambiguous data to 
converge on the correct representation.  I review their learning model in the next 
section. 

3.4.2 A Regier & Gahl Bayesian Learner 
 

The power of R&G’s model comes from using indirect evidence available in 
the type I ambiguous data.  This is an attractive strategy, since there are nearly 20 
times as many type I ambiguous data as there are unambiguous data (183 to 10).  This 
raises the useable data for the learner up to 4.8% (193 of 4017), which seems more in 
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line with the amount required for acquisition as early as 18 months (Yang (2004)).  
The indirect evidence itself is derived solely from the environment in which type I 
ambiguous data are uttered – specifically, by the learner examining the distribution of 
the referents of one.  For example, suppose the learner hears type I ambiguous data 
such as the example in (6a) (repeated below as (11)): 

 
(11) Type I Ambiguous  
Utterance: “Jack wants a red ball, and Lily has another one for him.” 
Environment: Lily has a ball for Jack, and it has the property red. 
 

Since the adult preference is to choose the larger N’ as the antecedent, the 
antecedent of one will nearly always be red ball and the referent of the NP containing 
one will have the property red.  The learner is able to observe the simultaneous 
presence of the larger N’ as potential antecedent (red ball) and a referent in the world 
of one with the property mentioned in the N’ (red). Note that this observation requires 
the learner to have a very abstract notion of what to generalize over.  It is insufficient 
to generalize over a single property such as “red” or “behind his back”; instead, the 
learner must generalize over “property mentioned in the N’ antecedent”.   

Now, the connection between the N’ antecedent and a referent with the 
property mentioned in the N’ will be true for some portion of the type I ambiguous 
data.12 Crucially, for R&G’s model, it is never true that the referent of one 
definitively lacks the property mentioned in the N’ antecedent (i.e. the referent of one 
is definitively not red when the antecedent is red ball).  A Bayesian learner using the 
size principle is very sensitive to this fact in the following way: 

 
(12) Bayesian Learner Logic 

(a) For type I ambiguous data, suppose that the referent of one could have any 
property, and not necessarily have the property mentioned in the larger N’ 
antecedent.  Suppose also that the set of potential referents for an utterance 
like (11) is represented in figure 13. 
 

                                                
12 This reasoning will not work for type I ambiguous data of the form in (2b): “Jack wants a red ball, 
but Lily doesn’t have another one for him”, where Lily does not have a ball.  This is because the 
learner cannot tell whether or not the ball Lily doesn’t have has the property red.  These data are 
therefore not useful as indirect evidence. Such data did not occur in the Adam and Nina corpora from 
which my estimates are derived. 
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Figure 13. The set of potential referents for one in the world when an utterance such 
as “Jacks wants a red ball, and Lily has another one for him” is heard. 

 
(b) The actual distribution of  referents observed by the learner, however, is 
only a particular subset of all the possible referents. 
 

   
Figure 14. The observed set of referents for one when an utterance such as “Jack 
wants a red ball, and Lily has another one for him” is heard. 

 
(c) It is highly unlikely that the referent of one is only ever a member of the 
subset if the referent could be any member of the superset.  The Bayesian 
learner will therefore consider a restriction to the subset to be more and more 
probable as time goes on. This is the size principle of Tenenbaum & Griffiths 
(2001): if there is a choice between a subset and the superset, and only data 
from the subset is seen, the learner will be most confident that the subset is the 
correct hypothesis. Thus, the learner uses the lack of data for the superset as 
indirect evidence that the subset is correct.   

 The specific instantiation of the bias for the subset (red balls) given a 
single subset data point is based on the likelihood of encountering that subset 
data point. The likelihood of choosing a specific member of the subset (a red 
ball) is higher if members can be drawn only from the subset (red balls), as 
opposed to if members can be drawn from the superset (all balls).  This occurs 
because the superset necessarily has more members to choose from, and 
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therefore there is a lower probability of choosing a specific subset member. 
 The amount of bias a subset data point gives the subset depends on the 
relative sizes of the subset and superset.  If the superset (all balls) has many 
more members than the subset (red balls), the likelihood of drawing a specific 
member from the subset (a red ball) when any member from the superset 
could have been chosen is low.  The bias towards the subset (red balls) given a 
subset data point (a red ball) is then higher.  In contrast, if the superset (all 
balls) has only a few more members than the subset (red balls), the likelihood 
of drawing a specific member from the subset (a red ball) when any member 
from the superset could have been chosen is higher.  The bias towards the 
subset (red balls) given a subset data point (red ball) is then lower. 

 
 

 
Figure 15. Comparison of different ratios of superset to subset, the likelihood of 
choosing a member of the subset, and the effect on subset bias. 

  
(d) Once the learner is biased to believe that there is a restriction to the subset 
of referents described by the property mentioned in the N’ (red in red ball), 
the learner then assumes that the correct antecedent is, in fact, the larger N’.13  
Since the larger N’ cannot be classified as N0, the learner then knows that one 
always has an N’ antecedent. 
 
(e) For the LWF experiment, a Bayesian learner would have converged on the 
subset of red bottles as the potential referents of one in the test utterance.  
Given a choice between a red and a non-red bottle, the Bayesian learner 
therefore looks at the bottle that belongs to the correct subset: the red bottle.  

 
 A great strength of the R&G model is that the bias to choose the subset, given 
indirect evidence, does not need to be explicitly assumed.  Instead, it falls out neatly 
from the mathematical implementation of the Bayesian learning procedure itself that 
uses the size principle of Tenenbaum & Griffiths (2001).   

                                                
13 R&G’s model demonstrates how this could happen after very few type I ambiguous data. 



 

 39 
 

 However, as I noted before, the model implemented in the R&G study still 
harbors two implicit biases about domain-specific data filters on the learner’s intake.  
The first bias is that only unambiguous and type I ambiguous data are used; type II 
ambiguous data are ignored even though they may also provide indirect evidence to a 
Bayesian learner.  The second bias is that only semantic data (the referents of one) are 
used to converge on the syntactic knowledge of what one is anaphoric to; syntactic 
data are ignored.   
 In the remaining sections of the chapter, we will see that stripping away these 
two biases  (and thus creating an unbiased learner truer to the spirit of R&G’s 
proposal) leads to markedly different results from those of R&G.  Specifically, once 
we remove these two biases, we will discover that a Bayesian learner will not learn 
that one is anaphoric to N’ with high probability and will not choose the adult 
interpretation of the larger N’ constituent with high probability when there is a choice 
between N’ constituents. So, this unrestricted Bayesian learner will (a) have a 
preference for the wrong syntactic analysis (N0) and (b) a preference for the wrong 
semantic interpretation (smaller N’ (ball): do not require the referent to have the 
property mentioned in the antecedent), even if the correct syntactic analysis is chosen. 
 The benefit that comes from using indirect negative evidence to shift the 
majority of the probability to the subset in the hypothesis space is tempered by the 
link between the two levels of representation.  Specifically, the semantic 
interpretation is a projection from the syntax.  If indirect learning leads to the subset 
N0 in the syntax, then the semantic preference to choose the interpretation consistent 
with the larger N’ constituent when there is a choice between two N’ constituents will 
not be helpful to the learner in most cases.  This is simply because the learner will not 
choose the N’ analysis very often, and so will have no need to access the semantic 
interpretation preference.  Thus, the existence of multiple levels of representation 
reduces the efficacy of this kind of learner. 

3.5 An Equal-Opportunity Bayesian Learner 

3.5.1 Introducing the Equal-Opportunity Bayesian Learner 
 
 I will refer to the unrestricted domain-general learning model as the Equal-
Opportunity (EO) Bayesian Learner since it removes the two implicit biases of 
R&G’s Bayesian learner and so gives equal treatment to all data.  First, it denies 
privileged status to a subset of the data and instead uses all the data available: 
unambiguous, type I ambiguous, and type II ambiguous.  Second, it denies privileged 
status to semantic data – syntactic and semantic data are both used to shift probability 
between opposing hypotheses. There is an intuitive logic to using both types of data, 
since one should presumably use syntactic data (among other kinds of data) to 
converge on syntactic knowledge.14 This syntactic knowledge has semantic 

                                                
14 Note that even if we believed the knowledge about one was stated purely in semantic terms, the data 
that any grammar predicts will include both syntactic data (i.e. what the linguistic antecedent for one 
is) and semantic data (what the referent of one is).  So, excluding either kind of data is an arbitrary 
restriction on the learner that would need to be justified.  For this reason, the hypothesis to include both 
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consequences, which are displayed in the LWF experiment. If a Bayesian learning 
procedure, unconstrained by domain-specific filters, is to be an effective domain-
general learning solution, it should correctly acquire knowledge that spans domains 
such as syntax and semantics as well as knowledge contained completely within these 
domains. 

