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Chapter 2: Bayesian Updating in a Linguistic Framework 
 
 The formal characterization of language learning from Yang (2002) consists of 
a language learning algorithm L, a set S of potential states the learner can be in, and 
experience from the linguistic environment E.  The language learning algorithm L 
contains specifications for (a) the data intake the learner uses to update beliefs in 
available hypotheses and (b) the update procedure itself.  In this chapter, I will 
describe the instantiation of the update procedure I will use for the case studies in the 
following chapters: an adapted form of Bayesian updating. Specifically, I will 
demonstrate how a standard implementation of this updating procedure (Manning & 
Schütze, 1999) can be adapted to language learning problems. 

2.1 Bayesian Updating: Overview 
 
 Bayesian updating is a probabilistic updating procedure that is widely used in 
natural language processing tasks to update the probabilities of alternate available 
hypotheses (Manning & Schütze, 1999). Specifically, it calculates the conditional 
probability of the hypothesis, given the data.  Probabilistic reasoning has been shown 
to be the optimal strategy for solving problems and making decisions given noisy or 
incomplete information (J. Pearl, 1996).   Like many other systems, the linguistic 
system is often learned from observable data that is highly ambiguous and exception-
filled.  Thus, a probabilistic component seems necessary to the language learning 
mechanism.  
 There is also evidence for the psychological validity of a procedure like 
Bayesian updating as a method used by adult humans (Tenenbaum & Griffiths, 2001; 
Cosmides & Tooby, 1996; Staddon, 1988) and infants (Gerken, 2006).  Specifically, 
these studies demonstrate probabilistic convergence on the more restrictive 
hypothesis compatible with the observable data.  This is in line with the Bayesian 
updating procedure adopted here when there are two hypotheses under consideration 
that differ in their level of restrictiveness (section 2.1.5). 
  The main purpose of Bayesian updating is to infer the likelihood of a given 
hypothesis, given a series of examples as input.  The implementation of Bayesian 
updating depends greatly on the structure of the hypothesis space, since the relation of 
the hypotheses to each other affects how probability is shifted between the different 
hypotheses.  I will now examine several instances of hypothesis spaces below and 
their effect on Bayesian updating. 

2.1.1 A Simple Case: Two Non-overlapping Hypotheses, Equally Likely 
 
 Suppose there are two non-overlapping hypotheses in the set: A and B.  By 
non-overlapping, I mean that the examples in the input will either favor A or favor B 
unambiguously.  There are no examples that signal (or can be accounted for by) both 
A and B – each hypothesis covers a distinct set of data points. Suppose also that the 
learner who will be using Bayesian updating has no reason to be biased towards one 
hypothesis, so the initial probabilities assigned to both A and B are 0.5.  These are the 
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prior probabilities associated with each hypothesis. 

    
Figure 1. Two non-overlapping hypotheses, equally probable initially.  The shading 
reflects how much probability is associated with each hypothesis.   
 
 The learner then encounters some amount of data (say d1 data points) and uses 
Bayesian updating to shift the probability mass between A and B to reflect the 
distribution in the data intake.  Each data point will cause the learner to shift the 
probabilities a small amount until the probability distribution among the hypotheses 
eventually matches the probability distribution encountered in the intake.   

(a) (b)  

  (c)  
Figure 2.  Two non-overlapping hypotheses with equal initial probability after seeing 
various distributions of intake (the total amount is quantified as d1 data points).  The 
shading reflects how much probability is associated with each hypothesis. 
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 If the data intake consists only of examples of A, the learner will eventually 
shift the probability so A is 1.0 and B is 0.0 (2a).2  Conversely, if the data intake 
consists only of examples of B, the learner will eventually shift the probability so A is 
0.0 and B is 1.0 (2b).  In each of these cases, the learner shifts all the probability to a 
single hypothesis, thereby converging on one hypothesis as correct.  However, it is 
possible that the learner will encounter a mixed distribution between A and B in the 
data intake.  If so, the learner will shift the probability to reflect the bias in the 
perceived distribution since the target state is a probabilistic distribution between A 
and B.  As a concrete example, if the input is consistently 30% A examples and 70% 
B examples, the learner will eventually shift the probability of A to be significantly 
less than that of B, reflecting the 30-70 distribution (2c). 
 

2.1.2. A Variant on the Simple Case: Two Non-overlapping Hypotheses, with an 
Initial Bias for One Hypothesis 
 
 Suppose the hypothesis space again has two non-overlapping hypotheses, A 
and B.  However, suppose the learner is biased towards A initially, so A has a higher 
prior probability associated with it than B does.  For example, let the initial 
probability assigned to A be 0.7, and the initial probability assigned to B be 0.3.  This 
scenario could represent a case where A is the default hypothesis and B is the 
exceptional (or marked) hypothesis – thus, B has a lower prior probability. 

     
Figure 3. Two non-overlapping hypotheses, with an initial bias towards hypothesis A.  
The shading reflects how much probability is associated with each hypothesis. 
 