3.5.2 The Hypothesis Space 
 
 The hypothesis space is defined for both the syntactic and semantic domains. 
The syntactic domain contains hypotheses about what strings can be antecedents for 
one.  Each hypothesis covers a set of strings, and is classified by the syntactic 
category that can generate all the strings in the hypothesis.  The semantic domain is a 
projection of the syntactic domain and contains hypotheses about the interpretation of 
one (specifically what referents in the world one can refer to).  Each hypothesis 
covers a set of referents, and is classified by what properties the referents in that set 
must have.  In both domains, there are two hypotheses to choose from. Each 
hypothesis makes predictions about the data that will be encountered and, 
consequently, the elements that will be analyzable under that hypothesis.  
 For each domain, the elements analyzable by one hypothesis are a subset of 
the elements analyzable by the other.  For syntax, the hypotheses under consideration 
are (a) that one is anaphoric to strings that are classified as N0 and (b) that one is 
anaphoric to strings that are classified as N’.  Every string in N0 can also be classified 
as N’ but there are strings in N’ that cannot be classified as N0. Therefore, the strings 
that comprise the N0 set are a subset of the strings that comprise the N’ set.  
 
 

    
Figure 16. The syntax hypothesis space, N0 vs. N’.  All the elements in the sets are 
strings that are possible antecedents of one.  Every string classified as N0 can also be 
classified as N’.  In addition, there are strings in N’ that are not in N0, and so the N0 
set is a subset of the N’ set. 
 

For the semantic interpretation, the referents of one could have the restriction 
that they must have the property named by the modifier; alternatively, the referents of 
one could have no restriction on what property they have.  Since the modifier is 
linguistically not part of the N0 (recall figure 11) and instead is part of the N’ phrase,  
                                                                                                                                      
syntactic and semantic data does not rely on a particular specification of knowledge about anaphoric 
one. 
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I will refer to the property named by the modifier as the N’-property. I will refer to 
referents with no restrictions as being any-property referents, since these referents can 
have any property (though of course they must still be instances of the noun in the 
antecedent, e.g. balls, if the antecedent is red ball).  So, in the semantic domain, the 
two hypotheses under consideration are (a) that the referent of one is restricted to 
have the N’-property and (b) that the referent of one can have any property (is not 
restricted to have the N’-property). 

Just as in the syntactic domain, the elements predicted by one hypothesis are a 
subset of the elements predicted by the other (see figure 17).  Every referent that has 
the N’-property (say red for red ball) is a member of the N’-property set.  By 
definition, every member of the N’-property set is also a member of the any-property 
set, since the N’-property is one of the properties available for objects to have.  
However, there are members of the any-property set (say green balls for the linguistic 
antecedent red ball) that do not have the N’-property (red).  So, since all the members 
of the N’-property set are members of the any-property set, the N’-property set is a 
subset of the any-property set. Moreover, some members of the any-property set are 
not members of the N’-property set. So, the any-property set is a superset of the N’-
property set in the semantic domain.   

 

     
Figure 17. The semantic hypothesis space, N’-property vs. any-property.  Any-
property is a superset of N’-property. Note that in order to define the sets (N’-
property vs. any-property), the utterance must be used to determine the salient 
property that the referent of the antecedent has.  The salient property can be 
determined from the linguistic antecedent of one. 
 
 The difficulty for a Bayesian learner becomes apparent when we examine how 
the two prediction spaces defined by the hypotheses are connected.  Specifically, in 
the syntactic domain, the relative complement of the subset in the superset (the set of 
strings that are in the superset but not the subset, such as red ball) is linked to the 
subset in the semantic domain; the subset in the syntactic domain is linked to the 
superset in the semantic domain.  For ease of exposition, I will refer to the relative 
complement of the subset in the superset as the “exclusive superset”. 
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Figure 18. In the syntactic domain, the exclusive superset is linked to the subset in the 
semantic domain.  The subset of the syntactic domain is linked to the superset in the 
semantic domain.   
 
 This is due to the compositional property of syntactic representations: larger 
syntactic constituents (such as the N’ red ball) have meanings that are restrictions on 
the meanings (and so the referents) of their constituent subparts. In syntax, the strings 
in the exclusive superset (e.g. red ball) designate a subset of referents in the 
semantics (e.g. the red balls); the strings in the subset of the syntax (e.g. ball) 
designate the superset of referents in the semantics (e.g. all balls). 
 Because the syntactic and semantic representations are linked in this fashion, a 
Bayesian learner that relies on indirect evidence to shift probability towards the 
subset will receive conflicting information from across the two domains. For instance, 
the learner will encounter ambiguous data that favors the syntactic subset (the wrong 
answer for English anaphoric one).  The learner will also encounter ambiguous data 
that favors the semantic subset which is linked to the exclusive superset in the syntax 
that implicates N’ (the correct answer for English anaphoric one).  However, this will 
not negate the aforementioned syntactic evidence that favors the syntactic subset N0. 
Yet, the learner shouldn’t ignore available syntactic information since anaphoric one 
has a representation at the syntactic level.  Thus, we can see that an unrestricted 
Bayesian learner that uses all available data (syntactic and semantic) will need to 
overcome conflicting information across domains in order to converge on a high 
probability for the correct representations of anaphoric one. 
 It is important to recognize that the problem of linked hypothesis spaces 
extends far beyond the particular case of anaphoric one. Because syntactic structures 
are semantically compositional, this problem will persist across the acquisition of any 
aspect of the grammar that depends on the link between syntax and semantic 
reference. 

3.5.3 EO Bayesian Learning 
 
 The EO Bayesian learning model uses Bayesian reasoning to update the 
learner’s confidence in each of two alternative hypotheses.  The implementation I will 
use differs from the R&G learner by being more conservative about updating the 
probabilities of the competing hypotheses.  I will first describe the R&G Bayesian 
implementation, and then describe the implementation I will use here.  I detail the 
learning process independently for each of the two domains (syntax and semantics) 
that are relevant for determining the appropriate structure of anaphoric one.  I then 
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describe how to implement the updating algorithm, given that these two domains are 
linked. 
 
3.5.3.1 The R&G Bayesian Learner Implementation 
 
 The R&G learner is quite liberal about shifting probability to the superset 
hypothesis: a single piece of data for the exclusive superset is enough to shift all the 
probability to that hypothesis.  However, as we have seen, the correct hypothesis for 
English anaphoric one is in the subset in the semantic domain: the learner should 
prefer the larger N’ constituent, e.g. red ball, and thus restrict referents to those that 
have the N’-property, e.g. red balls.  The success of this learner for converging on the 
correct semantic hypothesis for anaphoric one relies on the assumption that there will 
never be unambiguous data for the semantic superset.   
 Recall that the semantic superset hypothesis is that one refers to an object that 
does not need to have the property mentioned in the linguistic antecedent.  This is the 
any-property hypothesis.  Unambiguous data for the superset would be an utterance 
where one refers to an object that does not have the property mentioned in the 
antecedent.  For instance, if the utterance is “…red ball…one…”, unambiguous 
superset data would be the situation where the referent of one does not have the 
property ‘red’, e.g. it is a purple ball. 
 It is crucial for R&G’s model that this type of data never occurs, though it is 
entirely possible that the learner might encounter this type of data as noise.  If the 
referent of one in the above utterance was a purple ball (perhaps by accident), the new 
probability for the subset hypothesis (the N’-property hypothesis) in the semantic 
domain would be 0.  I detail why this occurs below. 
 Suppose that we refer to the probability that the N’-property hypothesis is 
correct as pN’-prop.  Suppose the learner initially has no bias for either semantic 
hypothesis, and so the initial probability of pN’-prop is 0.5 before any data is 
encountered. This probability will increase as each piece of ambiguous (subset) data 
is observed, due to the size principle which biases the learner to favor the subset 
hypothesis if ambiguous data is observed.    
 Let u be a piece of unambiguous data for the superset hypothesis, where the 
utterance is “…red ball….one…” and the referent of one is a non-red ball.  The 
learner now calculates the updated probability that the N’-property hypothesis is 
correct, using Bayes’ rule.  The updated pN’-prop given the observation of u is 
represented as the conditional probability p(N’-prop| u).  To calculate this probability, 
we use Bayes’ rule. 
 
(13) Calculating the conditional probability p(N’-prop| u) using Bayes’ rule 
 

! 

p(N'-prop | u) "  p(u | N'-prop) *p(u)  
 
 The probability p(u|N’-prop) is the likelihood of observing the unambiguous 
superset data u, given that the N’-property hypothesis is true.  In this case, the referent 
of one in u specifically doesn’t have the N’-property (‘red’). Therefore, it could not 
possibly be generated if the N’-property hypothesis was true, since the N’-property 
hypothesis requires the referent of one to have the property mentioned in the 
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linguistic antecedent.  So, the probability of observing u if the N’-property hypothesis 
is true (p(u|N’-prop)) is 0. 
 We substitute this value into the equation in (13) to get 

! 

p(N'-prop | u) "  0*p(u) =  0.  Therefore, the updated probability for pN’-prop after 
seeing a single piece of unambiguous superset data u is 0, no matter what the previous 
probability of pN’-prop was. 
 Since this is not terribly robust behavior for a learner, I have adapted the 
Bayesian updating approach described by Manning & Schütze (1999) to generate a 
more conservative Bayesian updating approach, detailed in the previous chapter.  
Unlike the liberal R&G model, the learner using this more conservative approach 
shifts probability much more slowly between hypotheses.  Only after observing a vast 
majority of evidence for one hypothesis would a conservative Bayesian learner shift 
the vast majority of the probability into that hypothesis.   
 
3.5.3.2 Updating the Syntax Hypotheses 
 
 Recall that there are two hypotheses under consideration in the syntactic 
domain: the N’ hypothesis and the N0 hypothesis. The N’ hypothesis takes the 
antecedent of one to be a constituent of the category N’; the Nº hypothesis takes the 
antecedent of one to be a constituent of the category N0. 
 I represent the probability that the N’ hypothesis is correct with pN’. Because 
there are only two hypotheses in the hypothesis space, and because probabilities 
range from 0 to 1, the probability that the N0 hypothesis is correct is 1 – pN’.  I set the 
initial value of pN’ before the learner has observed any data to 0.5 as an instantiation 
of the assumption that both hypotheses are equiprobable.   
 The update function requires a single parameter t, which represents the total 
amount of data expected during the learning period, as described in the previous 
chapter, and can be thought of as the total amount of change the real learner’s brain is 
allowed to undergo before settling into the final state.  In the simulated learner here, I 
quantify that amount of change as the total estimated amount of useable data 
available during the learning period (4017 data points, if using all available data). Of 
course, the value of t is essentially arbitrary, but in order to model this learning 
process, it needs to be estimated. The model uses t to determine how much 
probability shifting should be done, given a single piece of data. If t is small, only a 
small number of changes are allowed and each piece of data shifts the probability 
quite a lot; conversely, if t is large, a large number of changes are allowed and each 
piece of data shifts the probability a smaller amount.  The value of t I use here will 
allow the modeled learner to converge as close as possible to an endpoint (e.g. pN’ ≈ 
1.0).  In this way, I hope to estimate the best-case scenario for this kind of learner. 
While the t estimate presented here seems fair, I present a range of possible t-values 
in the results section. What we will see there is that the size of t does not influence the 
final probability of the correct interpretation of anaphoric one. 
 The exact update functions for pN’ depend on the data type observed – 
unambiguous, type I ambiguous, or type II ambiguous.  Unambiguous and type I 
ambiguous data cause the learner to use the function in (14a), which is essentially an 
implementation of the indirect negative evidence update function used by the R&G 
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model.  Type II ambiguous data, which were not considered by the R&G learner, 
cause the EO Bayesian learner to use the function in (14b).  
 
(14a) Update function for unambiguous and type I ambiguous data 
 Utterance: “…red ball…one…”  
 World: referent has the property red (unambiguous & some type I ambiguous) 
 or it is unknown if referent has the property red (some of type I ambiguous) 
 

 

! 

pN' =
pN' old * t +1

t +1
 

 
(14b) Update function for type II ambiguous data 
 Utterance: “…ball…one…” 
 World: referent has various properties (type II ambiguous) 
 

 

! 

pN' =
pN' old * t +pN' | a

t +1
 

  
 The update function for unambiguous data is derived by using the 
mathematical framework laid out in the previous chapter.  To briefly summarize, a 
binomial distribution centered at pN’ is used to approximate the learner’s expectation 
of the distribution of the data to be observed.  Data points from this distribution fall 
into two classes: they either have the “property” of being an N’ data point or they do 
not have this property (and are instead N0 data points).  If pN’ is 0.5 (as it is initially), 
the learner expects half the informative data points to be N’ data points.  Using the 
derivations described in the previous chapter, we can then derive equation (14a) for 
updating pN’.  
 An intuitive interpretation of the unambiguous data update function is that the 
numerator represents the learner’s confidence that the observed unambiguous N’ data 
point u is a result of the N’ hypothesis being correct; the denominator represents the 
total data observed so far.  Thus, 1 is added to the numerator because the learner is 
fully confident that u indicates the N’ hypothesis is correct; 1 is added to the 
denominator because a single data point has been observed. 
 Unambiguous data signal that the N’ hypothesis is correct (in that only the N’ 
hypothesis could have produced u) and so should be treated with full confidence by 
the learner.  In contrast, the type I ambiguous data do not indicate that only the N’ 
hypothesis could have produced u – these data are ambiguous between the N0 and N’ 
hypotheses.  Thus, a smaller value should be added to the numerator for such data to 
indicate less than full confidence that only the N’ hypothesis could have produced u.   
 However, I will allow the Bayesian learner to treat the type I ambiguous data 
with full confidence in the N’ hypothesis. I make this allowance for two reasons.  
First, I know of no principled way to reasonably estimate how much confidence 
should be associated with a type I ambiguous data point.  Second, this allowance is 
generous towards the Bayesian learner because it allows the model to overestimate 
the confidence the learner has in the N’ hypothesis. If I was less generous and 
lessened the confidence in the type I ambiguous data, the probability of N’ would 
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only be lower than what I present here. As we will see below, even with this generous 
estimate, the learner will fail to assign sufficient probability to the N’ hypothesis. 
 The update function for type II ambiguous data (14b), which comprise 3805 
of the data points, depends on the prior probability that N’ is the correct hypotheses 
(pN’ old), t, and a confidence value (pN’ | a).  The intuitive interpretation for this function 
remains the same as the interpretation for the function in (14a): the numerator 
represents the learner’s confidence that the observed ambiguous utterance-world 
pairing a is a result of the N’ hypothesis being correct; the denominator represents the 
total data observed so far.  Thus, a value less than 1 (pN’ | a) is added to the numerator 
because the learner is only partially confident that ambiguous data point a indicates 
the N’ hypothesis is correct; and, 1 is added to the denominator because a single data 
point has been observed.  The partial confidence value pN’ | a depends on the 
likelihood that the utterance in a, which has only a noun string as the antecedent of 
one (ex: “…ball…one…”), would be produced if any N’ string could have been 
chosen from the set of N’ strings (pN from N’).  
 The partial confidence value is the probability that one is anaphoric to N’ in 
type II ambiguous data point a.  This is equivalent to the probability that one is 
anaphoric to N’ in general, given that a has been observed.  I write it as Prob(N’ | a) 
and calculate it by using Bayes’ rule. 
 

(15) Prob(N’| a) = 

! 

Prob(a |N') *Prob(N')

Prob(a)
 

 
 I now describe the individual pieces of the right hand side of the equation in 
(15).  Prob(a | N’)  is the probability of observing a type II ambiguous data point a, 
given that the N’ hypothesis is true.  Recall that a type II ambiguous data point has an 
utterance with a noun-only antecedent, such as “…ball…one…”.  The N’ hypothesis 
states that the linguistic antecedent of one must be an N’ constituent.   
 It is possible for a noun-only string to be an N’ constituent: this is the situation 
where a noun-only string is chosen from the set of N’ constituents, which consists of 
both noun-only strings (“ball”, “bottle”, etc.) and other strings that include modifiers 
(“red ball”, “bottle in the corner”, etc.).  The probability we want is the probability of 
choosing a noun-only linguistic antecedent for one (such as in type II ambiguous 
utterance a), given the entire set of N’ constituents.  Suppose there are n noun-only 
strings and o other strings in the N’ constituent set.  I refer to the probability of 
choosing a noun-only string (such as “ball”) as pN from N’, and it is calculated below in 
(16). 
 

(16) Prob(a | N’) = 

! 

n

n + o
 = pN from N’ 

 
 Prob(N’) is the current probability that the N’ hypothesis is correct.  This is 
simply pN’. 
 Prob(a) is the probability of observing a type II ambiguous utterance a, no 
matter which hypothesis is correct.  To calculate this value, we can sum the 
conditional probabilities of observing a for each hypothesis (Prob(a | N’) + Prob(a | 
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N0)) .  If N’ is the correct hypothesis, the probability of observing a is Prob(a | N’) 
from above.  If N0 is the correct hypothesis, then the linguistic antecedent of one is an 
N0 constituent, which is always a noun.  In that case, the probability of observing a 
noun-only linguistic antecedent (such as in a) is 1.  We can calculate Prob(a) in (17). 
 
(17) Prob(a)  = 

! 

phypothesis* p(a | phypothesis)
hypotheses

"  

  = pN’*p(a | pN’) + pN0*p(a | pN0) 

  = pN’*

! 

n

n + o
 + (1-pN’)*1 

 
 Substituting these pieces back into the right hand side of the equation in (15), 
we obtain (18). 
 

(18) Prob(N’| a) = 

! 