 The learner then encounters some amount of data and uses Bayesian updating 
to shift the probability mass between A and B to reflect the distribution in the data 
intake.  As before, a learner encountering all A or all B examples will eventually shift 
the probability so that one hypothesis is 1.0 while the other is 0.0.  However, because 
the prior probability of A is higher than that of B, it will take a smaller number of A 
examples to cause the probability of A to reach 1.0 (less than the d1 data points in the 
unbiased hypothesis space) (4a).  Conversely, since B is the disfavored hypothesis 
                                                
2 However, it is possible that the endpoints (0.0 and 1.0) will only be reached in the limit.  Still, after 
encountering overwhelming data in support of one hypothesis over the other, the learner using 
Bayesian updating will likely be very near the endpoints.  This point will hold true for all Bayesian 
updating examples in the remaining sections of this chapter. 
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initially, it will take a larger number of B examples to cause the probability of B to 
reach 1.0 (more than the d1 data points in the unbiased hypothesis space) (4b).  If the 
data intake has a mixed distribution, the same logic applies: a data distribution 
favoring A will be reflected more quickly in the probabilities the learner assigns to 
the hypotheses than a data distribution favoring B (4c). 

(a)  (b)  

  (c)  
Figure 4.  Two non-overlapping hypotheses with an initial bias for hypothesis A after 
seeing various distributions and quantities of intake.  The shading reflects how much 
probability is associated with each hypothesis. 

2.1.3 A Less Simple Case:  Two Overlapping Hypotheses, Equally Likely 
 
 Suppose there are two overlapping hypotheses in the set: A and B.  By 
overlapping, I mean that there are two types of examples, unambiguous and 
ambiguous.  Unambiguous examples either signal A or signal B.  Ambiguous 
examples can be accounted for by both hypotheses.  Thus, while each hypothesis has 
a unique subset of examples associated with it, there is also a subset that can be 
covered by both hypotheses. Suppose also that the learner has no reason to be biased 
towards one hypothesis, so the initial probabilities assigned to both A and B are 0.5. 
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Figure 5. Two overlapping hypotheses, with equal probability initially.  The shading 
reflects how much probability is associated with each hypothesis. 
 
 The learner then encounters some amount of data and uses Bayesian updating 
to shift the probability mass between A and B to reflect the distribution in the data 
intake.  The important consideration is whether a given data point is unambiguous or 
ambiguous.  If unambiguous (for either A or B), the updating will work the same as in 
the simple non-overlapping case, and the probability will be shifted slightly in favor 
of the hypothesis the data point is unambiguous for.   
 However, if the data point is ambiguous, the learning procedure must decide 
what to do with it.  One possibility is to simply ignore the data point – this is the same 
as applying an unambiguous data filter that updates based only on unambiguous data 
points.  This is a filter that will be explored in detail in chapters 4 and 5.  Another 
possibility is to employ some strategy to deal with the ambiguous data point: use 
knowledge of the hypothesis space layout to assign partial credit (an approach 
explored in section 2.1.5 and chapter 3), use an informed guessing strategy (Fodor & 
Sakas, 2001), or randomly assign the data point to one hypothesis based on the 
current probabilities of both hypotheses (Yang, 2002).  The random assignment 
method assumes that the effect of such ambiguous data will wash out in the face of 
the unambiguous data.   
 If the learner uses some strategy to extract information from an ambiguous 
data point in the overlapping hypothesis scenario, the learner will need to encounter 
more total data points than in the equivalent non-overlapping hypothesis scenario in 
order to converge on a hypothesis (more than d1 data points).  This is simply a result 
of using both unambiguous and ambiguous data points to update the probabilities.  
Interestingly, if the learner uses an unambiguous data filter and ignores ambiguous 
data points, then we have a learning scenario that is very similar to the non-
overlapping scenario: the learner must encounter d1 unambiguous data points in order 
to converge on the correct hypothesis. (In the non-overlapping hypothesis space, all 
data points are unambiguous.) Still, the total quantity of data points the learner 
encounters in the overlapping case will be greater than d1, since the learner 
encounters both unambiguous and ambiguous data points.  However, the only data 
points that cause any updating are the d1 unambiguous ones. 
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2.1.4 A Variant of the Less Simple Case: Two Overlapping Hypotheses, with an 
Initial Bias for One Hypothesis 
 
 A variant of the overlapping case has biased initial probabilities.  For instance, 
suppose hypothesis A has a prior probability of 0.7 while hypothesis B has a prior 
probability of 0.3.  There are unambiguous examples of A, unambiguous examples of 
B, and ambiguous examples that can be accounted for by both A and B.   
 In terms of how the model deals with unambiguous and ambiguous data 
points, this scenario works the same as the unbiased overlapping scenario described 
in the previous section.  The learner can either ignore the ambiguous data points, or 
employ some method to attribute them to one hypothesis. 
 However, as in the biased non-overlapping scenario described before, the 
number of data points the learner must encounter to converge on a hypothesis 
depends on how the data intake distribution relates to the prior probability 
distribution.  If the data intake distribution is biased in the same direction as the prior 
probability distribution (say, 0.8 for A and 0.2 for B), the learner will need to 
encounter fewer data points to converge on the correct probability distribution.  
Conversely, if the data intake distribution is biased in the opposite direction from the 
prior probability distribution (say, 0.2 for A and 0.8 for B), the learner will need to 
encounter more data points to converge on the correct probability distribution. 

2.1.5 An Even Less Simple Case: Two Overlapping Hypotheses in a Subset Relation, 
Equally Likely 
 
 Suppose the hypothesis space again consist of two overlapping hypotheses, 
but one hypothesis is a subset of the other hypothesis.  Let A be a subset of B, so all 
examples of A are also examples of B (Tenenbaum & Griffiths, 2001; Manzini & 
Wexler, 1987; Berwick, 1985; Berwick & Weinberg, 1984; Pinker, 1979).  That is, 
while B has unambiguous examples, there are no unambiguous examples for A – all 
examples covered by hypothesis A can also be covered by hypothesis B.  Suppose the 
initial probabilities assigned to both A and B are 0.5.  
 