(
n

n + o
) *pN'

pN'*(
n

n + o
) +  (1" pN' ) *1

 = 

! 

pN from N'*pN'

pN'* pN from N' + (1" pN' ) *1
 = pN’ | a 

  
 As we can see, the partial confidence value pN’ | a depends only on pN from N’ 
and the current pN’.  This partial confidence value, which will be less than 1, is added 
to the numerator of the type II ambiguous data update function instead of 1.  The 
larger pN from N’ is, the less biased the learner’s confidence is towards the subset N0 
hypothesis when a type II ambiguous data point is observed.  This is because a higher 
pN from N’ signals that the superset N’ is not much larger than the subset N0.  So, the 
learner is not heavily biased towards the subset because the likelihood of choosing 
data point a from the subset is not much higher than the likelihood of choosing data 
point a from the superset.  Thus, the more likely it is that a noun-only string could be 
chosen from the N’ constituent set, the less the N’ hypothesis is penalized when this 
type of data is seen. 
 The likelihood value pN from N’ is what allows the learner to retrieve 
information from the type II ambiguous data. The more unbalanced the ratio of noun-
only strings to other strings in the N’ set, the stronger the effect of the size principle 
will be that biases the learner towards the subset N0 hypothesis. Example (19) 
displays how much biasing occurs after a single piece of type II ambiguous data, 
assuming a current pN’ of 0.5, a ratio of noun-only strings to total N’ strings of 0.25, 
and a t of 4017. 
 
(19) Updated pN’ after a single type II ambiguous data point a 
Let pN’ = 0.5, pN from N’ = 0.25, and t = 4017. 
Updated pN’ = .499925 (a very slight bias for the N0 hypothesis) 
 
 While the amount of bias towards the N0 hypothesis is quite small, keep in 
mind that the majority of the data is type II ambiguous and so these small biases will 
add up over time. 
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3.5.3.3 Updating the Semantics Hypotheses 
 

Recall that there are two hypotheses under consideration in the semantic 
interpretation domain that are projections from the syntactic domain: the N’-property 
hypothesis and the any-property hypothesis.  The N’-property hypothesis requires the 
referent of one to have the property mentioned in the N’ antecedent (e.g. red if the 
potential antecedent was red ball); the any-property hypothesis allows the referent of 
one to have any property. In this case, it’s the N’-property hypothesis that represents 
the subset hypothesis. Thus, as above, the size principle will favor this hypothesis for 
any data that is compatible with both hypotheses. 

I represent the probability that the N’-property hypothesis is correct with pN’-

prop.  Because there are again only two hypotheses in the hypothesis space, the 
probability that the any-property hypothesis is correct is 1- pN’-prop.  I set the initial 
value of pN’-prop before the learner has observed any data to 0.5 as an instantiation of 
the assumption that both hypotheses are equiprobable. 

The update function requires two parameters: t and c.  As before, t represents 
the total amount of data expected during the learning period and is instantiated in this 
model as 4017, the estimated amount of data available during the learning period.  
The parameter c represents the number of properties (or categories of referents) in the 
world that the learner is aware of (e.g. red, striped, behind his back, etc.). 

For the semantic domain, the data are divided according to how the properties 
of the referent of one compare to the salient property in the N’ antecedent.  The data 
types, representing the utterance-world pairings, are same-property, different-
property, and unknown-property.  
 Same-property examples are those in which the potential antecedent of one 
mentions some property and the referent of one also has that property. Some of the 
data analyzed as type I ambiguous in the syntactic domain are same-property data.  
There are 183 or less data points of this form (because some portion of type I 
ambiguous are unknown-property data points). 
 
(20a) Example of same-property data (syntax: type I ambiguous)  
 Utterance: “Jack wants a red ball, and Lily has another one for him.” 
 World: Lily has another red ball for Jack. 

 
 The referent of one (the ball that Lily has) has the same property mentioned 

in the N’ antecedent (red). 
The data analyzed as unambiguous in the syntactic domain are also same-

property data in the semantic domain. There are 10 data points of this form.  Because 
these data necessarily include negation, seeing why they are same-property data is a 
bit complicated. Consider the example in (20b). 

 
(20b) Example of same-property data (syntax: unambiguous) 

Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him.” 
World: Lily has a non-red ball for Jack. 
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The speaker in this situation is asserting the absence of a red ball. The referent 
of one is a red ball that is not present in the situation. Thus, the meaning of one 
includes the property mentioned in the antecedent. 

Because the N’-property hypothesis depends on matching the property overtly 
mentioned in the modifier (e.g. red of red ball), type II ambiguous data are not 
informative for choosing between the two hypotheses.  This is simply because there is 
no overtly mentioned modifier, as shown in (20c).  Therefore, the semantic 
interpretation projection from the syntactic hypothesis space is a single hypothesis 
(the any-property hypothesis).  Since the semantic domain only has one hypothesis 
for type II ambiguous data, no information can be inferred about the correct 
hypothesis when there is more than one semantic interpretation to choose.  The 
learner therefore ignores the semantic hypothesis space when encountering type II 
ambiguous data. 

 
(20c) Example of same-property data (syntax: type II ambiguous) 
 Utterance: “Jack wants a ball, and Lily has another one for him.” 

World: Lily has a ball with some property for Jack. 
   
A different-property example is given in (21), when the potential antecedent 

has a property mentioned in the modifier (e.g. red of red ball), but the referent of one 
does not have this property.  This situation would occur in rare cases, perhaps as 
noise or perhaps because of a pragmatic bias.  
 
(21) Example of different-property data (syntax: type I ambiguous) 
 Utterance: “Jack likes a red ball, and Lily likes that one.” 
 World: Lily likes a ball that is not red. (i.e., the referent of one is a non-red 
 ball, even though the potential antecedent mentions the property red). 
 
 In this case, the semantic interpretation hypothesis unambiguously favored is 
the any-property hypothesis, since the data point is specifically in the exclusive 
superset of balls that do not have the N’-property (red).  So, this kind of data strongly 
biases the learner towards the any-property hypothesis, the superset hypothesis in the 
semantic domain.  That, in turn, biases the learner towards the subset in the syntactic 
domain (the smaller N’ constituent, if the N’ analysis is chosen). However, I will be 
generous and assume that this data does not occur in the EO Bayesian learner’s 
dataset.  This assumption will cause the EO Bayesian learner to overestimate the 
probability assigned to the N’-property hypothesis, pN’-prop. 
 Finally, we come to the unknown-property data, as in (22). 
 
(22) Example of unknown-property data (syntax: type I ambiguous) 

Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him.” 
World: Lily has no ball for Jack. 

 
In the examples in (22), the speaker is asserting the absence of a ball. The 

referent of one is a ball, with some unknown properties, that is not present in the 
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situation. Thus, the referent of one may or may not include the property (red) 
mentioned in the potential antecedent. 

 A portion of type I ambiguous data consists of unknown-property data.  Such 
data cannot be used for updating the probabilities of the opposing semantic 
hypotheses.  However, I will be generous and allow R&G’s assumption to hold true: 
none of the type I ambiguous data are of this form. Therefore, I will allow all type I 
ambiguous data to be of the form in (20a), which is an example of same-property 
data. This gives an overestimation of pN’-prop, which is the subset in the semantic 
hypothesis space. Consequently, this will bias the learner towards the superset in the 
syntactic hypothesis space, N’. Thus, the model here will again overestimate the 
amount of probability the learner will assign to the correct hypothesis for the structure 
and interpretation of anaphoric one, given an utterance with more than one potential 
antecedent.  

Table 3.3 represents the expected distribution of data for updating the 
semantic hypotheses in this model. 

 
Total Data before 18 months Total # with anaphoric one 
~278,000 4017 
 
Data Type # of data points 
Same-Property 10 + 183 
“Jack wants a red ball, and Lily has another one for him.” 
(Lily has a red ball for Jack.) 
 “Jack wants a red ball, but Lily doesn’t have another one for him.”  
(Lily has a non-red ball for Jack.) 
Different Property 0 
“Jack likes this red ball, and Lily likes that one.” 
(Lily likes a ball without the salient property that the antecedent referent has.) 
Unknown Property 0 
“Jack wants a red ball, but Lily doesn’t have another one for him.” 
(Lily has no ball for Jack.) 
Table 3.3. The expected distribution of utterances in the input to the Bayesian learner 
for updating the semantics hypotheses.  Note that the type II ambiguous data points 
are uninformative in the semantic interpretation domain, so those 3805 data points are 
ignored. 
 

The exact update functions for pN’-prop depend on the data type observed.  
However, the only update function relevant for this model is the same-property 
update function (23), which is similar to its syntactic counterpart in (14b).  In both 
cases, the subset hypothesis is favored upon encountering an ambiguous data point. 
 
(23) Update function for same-property data 

 

! 

pN' -prop =
pN' -prop - old * t +pN' -prop | s

t +1
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 The same-property update function is derived using the same reasoning as the 
type II ambiguous update function in the syntactic domain.  We again have two 
hypotheses (N’-property and any-property), and so we can use a binomial distribution 
to approximate the learner’s expectation of the distribution of data to be encountered. 
The binomial distribution is centered at pN’-prop, so the learner’s expectation is about 
how many N’-property data points should be observed. To update pN’ after seeing a 
single same-property data point s, we again follow the framework laid out in the 
previous chapter and calculate the maximum of the a posteriori (MAP) probability. 
 Like the type II ambiguous data update function in the syntactic domain, 
however, we will add a value smaller than 1 to the numerator. Intuitively, this smaller 
value represents the learner’s smaller confidence that the same-property data point s 
indicates that the N’-property hypothesis is correct.  I call this smaller value the 
partial confidence value, and represent it as pN’-prop | s. 
 The partial confidence value pN’-prop | s is the probability that the referent of 
one must have the N’-property mentioned in s.  This is equivalent to the probability 
that the referent of one must have the N’-property in general, given that s has been 
observed.  I write it as Prob(N’-prop | s) and calculate it by using Bayes’ rule. 
 

(24) Prob(N’-prop| s) = 

! 

Prob(s |N'-prop)*Prob(N'-prop)

Prob(s)
 

 
 I now describe the individual pieces of the right hand side of the equation in 
(24).  Prob(s | N’-prop)  is the probability of observing a same-property data point s, 
given that the N’-property hypothesis is true.  Recall that in a same-property data 
point, the referent of the antecedent of one must have the same mentioned property 
that the referent of one has.  The N’-property hypothesis states that the referent of the 
antecedent of one must have the property described by the linguistic antecedent of 
one.  Therefore, if the N’-property hypothesis is true, the probability of observing a 
same-property data point is 1. 
 
(25) Prob(s|N’-prop) = 1 
   
 Prob(N’-prop) is the current probability that the N’-property hypothesis is 
correct.  This is simply pN’-prop. 
 Prob(s) is the probability of observing a same-property utterance s, no matter 
which hypothesis is correct.  To calculate this value, we sum the conditional 
probabilities of observing s for each hypothesis (Prob(s | N’- prop) + Prob(s | any-
prop)) .  If N’-property is the correct hypothesis, the probability of observing s is 
Prob(s | N’-prop) from above.  If any-property is the correct hypothesis, then there is 
no restriction on what property the referent of the linguistic antecedent of one has.  I 
estimate the probability of that referent having the same property by chance as the 
referent of one as simply 1/c, where there are c properties in the world.  I calculate 
Prob(s) in (26). 
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(26) Prob(s)  = 

! 

phypothesis* p(s | phypothesis)
hypotheses

"  

  = pN’-prop*p(s | pN’-prop) + pany-prop*p(s | pany-prop) 

  = pN’-prop*1 + (1-pN’-prop)*

! 

1

c
 

 
 Substituting these pieces back into the right hand side of the equation in (24), 
we obtain (27). 
 
27) Prob(N’-prop| s) = 

! 

1*pN' -prop

pN' -prop *1+  (1" pN' -prop) *
1

c

 = 

! 

pN' -prop

pN' -prop * + 
(1" pN' -prop)

c

 = pN’-prop | s 

 
 As we can see, the partial confidence value pN’-prop | s depends only on c and 
pN’-prop.  This partial confidence value, which will be less than 1, is added to the 
numerator of the same-property data update function instead of 1.  The larger c is, the 
larger the ratio between the any-property superset and the N’-property subset.  The 
larger that ratio is, the more the learner is biased towards the subset hypothesis when 
encountering a same-property data point.  Thus, when c is large, the learner’s 
confidence in the N’-property hypothesis is high when encountering a same-property 
data point.  So, the more properties there are in the learner’s world, the more the N’-
property hypothesis is rewarded when this type of data is seen.  As for the 
denominator of the update function, we add 1 because a single data point has been 
observed.  

3.5.4 The Updating Algorithm for Linked Domains 
 
 Recall that there is an inherent connection between the syntax and the 
semantic interpretation. In particular, the subset hypothesis in the syntax (N0, or the 
smaller N’ constituent) corresponds to the superset hypothesis in the semantics (any-
property), and the exclusive subset in the syntax (larger N’ constituents) corresponds 
to the subset (N’-property) in the semantics (figure 18). Given this arrangement of 
hypothesis spaces, any piece of data impacting a hypothesis in one domain should 
impact the corresponding hypothesis in the other domain by the same amount. I now 
provide a description of how I model this process. 
 First, suppose the learner receives an unambiguous or type I ambiguous data 
point (which have two strings as potential antecedents, e.g. red ball or ball). This data 
point can be analyzed in either domain, syntax or semantics. So, the learner chooses 
which one to analyze it in first. Then, the update functions described above are 
employed to determine the amount the probability that should be shifted within that 
domain. Next, the probability is shifted in the other domain by the same amount. See 
figure 19, which shows the learner analyzing the data in syntax and updating both 
syntax and semantics. Now, the learner analyzes the data point in the other domain, 
applies the update functions described previously to determine the amount the 
probability that should be shifted within this domain. Next, the probability is shifted 
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in the other domain by the same amount. See figure 20, which shows the learner 
analyzing the data in the semantics and updating both semantics and syntax. 

  
(a)      (b) 

  
(c)      (d) 
 
Figure 19.  The learner encounters an unambiguous data point (a) and analyzes it first 
in the syntactic domain (b), and then updates the probability of the syntax hypotheses 
(c) and the probability of the linked semantics hypotheses (d). 
 

  
(a)      (b) 
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(c)      (d) 
Figure 20. After analyzing the data point in the syntax domain and updating the 
probabilities across the domains, the learner then starts at the state in (a) and analyzes 
the data point in the semantics domain (b).  Then, the learner updates the probability 
of the semantics hypotheses (c) and the probability of the linked syntax hypotheses 
(d).   
 
 The update process differs for a type II ambiguous data point, however.  This 
is because there is only one string that is the potential antecedent (e.g. ball), and the 
projection from the syntax to the semantics leaves only one interpretation (any-
property).  Type II ambiguous data points are thus uninformative for the semantic 
interpretation domain.  So, the learner simply updates in the syntax domain alone, as 
shown in figure 21.  The semantic interpretation domain is ignored for this type of 
data. 
 

(a) (b)  
 
 

(c)  (d)  
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Figure 21. The learner encounters a type II ambiguous data point (a) and analyzes it 
in the syntactic domain (b), and then updates the probability of the syntax hypotheses 
(c).  The final state after update is show in (d).  Importantly, the semantic domain is 
not influenced by the type II ambiguous data point because there is only one semantic 
interpretation available for an antecedent with no modifiers (e.g. ball), the any-
property hypothesis.  The semantic domain is only influenced when there is more 
than one potential antecedent, leading to more than one semantic interpretation. 

3.5.5 What Good Learning Would Look Like 
 
 In the model, the learner initially assigns equal probability to the two 
hypotheses in each of the two domains: in the syntax, N0 and N’, and in the 
semantics, N’-property (corresponding to the larger N’ constituent interpretation, e.g. 
red ball) and any-property (corresponding to the smaller N’ constituent interpretation, 
e.g. ball).  The probability of choosing the preferred adult interpretation, given an 
utterance with two potential antecedents, depends on choosing the correct hypothesis 
in each domain.  So, if the learner hears, “Look!  A red bottle!  Do you see another 
one?” (as in the LWF experiment), the interpretation of one is calculated as in (28), 
which is schematized in the decision tree in figure 22. 
 
(28) Interpreting one in “Look!  A red bottle!  Do you see another one?” 
 (a) Determine if the antecedent of one should be N0 or N’, using pN’. 
 (b) If the antecedent is N0, then the referent can have any-property. 
 (c) If the antecedent is N’, use pN’-prop to determine if the smaller N’ 
 constituent interpretation (any-property) or the larger N’ constituent 
 interpretation (N’-property) should be used. 
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Figure 22. Decision tree to interpret anaphoric one in utterances with more than one 
potential antecedent, such as “Look!  A red bottle!  Do you see another one?” The 
probability of having the adult interpretation (one = red bottle) is pN’*pN’-prop. 
 
 The probability of choosing the preferred adult interpretation (the larger N’ 
constituent is the antecedent of one) is the product of the probability of choosing the 
correct hypothesis in the syntax (N’) and that of choosing the correct hypothesis in 
the semantic interpretation (N’-property = larger N’ constituent): 0.500 * 0.500 = 
0.250. Given that the end state should be a probability near 1, a good learning 
algorithm should have a trajectory like that illustrated in figure 23. In short, the 
learner should steadily increase the probability of choosing the preferred adult 
interpretation. 
 

   
Figure 23.   The idealized trajectory of the probability of the correct interpretation for 
anaphoric one as a function of the data points encountered by the learner. 