    
Figure 6. Two overlapping hypotheses in a subset relation, with equal probability 
initially.  The shading reflects how much probability is associated with each 
hypothesis. 
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 Suppose the learner encounters only unambiguous examples for B in the data 
intake (say, d2 data points).  Eventually, the learner will shift all the probability to B 
(B = 1.0, A = 0.0). 
 

    
Figure 7.  Two overlapping hypotheses in a subset relation with equal probability 
initially, after seeing d2 data points that are unambiguous for hypothesis B.  The 
shading reflects how much probability is associated with each hypothesis. 
 
 But what if hypothesis A (the subset hypothesis) is the correct one for the 
target language?  All examples covered by hypothesis A are also covered by 
hypothesis B – they are thus ambiguous data points.  It is impossible for the learner to 
encounter any unambiguous data points for hypothesis A.  If the data intake consists 
only of these ambiguous data points, one might expect the learner to remain at a 
neutral probability of 0.5 for each hypothesis since these data points are compatible 
with each hypothesis.  The learner would be doomed never to converge on the correct 
hypothesis, the subset hypothesis A. 
 One way to save the learner from this fate is to exploit the layout of the 
hypothesis space.  The Bayesian updating procedure can take advantage of the subset-
superset relation of the hypotheses to favor hypothesis A when encountering an 
ambiguous data point.  The logic is as follows: 
 
 (1) Logic of Favoring the Subset Hypothesis For an Ambiguous Data point    
  (a) If hypothesis B (the superset hypothesis) was correct, the data  
  intake should contain at least  some examples covered only in the  
  superset B (i.e. unambiguous B examples). 
  (b) If only examples covered by the subset A are encountered in the 
  data intake, it  becomes more and more unlikely that hypothesis B is 
  correct.   
  (c) Therefore, the more the learner encounters only data points in the 
  subset A (even though these are ambiguous data points), the more the 
  learner will favor the subset hypothesis A. 
 
 A learner taking advantage of this logic will therefore consider a restriction to 
the subset A more and more probable as time goes on if only subset data points are 
encountered.  This logic can be implemented in the Bayesian updating procedure 
itself, and has been referred to as the size principle (Tenenbaum & Griffiths, 2001).  
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Essentially, the smaller size of the set of examples covered by hypothesis A benefits 
hypothesis A when ambiguous examples are encountered.  Specifically, the likelihood 
of encountering these examples given the smaller set covered by A is greater than the 
likelihood of encountering these examples given the larger set covered by B.  So, A is 
slightly favored when encountering an ambiguous example covered in its subset.3 
After a sufficient number of ambiguous examples in the data intake (and, importantly 
for the basic version of the size principle, no unambiguous examples of the superset 
B), A will be highly favored. 
 We note that there is a disparity between the quantity of data points required 
to converge on B when using unambiguous data points as compared to the quantity 
required to converge on A using ambiguous data points.  In particular, if the learner 
requires d2 data points to reach probability p for B when encountering unambiguous 
B data points, the learner will require more than d2 data points to reach p for A when 
encountering ambiguous data points.  This is because the size principle allows A to 
only be slightly favored for an ambiguous data point while B is exclusively favored 
for an unambiguous B data point, though the actual amount of favoring depends on 
the relative sizes of A and B.   
  
 

    
Figure 8. Two overlapping hypotheses in a subset relation with equal probability 
initially, after seeing more than d2  data points that are examples of A.  The learner 
uses the size principle to converge on hypothesis A.  The shading reflects how much 
probability is associated with each hypothesis. 
 
 If the data intake has a mixed distribution (both unambiguous B examples and 
ambiguous examples), the unambiguous B examples will have more effect on the 
learner’s probability distribution than the ambiguous examples that slightly favor A.  
Both types of data points, however, will contribute to the final probability the learner 
converges on.  Again, the number of data points required to converge on the final 
probability will be greater in this case (more than d2 data points) than if only 
unambiguous B examples were encountered and the correct hypothesis was B 
exclusively. 

                                                
3 The amount A is favored depends on the relative sizes of A and B, which the learner must already 
know (perhaps as a separate prior) or empirically derive from the data.  The smaller A is compared to 
B, the more A is favored given an ambiguous data point.   
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Figure 9.  Two overlapping hypotheses in a subset relation with equal probability 
initially, after seeing more than d2 data points that are a mix of unambiguous B 
examples and ambiguous examples in the subset A.  The learner uses the size 
principle to converge on the probability that reflects the distribution observed in the 
input.  The shading reflects how much probability is associated with each hypothesis. 
 
 It is important to note that exploiting the hypothesis space layout using the 
heuristic of the size principle is a non-trivial contribution to the learning problem for 
hypotheses arrayed in a subset-superset relationship. Though it is a heuristic and so 
not guaranteed to succeed for all cases, it nonetheless has an advantage over 
approaches that do not exploit the hypothesis space layout.  Specifically, if only 
subset data are encountered, it will converge on the subset.  
 Suppose, however, that the learner did not use a heuristic like the size 
principle for learning.  An instantiation of learning like this that still retains the 
advantages of probabilistic learning is the Naïve Parameter Learner (Yang, 2002), 
and the rate at which the learner shifts probabilities is represented by a parameter, 
gamma.  A more conservative learner will have a smaller gamma, while a more 
liberal learner will have a larger gamma.  For a data point, the Naïve Parameter 
Learner (NP learner) chooses one hypothesis and determines if the data point is 
compatible with it.  If so, that hypothesis is rewarded while the remaining ones are 
punished; if not, it is punished while the remaining ones are rewarded.  The update 
equations are given in (2), assuming two hypotheses, G1 and G2 (from Yang (2002)). 
 