3.5.6 Simulating an EO Bayesian Learner 
 
 Now that we have established how an EO Bayesian Learner learns and what 
the ideal learning outcome would be, we can simulate learning over our estimate of 
the set of data that 18-month olds have been exposed to. Each data point is analyzed 
in both the syntax and semantics domains, as relevant to the data type; and, each data 
point is classified for both syntax (unambiguous, type I ambiguous, or type II 
ambiguous) and semantics (same-property only, by generous assumption). 
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 3.5.6.1 Syntax 
 
 The probability pN’ is updated as each data point is observed.  The model 
requires a value for pN from N’, the probability of choosing a noun-only string from the 
N’ string set.  This requires that we determine how many strings are in the N’ set. 
There are two ways of doing this.  First, we could allow a string to consist of 
individual vocabulary items (“bottle”, “ball”, “ball behind his back”, etc.). 
Alternatively, we could allow a string to consist of individual categories (Noun, Noun 
PrepositionalPhrase, etc.).  Recall that as pN from N’ increases, the ratio between 
superset size and subset size decreases and the N’-hypothesis is not penalized as 
much by a type II ambiguous data point.  This means that a higher pN from N’ will 
generate a higher estimate for pN’. Therefore, to be generous and maximize the 
model’s estimate of pN’, I choose the option that maximizes the value of pN from N’ and 
allow the strings in the N’ set to consist of individual categories instead of vocabulary 
items. The number of categories is necessarily smaller than the number of vocabulary 
items in those categories, and so this yields a larger value for pN from N’. 
 Let the set of strings in N’ = {Noun, Adjective Noun, Noun 
PrepositionalPhrase, Adjective Noun PrepositionalPhrase}.15 The probability of 
producing a Noun string from this N’ string set is 1/4 or 0.25.  We can now look at 
the semantic domain. 
 
3.5.6.2 Semantics 
 
 The probability pN’-prop is updated as each data point is observed.  The model 
requires a value for c, the number of properties in the learner’s world.  Recall that as c 
increases, the ratio between the superset (any-property) and subset (N’-property) 
increases; the higher this ratio, the more the subset hypothesis (N’-property) is 
rewarded whenever a same-property data point is encountered.  Data from the 
MacArthur CDI (Dale & Fenson, 1996) suggest that 14-16 months olds know at least 
49 adjectives.  Therefore, I estimate that an 18-month old learner should be aware of 
at least 49 properties in the world.16   
 Note however that it is unlikely all 49 properties to choose from would be 
represented in a given situation (nice balls vs. red balls vs. blue balls vs. pretty balls, 
etc.).  Instead, a subset of the available categories the learner knows would be 
available in each case (perhaps as few as two: a red ball vs. a blue ball, for instance).  
So, assuming the learner considers the potential 49 properties the semantic referent in 
a given situation could have had will be an overestimation of the categories the 
learner actually considers.  Because of this, the simulated learner will receive more 
bias towards the semantic subset (the correct interpretation of anaphoric one) than a 
real learner would.  This will again yield an overestimation of a real learner’s 

                                                
15 This is still a conservative estimate – there are likely to be additional category strings in N’, such as 
Adjective Adjective Noun, because language is recursive.  Additional strings would again lower pN from 

N’. 
16  In reality, there are still more properties due to the combination of adjectives (nice red, big striped) 
and prepositional phrases (nice…behind his back, big striped…in the corner). I will not consider the 
consequences of recursive modification here.   
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probability of choosing the more restricted referent set in the semantics, and thus an 
overestimation of the probability of the learner choosing the correct interpretation. 
 
3.5.6.3 Linked Domain Updating 
 

Recall that the update algorithm analyzes each data point in two domains and 
shifts the probability between the opposing hypotheses within each domain and 
across domains accordingly, as relevant.  As we can see in figure 24, the learning 
trajectory as a function of the amount of data seen does not match our ideal learning 
outcome. In fact, as the learner encounters more data, the probability of the adult 
interpretation steadily drops to a final value of 0.171. This final value represents the 
product of the probability of the correct syntactic hypothesis (pN’), which is 0.310 
(1000 simulations, sd = .00377) and that of the correct semantic interpretation 
hypothesis (pN’-prop), which is 0.551 (1000 simulations, sd = .00382).17   Thus, based 
on the data observed, the learner is extremely unlikely to access the preferred adult 
interpretation for one  (i.e., that one is anaphoric to strings described by N’, and that 
the referent of one must have the N’ property) in an utterance with two potential 
antecedents. 

 

   
Figure 24.  The EO Bayesian Learner’s trajectory as a function of the amount of data 
encountered compared against the idealized trajectory for a learner. 
 
3.5.6.4 Changing t 
 

Recall that this model contains a parameter, t, which represents the amount of 
change the learner can undergo in the course of learning. I quantify this parameter as 
the number of data points the learner can use to update its probabilities. In my 
simulation, this was 4017, the number of data estimated during the learning period for 
an 18-month old.  However, one might be concerned that the value of t might play a 
critical role in determining the final probability of converging on the correct 

                                                
17 Note that this value is obtained using the procedure in which the learner chooses at random whether 
to analyze the data point in the syntax first or in the semantics first for unambiguous and type I data. 
The same value is obtained if the learner always analyzes the data point in the syntax first and if the 
learner always analyzes the data point in the semantics first. 
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interpretation of anaphoric one. In figure 25, I show the final probability of 
converging on the adult interpretation of anaphoric one as a function of the size of t. 

As we can see, the final value does not appreciably alter based on the size of t. 
The reason for this stability is that the behavior of the learner is dependent on the 
probability distribution of the data. In case t is small, each data point has a larger 
impact. In case t is large, each data point has a smaller impact. But, because the 
probability distribution is always the same, the learner always ends up with the same 
value so long as t is equal to the number of data points in the learning period. 
Moreover, if the learner encounters data after having seen t amount of data, this data 
cannot be used to update the probabilities. 

 
 

 
Figure 25.  Final probability of the adult interpretation, given different values of t. All 
values are approximately 0.171.   

 
However, suppose the learner encounters fewer data points than t.  For 

instance, if the t for 18-month olds was actually larger than 4017, then the final 
probability would vary with respect to t.  Below, I show the final probability for t 
greater than 4017 data points. 

 

 
Figure 26. “Final” probability of the adult interpretation, given different values of t 
and a learning period of 4017 data points. Values approach the initial probability of 
0.250, reaching 0.206 if t is 8017 data points (roughly twice the t assumed in the EO 
Bayesian learner). 
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Here, we see that the larger t is, the less the final probability deviates from the 
0.250 initial probability.  This is because each data point shifts the probability less, as 
t is larger.  What we effectively see is the result of the 4017 data point cut-off 
(assumed for 18-month olds) not being at the end of the learning period.  Thus, the 
learner (or learner’s brain) expects to encounter more data points before settling onto 
the final probability; the “final” probability at 4017 data points is higher than the 
ultimate final probability at the end of the learning period.  If the learner encounters t 
data points, the final probability will be 0.171, as we saw in figure 25 above. 

3.5.7 The Outcome of an EO Bayesian Learner 
 
 To summarize, even with conservative estimates of various parameters, the 
EO Bayesian learner is heavily biased against the preferred adult interpretation of 
anaphoric one in an utterance with two potential antecedents. In fact, the probability 
of converging on the preferred adult interpretation of anaphoric one is quite small 
(0.171). In short, there is less than a one in five chance of an EO Bayesian learner 
converging on the correct interpretation for anaphoric one.  
 This result is strikingly different from that reported in R&G, who found 
overwhelming success for a Bayesian learner. What is the source of this difference? 
Recall that R&G’s model made use of only a subset of the available data and gave 
priority to semantic data over syntactic data.  However, if a Bayesian learner is 
unconstrained in its data intake, then we would expect that it does not favor one type 
of data over any other - favoring one type of data over another represents a domain-
specific filter.  
 This EO Bayesian model, in contrast, lacks any domain-specific filter on data 
intake. It uses all the available data (unambiguous, type I ambiguous, and type II 
ambiguous) and treats syntactic and semantic data as equally relevant to the learner. 
As we can see, such an unconstrained domain-general learning procedure on its own 
fails to converge on the correct interpretation of anaphoric one with high probability. 
 This failure is especially striking because of how generous I was regarding the 
data available to the EO Bayesian learner and how the learner interpreted that data.  
In the next section, I highlight where I was generous and see that revoking that 
generosity only pushes the final probability of choosing the preferred adult 
interpretation closer to zero. So, I will conclude that unconstrained (and specifically, 
unfiltered) Bayesian learning by itself is not sufficient to model human learning or 
behavior in this domain. 
 As noted above, there were two places in the construction of the model where 
I biased the learner towards the correct interpretation of anaphoric one.  First, I gave a 
generous interpretation of the available data by providing a liberal estimate of the 
amount of informative data in the environment. Second, I made conservative 
assumptions about the learner’s understanding of the environment. Even in the face of 
this generosity, the EO Bayesian learner failed.  
 In the first case, I was unable to determine a fair estimate of the amount of 
informative data in the environment – for example, the confidence a learner had in the 
type I ambiguous data (section 3.5.3.2), the quantity of type I ambiguous data that 
were informative (section 3.5.3.3), and the quantity of data indicating the non-
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preferred adult interpretation (section 3.5.3.3). Consequently, I maximized the size of 
the informative data set in order to get an upper bound on the probability of 
converging on the correct interpretation. In what follows, I leave these assumptions as 
is.  
 In the second case, however, I show one way in which we can relax the 
conservative assumptions about the learner’s understanding of the environment to 
make these assumptions more realistic.  As we will see, the results reported above 
represent an upper bound on the probability of converging on the correct 
interpretation of anaphoric one when there are two potential antecedents. Changing 
the relevant assumptions only decreases this probability further. 
 The conservative assumption I will examine concerns the value of pN from N’, 
which is the probability of observing a Noun-only string, given the set of all the N’ 
strings. I previously described the elements of the N’ string set as category strings, 
such as Noun and Adjective Noun.  However, if I describe the elements of the N’ 
string set as strings consisting of  vocabulary items, such as “bottle” and “red bottle”, 
the probability of observing a Noun-only string is much smaller:  it is the number of 
Noun-only strings divided by the total number of N’ strings in the learner’s language.  
The MacArthur CDI (Dale & Fenson, 1996) suggests that 14-16 month olds know 
about 247 nouns and 49 adjectives.  Therefore, the total number of N’ strings for an 
18-month old learner consists of at least all the nouns and adjective+noun 
combinations, which is 247+49*247=12350.18 Using these (still somewhat 
conservative) estimates, pN from N’ is 0.0201.  This is considerably smaller than the 
previous value of 0.25.  Recall that the smaller the value of pN from N’, the more the N’ 
hypothesis is penalized whenever a type II ambiguous data point is encountered. 
 Using this less generous values of pN from N’ (0.0201, instead of 0.25), the 
probability of converging on the adult interpretation is the product of the probability 
of the correct syntactic hypothesis (0.235, 1000 simulations with sd = 0.00316) and 
the probability of the correct semantic interpretation hypothesis (0.554, 1000 
simulations with sd = 0.00358), which is 0.130. On the current, more realistic 
estimate of the model’s parameter, the learner now has less than a one in six chance 
of converging on the preferred adult interpretation of anaphoric one in a situation 
where there are two potential antecedents for one. 