(2) Update equations for the NP learner for a hypothesis space with two hypotheses, 
G1 and G2, given a data point d and testing G1 against d 
 (a) If G1 is compatible with d,  
  pG1 = pG1 + gamma*(1 – pG1) 
  pG2 = (1-gamma)*pG2 
 (b) If G1 is not compatible with d, 
  pG1 = (1-gamma)* pG1 
  pG2 = gamma + (1-gamma)*pG2 
 
 To give a concrete example, suppose pG1 = pG2 = 0.5, and gamma = 0.005.  
Suppose data point d is encountered.  The learner will test G1 with a 50% chance, and 
G2 with a 50% chance.  Suppose the learner tests G1, and G1 is compatible with d.  
Then, the updated pG1 = 0.5 + 0.005(1-0.5) = .5025.  The updated pG2 = (1-0.005)*0.5 
= 0.4975.   
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 As another example, suppose again that pG1 = pG2 = 0.5, and gamma = 0.005. 
Suppose data point d is encountered, and the learner tests G1 and finds it is not 
compatible with d.  Then, the updated pG1 = (1-0.005)*0.5 = 0.4975, and the updated 
pG2 = 0.005 + (1-0.005)*0.5 = 0.5025. 
 As these two examples show for a hypothesis space that consists only of two 
hypotheses, when one hypothesis is punished by a certain amount, the other is 
rewarded by that same amount. If there were more than 2 hypotheses, the amount the 
tested hypothesis (G1) is punished/rewarded (gamma) would be distributed among 
the alternative hypotheses (G2…Gn).   
 The NP learner is implicitly driven by the availability of unambiguous data for 
one hypothesis – the alternative hypothesis is punished whenever it is used to 
interpret such unambiguous data points. Yet, if all data come from the subset 
hypothesis, then there will be no unambiguous data to punish the superset hypothesis.  
The NP learner encounters only ambiguous data, and is actually driven to 
convergence on either hypothesis, given sufficient data.  This is shown in figure 10, 
assuming a hypothesis space where G1 is a subset of G2, and learning rates 
represented by gamma = 0.001 to 0.005, given 100,000 data points.  The more liberal 
the learner is, the more likely the learner is to converge to one hypothesis or the other.  
Importantly, there is no guarantee that the learner will converge on the subset 
hypothesis, even though all data points come from the subset hypothesis. 
 

 
Figure 10. The NP learner, given ambiguous data from only the subset hypothesis, 
G1. This shows the results of 10 learners for each value of gamma, where gamma 
represents how conservative/liberal learning is.  The NP learner has a tendency to 
converge to one hypothesis or the other, but is just as likely to converge to the subset 
G1 as the superset G2.   
 
 So, for learning cases where the hypotheses have a subset-superset relation to 
each other, approaches that do not exploit the hypothesis space layout will have 
difficulty converging on the subset hypothesis.  The heuristic of the size principle 
provides a way to use this information to bias the learner towards the correct 
hypothesis. 
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2.1.6 Hypothesis Spaces for Language Learning 
 
 As we have seen, the layout of the hypothesis space and the relations between 
the hypotheses greatly affect how Bayesian updating uses the data intake to shift 
probability between alternate hypotheses.  Crucially for Bayesian updating to be able 
to function, the hypothesis space must already be specified (cf. Tenenbaum, Griffiths, 
& Kemp (2006) for theory-based Bayesian models that emphasize this point).  
Otherwise, the Bayesian updating procedure has nothing over which to operate.  In 
short, if the learner has no options to select from, Bayesian updating cannot help. A 
Bayesian updating procedure dovetails with a defined hypothesis space; it does not 
replace it. 
 For language learning, a simple interpretation in the parametric framework of 
the generative tradition (Chomsky, 1981) is that there is a hypothesis space associated 
with each parameter, and alternative hypotheses within a given hypothesis space 
correspond to opposing values for linguistic parameters.  For instance, suppose we 
examine the syntactic parameter of Verb-Second movement.  A language with Verb-
Second movement (such as German) will move the tensed Verb to the second phrasal 
position in the main clause; a language without Verb-Second movement (such as 
English) will not.  The Verb-Second hypothesis space thus contains the hypotheses 
Verb-Second-Movement and No-Verb-Second-Movement.  A learner of either 
German or English will encounter data points from the target language and use the 
data intake to converge on the appropriate hypothesis for that language. 
 In the remaining chapters, we will examine different hypothesis spaces in 
different domains of linguistics.  Chapter 3 explores a language learning problem that 
spans syntax and semantics: English anaphoric one.  Both the syntactic and semantic 
hypothesis spaces for English anaphoric one contain two overlapping hypotheses in a 
subset-superset relation, and these hypotheses are equally probable initially.4   
 Chapter 4 investigates a language learning problem in Old English syntax 
where the target state is a probabilistic distribution between two hypotheses, Object-
Verb order and Verb-Object word order, that changes over time.  The hypotheses are 
overlapping – that is, there are both unambiguous data points for each hypothesis and 
ambiguous data points.  Both hypotheses are equally probably initially.   
 Chapter 5 studies the language learning problem of English metrical 
phonology, which is a data set plagued by noisy and contradictory data.  There are 
nine separate interacting parameters, each with their own hypothesis spaces.  Each 
hypothesis space contains two hypotheses that are overlapping, and these hypotheses 
are equally probable initially. 
 
 
 
  

                                                
4 Note that it is an assumption of the model that these hypotheses are equiprobable initially, rather than 
a derivation from theoretical work or an observation from experimental work. 
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2.2 Bayesian Updating: General Implementation for Language Learning in a 
Hypothesis Space with Two Hypotheses 
 
 I will now describe how the mathematical framework of Bayesian updating 
(Manning & Schütze, 1999) can be adapted to a language learning hypothesis space 
with two non-overlapping hypotheses, A and B.5  The only data points a learner 
encounters will be unambiguous for either A or B.  Note that we can use this same 
procedure for an overlapping hypothesis space (having both unambiguous data points 
and ambiguous data points) if the learner employs an unambiguous data filter that 
ignores the ambiguous data points.  In this scenario, the only data points the learner 
uses to update the hypothesis probabilities are the unambiguous data points, which 
signal either A or B.  
 I will then briefly sketch how to modify the Bayesian update functions to 
account for an overlapping hypothesis space where the hypotheses are in a subset-
superset relation.  The details of this modification will be described more thoroughly 
in chapter 3, since the specific modifications are dependent on properties of the 
hypotheses themselves. 

2.2.1 Updating with Unambiguous Data in a Hypothesis Space with Two Hypotheses 
 
 Suppose the hypothesis space consists of two hypotheses, A and B.  Let the 
probability of hypothesis A be pA and the probability of hypothesis B be pB. Below, I 
describe how to update pA.  Before updating, pA represents the prior probability of A; 
after updating, pA represents the posterior probability of A. The calculation of pB is 
straightforward once pA is known, since pB = 1 – pA, given that there are only two 
hypotheses in the hypothesis space and only one of them can be correct for any given 
data point. 
 I assume that the learner extracts information only from the current data point, 
and uses the information from this data point to update the probabilities of the 
hypotheses. Thus, the sequence length for the language learning Bayesian update 
function is 1.  Importantly, the learner does not store data points and subsequently 
conduct analyses across sequences of stored data points.  So, the learner is not 
required to remember past data points in their raw form (i.e. as utterances), which I 
believe is a favorable quality for a model that aims to be psychologically realistic. 

                                                
5 Of course there are several alternative approaches for the updating procedure. For instance, one 
might try likelihood ratios (Neyman, J. & Pearson, E., 1928) to shift probability between hypotheses, 
given a data point.  However, likelihood ratios require a prior knowledge of the success of the test used 
to identify the property of interest.  Mapping this to the language learning problem, the learner would 
need to know the success of whatever method is used to identify unambiguous data for identifying 
actual unambiguous data.  To know this, the learner must know what actual unambiguous data is.  To 
know that, the learner would need to already know the system, so as to accurately determine what 
unambiguous data for it is.  This, however, defeats needing to learn the system in the first place. 
 A more promising alternative is LaPlace’s rule of succession (Manning & Schütze, 1999) 
which normalizes the number of previous successes (e.g. data points identified as unambiguous) 
against the total number of data points observed.  Though similar to the adaptation of Bayesian 
updating used in this dissertation, it does not rely on a parameter corresponding to the period of 
fluctuation a learner is allowed.  The benefit of this parameter (t) is discussed in section 2.3.3. 
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 Because there are exactly two hypotheses in the hypothesis space, I use a 
binomial distribution to approximate a learner’s expectation of the data distribution to 
be encountered.  The binomial distribution is centered at pA, so the learner’s 
expectation is about the quantity of A data points that should be encountered in the 
data intake. 
 The binomial distribution is normally used to represent the likelihood of 
seeing r data points out of t total with some property.  For example, if these are coin 
flip data points, the property might be “is heads”.  There are only two choices for 
each data point: the property is either present or absent.  If these are coin flip data 
points, the coin is either heads or it isn’t (specifically, it’s tails).  For the hypothesis 
space we are considering, the data point is either an example of A, or it isn’t 
(specifically, it’s an example of B).  The highest confidence is assigned to the 
distribution where r A data points are observed our of t total: r = t*pA. Recall that the 
binomial distribution is centered at pA, and so the learner is most confident that the 
probability of seeing an A data point is pA.   So, r is the most probable number of A 
data points expected out of t total, given the current probability of hypothesis A, pA. 
 As an example, suppose pA is 0.5, as it is in the initial state in an unbiased 
hypothesis space before the learner has encountered any data points.  The binomial 
distribution is centered at 0.5, which we can interpret as the learner having the most 
confidence that half the total data points encountered will be A data points.  
Specifically, the learner will expect r = t*0.5 data points to be A data points. 
 To update pA after seeing a single unambiguous A data point a, we can follow 
Manning & Schütze’s (1999) Bayesian updating algorithm and calculate the 
maximum of the a posteriori (MAP) probability.  The a posteriori probability is the 
probability that pA is the correct probability to center the binomial distribution at after 
seeing an unambiguous data point A; pA represents the expected probability of 
encountering an A data point. We maximize this probability because we are using a 
probability distribution (specifically, the binomial distribution) to approximate the 
learner’s expectation about the data distribution to be encountered.  We want the 
maximum a posteriori probability that comes from using this probability distribution. 
 We represent the a posteriori probability as Prob(pA| a)6, and calculate it using 
Bayes’ rule: 
 

(3) 

! 