3.6 On the Necessity of Domain-Specific Filters on Data Intake 
 
 We began our discussion with the observation that a learning theory can be 
divided into three components: the representational format, the filters on data intake, 
and the learning procedure.  The EO Bayesian learner attempted to solve the problem 
of anaphoric one using a prespecified representational format19, but no domain-
specific filters or learning procedures. In contrast, the model presented by R&G, 

                                                
18  Again, this is a conservative estimate since there are still more N’ strings from combinations of 
prepositional phrases as well as adjectives with prepositional phrases, for instance – e.g. “bottle in the 
corner”, “big striped ball behind his back”, etc. The effects of recursive modification only exacerbate 
the problem. 
19 Although our model requires antecedent knowledge of X-bar theoretic structures, it is an 
independent question whether these are innate or derived from experience. 
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which also used a prespecified representational format and a domain-general learning 
procedure, used two domain-specific filters on data intake. This model succeeded. We 
can now examine (a) whether both of these filters are necessary to converge on the 
preferred interpretation of anaphoric one, and (b) whether we can derive the 
necessary filters in a principled fashion. 
 The first filter R&G’s learner considers is to use only semantic data. That is, 
alternative syntactic hypotheses were evaluated only with respect to the predictions 
they made about the referents of phrases containing anaphoric one. These are the 
semantic consequences of the syntactic hypotheses.  However, these hypotheses were 
not evaluated with respect to the predictions they made about the set of possible 
strings that would be available as antecedents for anaphoric one. So, the syntactic 
implications of the syntactic hypotheses were not considered.  The second filter 
R&G’s learner used was to systematically exclude type II ambiguous data. These are 
examples in which the antecedent for anaphoric one is an NP containing no modifiers 
(e.g. …ball…one…). 
 We can now ask what happens to the EO Bayesian learner if we use these 
filters, separately and together. First, consider a variant of the EO Bayesian learner 
that learns only from the semantic consequences of its syntactic hypotheses. In the 
semantic interpretation domain, that learner maintained two hypotheses: the N’-
property hypothesis and the any-property hypothesis. The probabilities of these two 
hypotheses are updated on the basis of semantic data. Moreover, these hypotheses are 
linked to the syntactic hypotheses. The N’-property hypothesis is linked to the N’ 
hypothesis (specifically, the exclusive superset of the N’-hypothesis); and, the any-
property hypothesis is linked to the N0-hypothesis. Consequently, by updating the 
probabilities of the semantic hypotheses, we also update the probabilities of the 
syntactic hypotheses. If we ignore the syntactic consequences of the hypotheses, then 
the only way to update the syntactic hypotheses is via the link to the semantic 
hypothesis space.  

If I simulate an EO Bayesian learner that only learns via the semantic analysis 
of the data, the final probability for pN’  and pN’-prop is 0.810.  There is no deviation, 
since the data points consist of the 10 unambiguous data points, which are maximally 
informative for the N’ and N’-property hypotheses, and the 183 type I ambiguous 
data points, which I generously assumed were maximally informative for the N’ and 
N’-property hypotheses.  Moreover, there are no countervailing data points for the 
alternative hypotheses (N0 in the syntax and any-property in the semantics).  Thus, 
the probability for the correct hypotheses is continually increased.  Because only data 
with semantic consequences is considered, the type II ambiguous data is ignored and 
so its effect on the final probability is nullified.  The final probability of converging 
on the correct interpretation is the product of the two probabilities, which is 0.656.   
This is a marked improvement over the unfiltered Bayesian learner; the semantics-
only filtered Bayesian learner is nearly four times as likely to converge on the 
preferred adult interpretation of anaphoric one.  However, this probability is still 
significantly below the ideal probability of 1.0, which would indicate absolute 
certainty of choosing the preferred adult interpretation.  Analyzing the data only in 
terms of its semantic interpretation can generate significant improvement, but seems 
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to still fall short of leading the learner to the correct interpretation with high 
probability. 
 The second filter that R&G’s model used was the exclusion of type II 
ambiguous data. We can now ask what happens if I follow R&G in excluding this 
data. This variant of the model will, like the original EO Bayesian learner, take into 
account both the semantic and syntactic consequences of its hypotheses, but ignore 
the type II ambiguous data.  Note that ignoring the type II ambiguous data is an 
explicit filter that specifies the exclusion of this type of data, rather than having the 
exclusion result from a restriction on the semantic interpretation (as in the semantics-
only filter we just examined). 
 To simulate this no-type-II-data filter, I considered only the unambiguous and 
type I ambiguous data points (193, by my estimate), as in the previous filter.  
However, both the syntactic data and semantic data was used for updating, thus 
making use of the link across the two domains and the fact that there are multiple 
sources of information.  When I run the model on this data set, the final probability 
for the N’ hypothesis in the syntax and the N’-property hypothesis in the semantics is 
0.930. The product of these two, which represents the probability of converging on 
the correct interpretation for anaphoric one is 0.865. This is again a sharp 
improvement over the filter-free variant of the model (over 5 times more likely to 
converge on the correct interpretation).  Additionally, the no-type-II-data filter 
outstrips the semantics-only filter in performance (0.865 probability against 0.656 
probability), and is far closer to the ideal probability of 1.0 that indicates certainty for 
choosing the preferred adult interpretation of anaphoric one. 
 I now consider the consequences of using both of these filters simultaneously. 
Recall that the effect of the semantics-only filter, which restricted the learner to using 
only the semantic analysis, was that only semantic data could impact the hypotheses. 
This results in the type II ambiguous data being excluded from consideration, as it is 
uninformative with respect to the alternate semantic interpretations since it has only 
one potential antecedent.  The no-type-II-data filter explicitly excludes type II data.  
So, if the model use these two filters in concert, the result is the same as when it used 
the semantics-only filter alone; the type II ambiguous data is excluded (by the 
semantics-only filter, due to its lack of semantic consequences, and by the no-type-II-
data filter explicitly) and only semantic data can impact the probabilities associated 
with the hypotheses (due to the semantics-only filter).  Thus, the resulting 
probabilities for the N’ hypothesis and N’-property hypothesis are 0.810 and the 
probability of the preferred adult interpretation of anaphoric one is 0.656.  Since 
using both filters yields an identical result to using the semantics-only filter alone, the 
benefit gained from using the no-type-II-filter is lost.  It is therefore in the interest of 
the learner to apply only the no-type-II-filter.  That is, the learner should ignore type 
II ambiguous data, but still use both syntactic and semantics data equally to update 
the hypothesis spaces. 
 To summarize, the EO Bayesian learner shows us that a learner not equipped 
with domain-specific filters on data intake cannot converge on the correct 
interpretation for anaphoric one. Figure 27 displays the learning trajectories and 
outcomes for the full set of simulations: no filter, semantics-only filter, no-type-II-
data filter, both filters. As we can see, using the no-type-II-data filter by itself yields 
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the highest probability for the correct interpretation. Moreover, the efficacy of this 
filter is negated when used with the semantics-only filter.  In other words, the ideal 
learner must use both syntactic and semantic evidence, but be restricted in which 
sentences it takes as opportunities to learn from.  
 
 

   
Figure 27.  The Bayesian Learner’s trajectory as a function of the amount of data 
encountered: no filters, semantics-only filter, no-type-II-data filter, and both 
semantics-only filter and no-type-II-data filter. 