Prob(pA | a) =  
Prob(a | pA) *  Prob(pA)

Prob(a)
 

 
 We can now examine individual pieces of the right hand side equation.  
Prob(a | pA) is the probability of encountering the unambiguous A data point a, given 
that pA is the correct probability to center the binomial distribution at.  For a single 
instance (i.e. for the single data point a), the probability of encountering 1 instance of 
a for 1 observation from the binomial distribution centered at pA is 

                                                
6 Prob(pA| a) is actually intended, rather than Prob(A| a).  This is because we are attempting to 
calculate the probability that pA is the correct probability to center the binomial distribution at, given 
data point a. So, Prob(pA | a) can be thought of as shorthand for Prob(pA is the correct center for 
binomial distribution that will match the distribution in the learner’s intake | a). 
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! 

1

1( ) *pA
1
* (1-  pA)

1-1, which is pA. 

 Prob(pA) is the probability that pA is the correct probability to center the 
binomial distribution at, i.e. that the learner should be most confident that an A data 
point will be encountered with probability pA.  Recall that a binomial distribution 
centered at pA will assign the highest confidence to the situation where r = (pA*t) A 
data points are encountered out of t total.  We can instantiate Prob(pA) as the 
probability of encountering r A data points out of t total in a binomial distribution for 
all values of r, from 0 to t.7 
 
(4) 

! 

Prob(pA)  =  
r

t( ) * pA
r * (1-  pA)t -r  (for each r,  0 "  r "  t)  

 
 Substituting these pieces back into equation (3) for the a posteriori probability 
yields (5): 
 

(5) 

! 

Prob(pA | a) =  
pA *  

r

t( ) *pA
r * (1- pA)t -r

Prob(a)
 (for each r,  0 "  r "  t)  

 
 We can now calculate the MAP probability by finding the maximum of this 
equation.  To do this, we take the derivative with respect to pA, set it equal to 0, and 
solve for pA. 
 
(6) Calculating the MAP probability  

! 

d

dpA

(Prob(pA | a) =  
d

dpA

(
pA *  

r

t( ) *pA
r * (1- pA)t -r

Prob(a)
) =  0   

 

! 

d

dpA

(
pA *  

r

t( ) *pA
r * (1- pA)t -r

P r o b ( a ) 
) =  0 (since Prob(a) is a constant w.r.t. pA)   

 

! 

pA =  
r +1

t +1
 

 
 Recall that r is the previous expected number of A data points encountered out 
of t data points total.  Hence, r = pA old*t.  Therefore, we write the update function for 
pA after encountering unambiguous A data point a as (7a). 
 
(7a) Update function for pA after seeing unambiguous A data point a 
 

  

! 

pA =
pA old * t +1

t +1
 

 
 
                                                
7 Note that approximating Prob(pA) this way is a non-standard assumption.  However, it yields update 
equations with psychologically desirable properties that other more standard assumptions do not. 
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 An intuitive interpretation of this update function is that the numerator 
represents the learner’s confidence that the encountered unambiguous A data point a 
is a result of the A hypothesis being correct; the denominator represents the total data 
encountered so far.  Thus, 1 is added to the numerator because the learner is fully 
confident that the unambiguous data point a indicates the A hypothesis is correct; 1 is 
added to the denominator because a single data point has been encountered. 
 As we observed before, given that there are only two hypotheses in the 
hypothesis space, we can calculate the new pB after seeing an unambiguous A data 
point a as pB = 1.0 – pA. 
 
(7b) Update function for pB after seeing unambiguous A data point a 
 

 

! 

pB =  1-  pA =  1-
pA old * t +1

t +1
 

  
 Now, we can also derive the update functions for pA and pB after seeing an 
unambiguous B data point b.  The derivation of the update function for pB after seeing 
b is identical to the derivation of the update function for pA after seeing a, and leads 
to equation (8). 
  

(8) 

! 

pB =
pB old * t +1

t +1
 

 
 Again, since there are only two hypotheses in the hypothesis space, pB = 1.0 – 
pA. So, if we wish to track the value of pA, we can substitute this into equation (7) and 
derive the update function for pA after an unambiguous B data point b is encountered. 
 
(9) 

  

! 

pB =
pB old * t +1

t +1

(1" pA) =  
(1- pA old) * t +  1

t +1

pA =  1-  
(1- pA old) * t +  1

t +1
=  

t +1 -  (t -  pA old * t +  1)

t +1

pA =  
pA old * t

t +1

 

 
 
 This update equation is identical to (7a), except that 0 is added to the 
numerator instead of 1.  This reflects the intuitive notion that the learner should have 
no confidence that the A hypothesis generated the unambiguous B data point b just 
encountered. 
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2.2.2 Updating with Ambiguous Data in a Hypothesis Space with Two Hypotheses 
 
 We have just seen how to derive the update functions for when an 
unambiguous data point is encountered.  Suppose, however, that the learner 
encounters an ambiguous data point and does not impose a filter that ignores such 
data for the purposes of updating.  Since this data point is ambiguous between 
hypotheses A and B, the value added to the numerator should be a reflection of the 
learner’s confidence that the data point indicates each of these hypotheses.   
 I now focus on the update of pA (recalling, of course, that we can easily derive 
pB as 1 - pA).  If an unambiguous A data point is encountered, 1 is added to the 
numerator to indicate full confidence in A (and no confidence in B).  Conversely, if 
an unambiguous B data point is encountered, 0 is added to the numerator to indicate 
no confidence in A (and full confidence in B).   So, if a data point is ambiguous 
between the two hypotheses, a value greater than 0 and less than 1 should be added to 
the numerator.  If the value added is 0.5, this would reflect no bias for either 
hypothesis (a truly ambiguous data point); if the value added is closer to 1, this would 
reflect a bias for the A hypothesis; if the value added is closer to 0, this would reflect 
a bias for the B hypothesis.  As an example, if the learner has reason to favor A 
(perhaps because A and B are in a subset-superset relation with A as the subset), the 
value added would be greater than 0.5 but less than 1.  The exact value would depend 
on the relative size of the sets of examples covered by A and B. 
  