3.7 Deriving the Necessary Domain-Specific Filter 
 

 The necessity of a filter on data intake now raises an important question. 
Where does this filter come from? It seems fairly obvious that the learner cannot 
come equipped with a filter that says “ignore type II ambiguous data” without some 
procedure for identifying this data.  What we really want to know is whether there is a 
principled way to derive the existence of this filter. Specifically, we want the filter to 
ignore type II ambiguous data to be a consequence of some other principled learning 
strategy.  
 Suppose there is a general principle that learning occurs only in cases of 
uncertainty, because it is only in cases of uncertainty that information is conveyed 
(Shannon 1948; cf. Gallistel 2001).  The learning algorithm therefore engages only 
when there is uncertainty about the identity of the antecedent. 
 One suggestion would be to call on the semantics-only filter, arguing that 
interpreting anaphoric one is simply a semantic problem.  This could be termed a 
semantocentric approach to learning, and so the syntactic implications are irrelevant 
for learning.  The result of this strategy would be that the learner only uses the 
semantic consequences of the data to update the hypotheses.  As we saw in the 
previous section, this would rule out type II ambiguous data (with a single string as 
potential antecedent, such as ball), because such data has only one semantic 
interpretation available (any-property)– thus, there is no uncertainty.  However, as we 
also saw in the previous section, this causes the learner to lose the useful effect that 
the syntactic data can have.  Specifically, if only semantic data are used, the benefit 
gained from having linked domains is lost.  The learner uses only semantic data to 
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update the both hypothesis spaces; the learner does not also use the syntactic aspect of 
the data to update both hypothesis spaces.  This leads to a lower probability of 
converging on the adult interpretation of anaphoric one.  
 Another suggestion is that the learner takes a syntactocentric approach, and 
the problem the learner faces is solely to do with the string that is the antecedent of 
anaphoric one.  The only influence semantic interpretation data has is as a reflection 
of various syntactic hypotheses that are entertained. Suppose that the learner comes 
equipped with a constraint against anaphora to X0 categories (Baker, 1979; Hornstein 
& Lightfoot, 1981) or is able to have derived it previously using a syntactocentric 
filter on the available data (Foraker et al, in press). The syntactic hypothesis space is 
reduced to a single hypothesis: one = N’. In this situation, the learner needs only to 
solve a different problem in the syntax domain: namely, which N’ is the appropriate 
antecedent in cases in which there are multiple N’s available. 
 For example, if the learner hears “Here’s a red ball. Give me another one, 
please,” there are two N’s available, red ball and ball. These two different 
antecedents have different semantic interpretations: red ball is restricted to red balls 
whereas ball is not. In other words, the N’-property hypothesis is linked to the larger 
N’ red ball, whereas the any-property hypothesis is linked to the smaller N’ ball.  
Choosing the appropriate antecedent can be achieved using the update functions 
described for the EO Bayesian learner. 

Now, in cases in which there is only one N’ available (as in type II ambiguous 
data), there are no choices to be made in finding an antecedent. That is, if the learner 
hears, “Here’s a ball. Give me another one, please,” the only possible antecedent is 
the N’ ball. Consequently, the learner has no uncertainty about the meaning of the 
expression and so does not invoke the learning algorithm.  

This last point is critical for motivating the learner’s choice to ignore type II 
ambiguous data. As noted above, having a range of available antecedents causes 
uncertainty about the antecedent. It is this uncertainty that triggers the learning 
algorithm. It is important to see at this point that this syntactocentric approach 
requires the learner to be concerned not with the category of the antecedent (N’ vs. 
N0), but rather the identity of the antecedent when there are two or more N’s to 
choose from.  However, allowing the learner to view this as a problem of which 
syntactic antecedent to choose rather then merely as a problem of interpretation 
causes the learner to use the syntactic aspect of the data as well, which we found was 
crucial for a more successful learner. 

3.8 Future Directions 
 

 Learning anaphoric one is a case study that can be mined further still.  For 
example, we can consider if learning success is possible in a hypothesis space that 
contains more than two hypotheses in a subset-superset relationship.  Does the learner 
only consider two overlapping hypotheses at a time (small N’ ball vs. larger N’ red 
ball), or can the learner achieve success when, say, three hypothesis are considered 
concurrently (small N’ ball, larger N’ red ball, even larger N’ big red ball)?   
 Moreover, we can open up the current hypothesis space containing only two 
possible N’s even more if we allow the learner to entertain syntactic hypotheses 
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involving antecedents containing covert modifiers.  Suppose, for example, that the 
learner hears, “Look, a bottle!  Oh, and it’s red!  Jack doesn’t have one like that.”  
Suppose also that Jack has a non-red bottle, so it is clear that one refers to a red bottle 
in the world.  The difficulty for the learner is that the antecedent of one in the 
available utterances is overtly bottle, but it is implicitly red bottle (as the bottle Jack 
doesn’t have is a red bottle).  Yet, red bottle does not appear overtly in the data.  The 
learner might then need to entertain a hypothesis where the antecedent contains a 
covert modifier that corresponds to the property the referent in the world has, e.g. 
(red) bottle when the referent in the world is a red bottle.  This would alter how the 
learner updates the probabilities associated with each hypothesis when considering 
information from both the potential syntactic antecedents and semantic referents in 
the world for anaphoric one data points.   
 I do note that before pursuing this it is worthwhile to determine via standard 
experimental techniques, such as those used by LWF (2003), how real learners 
interpret a data point of this kind.  If they do interpret one as referring to a red bottle 
in the example above (and so having a linguistic antecedent of red bottle, even though 
it is not explicit in the utterance), then the question of how to expand the learner’s 
syntactic and semantic hypothesis spaces appropriately becomes particularly relevant. 
 In addition, I have defined the hypothesis spaces by the number of data types 
that are compatible with each hypothesis (e.g. Noun, Adjective Noun, etc.).  But we 
might also include frequency of data type, especially when considering the relative 
size of one hypothesis space against another. For instance, suppose the N0 hypothesis 
space consists of data types{Noun} and the N’ hypothesis space consists of data types 
{Noun, Adjective Noun}.  The N’ hypothesis space is twice as big as the N0 
hypothesis, under this definition.  But suppose the learner has encountered 9 
examples of Nouns and 1 example of Adjective Noun.  Then the N’ hypothesis space 
is only 1/10 larger than the N0 hypothesis space, given the learner’s current 
experience.  This then influences the updating that occurs when encountering an 
ambiguous data point (Noun).  The relative size of the hypothesis spaces alters over 
time, as the learner encounters more examples from the input.  So, the impact of 
ambiguous data likewise alters over time.  Under these conditions, is acquisition 
success possible without filtering the data intake?  This is certainly a question worth 
exploring. 

3.9 Conclusion 
  
 The case of anaphoric one demonstrates the interplay between domain-
specificity and domain-generality in learning.  What we have seen here is that a 
domain-general procedure can be successful, but crucially only when paired with 
domain-specific filters on data intake.  Moreover, I have suggested that the particular 
domain-specific filter that yields the best result can plausibly be derived from a 
domain-specific constraint on representation (either innately specified or derived via a 
syntactocentric analysis).   
 In addition, I have tried to highlight the consequences associated with the 
existence of multiple, connected levels of representation in language. Because the 
levels of representation are linked to each other, conclusions drawn by the learner in 
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one domain also ramify in other domains. When the learner used both syntactic and 
semantic information with no filters, the result was very poor learning. When the 
learner used both syntactic and semantic information , in concert with the no-type-II-
data filter, the result was very good learning.  However, when I disconnected the two 
domains, as when the learner learned only from semantic data, the result was learning 
that was not as good (though still much better than no filtering of the data at all).  
This was due to some of the available information – the syntactic implications of the 
syntactic hypotheses – being ignored.  Thus, the connection between domains allows 
multiple analyses across domains of a single data point to each have an effect.  This, 
in turn, will magnify the effect of a given data point, thus increasing the amount of 
information that can be salvaged by the learner.  This lesson should be generalized to 
learning in any situation involving multiple linked levels of representation. 
 Finally, it is important to recognize that I have simulated learning only for one 
very specific case of grammar acquisition. However, the inherent semantic 
compositionality of syntactic representations provides a severe hurdle for Bayesian 
learning techniques that are biased towards the most restrictive hypothesis. As I have 
noted, as the syntactic structure grows, the set of referents in the semantics shrinks. 
Consequently, the most restrictive hypothesis in the syntax corresponds to the least 
restrictive hypothesis in the semantic interpretation, and vice versa. This makes it 
impossible to define a “most restrictive hypothesis” across both domains.  
 The existence of multiple, linked levels of representation in language, and 
presumably elsewhere in cognition, has important consequences for learning. A link 
between domains can amplify the positive effects that come from using data from 
multiple sources. Nonetheless, this link can structure the data in such a way as to 
nullify the essential advantage of unconstrained Bayesian learning techniques. 
 
 

 