(10) Hypothetical update function for pA after encountering an ambiguous data point,  
      A is a subset of B, and so there is bias for hypothesis A 
   

   

! 

pA =
pA old * t +m

t +1
, 0.5 <  m <  1 

 
 It is important to note that ignoring ambiguous data is not equivalent to adding 
0.5 to the numerator when encountering an ambiguous data point.  One might 
presume this since we interpreted the addition of 0.5 to the numerator as having no 
bias for either hypothesis.  The crucial difference is in the invocation of the update 
function: if the ambiguous data point is ignored, no updating occurs; if the ambiguous 
data point is used, the update function is invoked.  This has important consequences if 
the learner employs the strategy of adding 0.5 to the numerator when encountering an 
ambiguous data point.  Each ambiguous data point will cause an update that will drive 
pA closer to 0.5.   
 As an example, suppose the input stream contains 10% unambiguous A data 
points and 90% ambiguous data points.  If the learner imposes an unambiguous data 
intake filter, the learner will only update pA for 10% of the data points encountered 
and will always add 1 to the numerator. This results in a pA that is significantly 
greater than 0.5 (though possibly still less than 1).  Conversely, if the learner updates 
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for both unambiguous and ambiguous data points, the update function is always 
invoked; 10% of the time, pA is pushed closer to 1.0 but 90% of the time pA is pushed 
back towards 0.5.  This results in a pA that is significantly closer to 0.5 than the pA 
obtained by using only unambiguous data to update.  In short, the learner is less likely 
to converge on the correct hypothesis, A. 

2.2.3 About t 
 
 The update functions just derived depend on two parameters: the prior 
probability, pA old, and the total amount of data expected during the learning period, t.  
Expecting the learner to already know the prior probability seems reasonable, as it is 
the most recent value the learner has calculated using the update function.  Expecting 
the learner to already know the total amount of data during the learning period, 
however, may seem farfetched.  Yet, the underlying concept behind t can also be 
interpreted as the amount of change a real learner’s brain is allowed to undergo before 
settling into the final state.  This would be a biologically given constraint.  In my 
simulations, this amount is simply quantified as the total amount of data available as 
intake to the learner (i.e. the learner can use t data points of data to update the 
probabilities assigned to the different hypotheses). 
 The role of t in the update functions is to determine how much the probability 
should be shifted, given a single data point.  If t is small, a single data point shifts the 
probability a great deal.  This is a direct result of the fact that a small t means the 
expected data set will be small, and so only a small number of changes are allowed.  
Thus, the learner shifts the probability more liberally in an attempt to get to an 
appropriate target state before t runs out.  Conversely, if t is large, a single data point 
shifts the probability a lesser amount.  This is a direct result of the fact that a large t 
means the expected data set will be large, and so a large number of changes are 
allowed.  The learner in this case can afford to be more conservative when shifting 
probability because there are more chances to shift the probability before t runs out. 
 Importantly (and perhaps surprisingly), the value of t is essentially arbitrary: 
the final probability the learner settles on is independent of the size of t, provided t is 
not too small. The reason for this stability is that the behavior of the learner is 
dependent on the probability distribution of the data.  As long as t is large enough for 
the learner to observe a reasonably accurate sample of the probability distribution in 
the data intake, the learner will converge on a final probability that is the same across 
different values of t.  If t is small, each data point has a larger impact; if t is large, 
each data point has a smaller impact.  The final probability, however, does not 
change.  This will be demonstrated with an explicit example in the chapter 3. 8 
 The parameter t can also capture the notion of “critical period” or “period of 
fluctuation”, where learning of particular aspects of the linguistic system ceases 
abruptly after some maturational point.  Specifically, after the learner has encountered 
t amount of data in the intake, no more updating is possible.  The probabilities for the 
                                                
8 Note that this is different from saying that that t must be empirically determined for each learning 
problem.  It does not matter what t is for a given learning problem– the bias in the distribution is what 
drives the learner one way or the other.  The value of t simply quantifies the amount a given data 
points alters the learner’s associated probabilities for each hypothesis. 
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hypotheses are set, and future data points encountered have no effect.  In short, the 
data intake for this hypothesis space is then zero, no matter what the available input 
is.  This maps directly to the idea of a cut-off point for language learning, after which 
no further input can influence the learner’s linguistic hypotheses. 
 Equipped with these relations between the period of fluctuation, t, and the data 
intake, I can speculate on the time course of parameter-setting for individual 
parameters.  In this model, the period of fluctuation is defined by t: the size of t 
determines the length of the period of fluctuation.  If we link t to the amount of 
change a real learner’s brain is allowed to undergo and so view t as a biologically 
given constraint, we might expect that t should be invariant across different 
parameters.  If all parameters have the same period of fluctuation (as defined by t), 
we should expect all parameters to be set at the same time.  Yet, there is ample 
evidence that this is not the case.  How do we reconcile this with our view of t? 
 The answer lies in the relation between t, data intake, and the filtering 
component of the learning theory.  The period of fluctuation is defined by a constant 
value of t, but t is defined over the quantity of data points in the intake - not just in the 
available input.  The proportion of input that is used as intake can vary from 
parameter to parameter, based on the filters used to define intake.  High proportions 
of intake from input will allow the quantity of intake to accumulate more quickly over 
time; low proportions of intake from input will cause the quantity of intake to 
accumulate more slowly over time.  The more quickly intake is accumulated over 
time, the faster the learner reaches the data intake limit of t.  So, this view predicts 
that parameters that accumulate data intake more quickly will be set earlier than 
parameters that accumulate data intake more slowly. 
 As a concrete example, suppose learners implement an unambiguous data 
filter that causes the data intake to consist only of unambiguous data.  The time 
course of parameter-setting should then depend on the quantity of unambiguous data 
available in the input.  Yang (2004) provides a summary of evidence from 
experimental studies that suggests this is precisely what happens for certain syntactic 
parameters, including the information in table 2.1.9  Syntactic parameters with a 
larger proportion of unambiguous data in the input are acquired earlier while syntactic 
parameters with a smaller proportion of unambiguous data in the input are acquired 
later. 
 
 
 
 
 
                                                
9 This is no longer true if the learner uses ambiguous data as well, unless the combination of 
unambiguous and ambiguous data used yields these same correlations.  Again, one possibility is there 
is a correlation between the data intake (useable data) and the time course of acquisition.  In that case, t 
would again represent the amount of change allowed, but useable ambiguous data “uses up” some of t 
(in addition to unambiguous data using up some of t).  It is even possible that unambiguous data would 
use up more of t than useable ambiguous data would, perhaps in proportion to the amount of perceived 
ambiguity: the more unambiguous the data is, the more t is used up since the learner is more confident 
that the data is informative. 
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Parameter Target 

Language 
Unamb 

Data 
Frequency 

Time of Acquisition 

Verb-Raisinga French 7 % 1;8 (Pierce, 1992) 
Obligatory 

Subjectb 
English 1.2% 3;0 (Valian, 1991) 

Verb-Secondc German/Dutch 1.2% 3;0-3;2 (Clahsen, 1986) 
Scope-Markingd English 0.2% 4;0+ (Thornton & Crain, 1994) 

Table 2.1. The effect of data intake accumulation on parameter-setting.  Assuming an 
unambiguous data filter, syntactic parameters that have a higher proportion of input 
used as intake are the parameters that are acquired earlier.   
 
 Looking at the data in table 2.1, we can see the relation between the frequency 
of unambiguous data in the learner’s input and the time of acquisition.  We look first 
at Verb-Raising. In languages like French, the tensed verb moves before adverbs 
negation and adverbs (‘Jacques voit souvent/pas Simone’; ‘Jack sees often/not 
Simone’), in contrast to languages like English (‘Jack often sees Simone’) (1a).  
Unambiguous data signaling Verb-Raising comprise about 7% of the input, and 
children appear to have knowledge of Verb-Raising quite early.   
 We turn then to the Obligatory Subject.  In languages like English, a subject is 
required (‘He saw Rafael’, ‘It is raining’), while in languages like Spanish, the subject 
is optional (‘(Él) vio a Rafael’, ‘Llueve’; ‘(He) saw Rafael’, ‘Rains’).  Unambiguous 
data for Obligatory Subject is much less frequent than Verb-Raising data, and the 
time of acquisition is also later than that of Verb-Raising. 
 We can look to Verb-Second as well.  In languages like German and Dutch, 
the tensed Verb in the main clause is moved to the second phrasal position, following 
one phrase of any type (‘Ich liebe die Katzen’, ‘Die Katzen liebe ich’; ‘I-Subj love 
cats-Obj’, ‘Cats-Obj love I-Subj’).   Unambiguous data for Verb-Second appear 
approximately as frequently as unambiguous data for Obligatory Subject, and the 
time of acquisition is also approximately equivalent. 
 There is also evidence from Scope-Marking.  In German, Hindi, and other 
languages, long-distance wh-questions leave intermediate copies of wh-markers (‘Wer 
glaubst du wer Recht hat?’, ‘Who think you who right has?’, Who do you think has 
the right?).   For English children to know that English does not use this option, long 
distance wh-questions must be heard in the input, a type of data that is very infrequent 
in the available input to children.  And indeed, the time of acquisition is much later. 
 In summary, children could learn from a fixed quantity of relevant data points, 
irrespective of parameter, and this would accord with experimental evidence.  The 
quantity is constant across all parameters (t), but the availability of relevant data 
(intake) is not constant across all parameters.  This yields different time courses of 
parameter-setting. 
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2.3 Summary of Bayesian Updating Adapted to a Linguistic Framework 
  
 I have now described the mathematical framework I will employ in the 
subsequent chapters to explore different case studies in language learning.   In 
addition, I have sketched how values integral to the mathematical framework can be 
mapped to already existing concepts in the language learning literature.  This 
framework will be the basis for the updating procedure used by the learner to shift 
probability between competing hypotheses.  I reiterate that this updating procedure is 
domain-general, and is applicable across linguistic domains (and other cognitive 
domains).  However, the representations assumed for the hypothesis space and the 
filters tested in each case study will be domain-specific.  The separation of a learning 
theory into three distinct parts allows us to merge domain-specific components with 
domain-general components and thus have a theory that is both. 
 

 




