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Abstract 

Statistical learning has been proposed as one of the 
earliest strategies infants could use to segment 
words out of their native language because it does 
not rely on language-specific cues that must be 
derived from existing knowledge of the words in 
the language. Statistical word segmentation 
strategies using Bayesian inference have been 
shown to be quite successful for English 
(Goldwater et al. 2009), even when cognitively 
inspired processing constraints are integrated into 
the inference process (Pearl et al. 2011, Phillips & 
Pearl 2012). Here we test this kind of strategy on 
child-directed speech from seven languages to 
evaluate its effectiveness cross-linguistically, with 
the idea that a viable strategy should succeed in 
each case. We demonstrate that Bayesian inference 
is indeed a viable cross-linguistic strategy, 
provided the goal is to identify useful units of the 
language, which can range from sub-word 
morphology to whole words to meaningful word 
combinations. 
 

1 Introduction 

Word segmentation is one of the first tasks 
children must complete when learning their 
native language, and infants are able to identify 
words in fluent speech by around 7.5 months 
(Jusczyk & Aslin 1995; Echols et al. 1997; 
Jusczyk et al., 1993)). Proposals for learning 
strategies that can accomplish this (Saffran et al. 
1996) have centered on language-independent cues 
that are not derived from existing knowledge of 
words. Bayesian inference is a statistical strategy 
operating over transitional probability that has been 
shown to be successful for identifying words in 
English, whether the salient perceptual units are 
phonemes (Goldwater et al. 2009 [GGJ], Pearl et al. 
2011 [PGS]) or syllables (Phillips & Pearl 2012 
[P&P]), and whether the inference process is 
optimal (GGJ, PGS) or constrained by cognitive 
limitations that children may share (PGS, P&P). It 

may, however, be the case that these strategies work 
well for English, but not other languages (Fourtassi 
et al. 2013). Therefore, we evaluate this same 
learning strategy on seven languages with different 
linguistic profiles: English, German, Spanish, Italian, 
Farsi, Hungarian, and Japanese. If Bayesian 
inference is a viable strategy for word segmentation, 
it should succeed on all languages. While some 
attempts have been made to evaluate Bayesian word 
segmentation strategies on languages other than 
English (e.g., Sesotho: Johnson 2008, Blanchard et 
al. 2010), this is the first evaluation on a significant 
range of languages that we are aware of. 

   We assume the relevant perceptual units are 
syllables, following previous modeling work 
(Swingly 2005, Gambell & Yang 2006, Lignos & 
Yang 2010, Phillips & Pearl 2012) that draws from 
experimental evidence that infants younger than 7.5 
months are able to perceive syllables but not 
phonemes (Werker & Tees 1984, Juszyck & Derrah 
1987, Eimas 1999). We demonstrate that Bayesian 
word segmentation is a successful cross-linguistic 
learning strategy, provided we define success in a 
more practical way than previous word 
segmentation studies have done. We consider a 
segmentation strategy successful if it identifies units 
useful for subsequent language acquisition 
processes (e.g., meaning learning, structure 
learning). Thus, not only is the orthographic gold 
standard typically used in word segmentation tasks 
acceptable, but also productive morphology and 
coherent chunks made up of multiple words. This 
serves as a general methodological contribution 
about the definition of segmentation success, 
especially when considering that the meaningful 
units across the world’s languages may vary. 

2 The Bayesian learning strategy 

Bayesian models are well suited to questions of 
language acquisition because they distinguish 
between the learner’s pre-existing beliefs (prior) 



and how the learner evaluates incoming data 
(likelihood), using Bayes’ theorem: 

𝑃 ℎ 𝑑 ∝ 𝑃(𝑑|ℎ)𝑃(ℎ) 

   The Bayesian learners we evaluate are the 
optimal learners of GGJ and the constrained 
learners of PGS. All learners are based on the 
same underlying models from GGJ. The first of 
these models assumes independence between 
words (a unigram assumption) while the second 
assumes that a word depends on the word before 
it (a bigram assumption). To encode these 
assumptions into the model, GGJ use a Dirichlet 
Process (Ferguson, 1973), which supposes that 
the observed sequence of words w1 … wn is 
generated sequentially using a probabilistic 
generative process. In the unigram case, the 
identity of the ith word is chosen according to: 

𝑃 𝑤! = 𝑤 𝑤!…𝑤!!! = !!!! ! !!!! !
!!!!!

  (1) 

where ni-1(w) is the number of times w appears in 
the previous i – 1 words, α is a free parameter of 
the model, and P0 is a base distribution 
specifying the probability that a novel word will 
consist of the perceptual units x1 … xm: 

𝑃 𝑤 = 𝑥!… 𝑥! = 𝑃(𝑥!)!
!!!    (2) 

In the bigram case, a hierarchical Dirichlet 
Process (Teh et al. 2006) is used. This model 
additionally tracks the frequencies of two-word 
sequences and is defined as: 

𝑃 𝑤! = 𝑤 𝑤!!! = 𝑤!,𝑤!…𝑤!!! =

                                      !!!! !!,! !!!!(!)
!!!! !! !!

    (3) 

 𝑃! 𝑤! = 𝑤 = !!!! ! !!!!(!)
!!!!!!

   (4) 

where ni-1(w’,w) is the number of times the 
bigram (w’,w) has occurred in the first i – 1 
words, bi-1(w) is the number of times w has 
occurred as the second word of a bigram, bi-1 is 
the total number of bigrams, and β and γ are free 
model parameters.1  

                                                             

1 Parameters for the unigram and bigram models underlying 
all learners were chosen to maximize the performance of the 
BatchOpt learner, discussed below. English: α=1, β=1, 
γ=90; German: α=1, β=1, γ=100; Spanish: α=1, β=200, 
γ=50; Italian: α=1, β=20, γ=200; Farsi: α=1, β=200, γ=500; 
Hungarian: α=1, β=300, γ=500; Japanese: α=1, β=300, 
γ=100 

   In both the unigram and bigram case, the 
model implicitly incorporates preferences for 
smaller lexicons by preferring words that appear 
frequently (due to (1) and (3)) and preferring 
shorter words in the lexicon (due to (2) and (4)). 

   The BatchOpt learner for this model is taken 
from GGJ and uses Gibbs sampling (Geman & 
Geman 1984) to run over the entire input in a 
single batch, sampling every potential word 
boundary 20,000 times. We consider this learner 
“optimal” in that it is unconstrained by cognitive 
considerations. We also evaluate the constrained 
learners developed by PGS that incorporate 
processing and memory constraints into the 
learning process. 

   The OnlineOpt learner incorporates a basic 
processing limitation: linguistic processing 
occurs online rather than in batch after a period 
of data collection. Thus, the OnlineOpt learner 
processes one utterance at a time, rather than 
processing the entire input at once. This learner 
uses the Viterbi algorithm to converge on the 
local optimal word segmentation for the current 
utterance, conditioned on all utterances seen so 
far. 

   The OnlineSubOpt learner is similar to the 
OnlineOpt learner in processing utterances 
incrementally, but is motivated by the idea that 
infants are not optimal decision-makers. Infants 
may not always select the best segmentation, and 
instead sample segmentations based on their 
perceived probabilities. The OnlineSubOpt 
learners will often choose the best segmentation 
but will occasionally choose less likely 
alternatives, based on the probability associated 
with each segmentation. The Forward algorithm 
is used to compute the likelihood of all possible 
segmentations and then a segmentation is chosen 
based on the resulting distribution. 

   The OnlineMem learner also processes data 
incrementally, but uses a Decayed Markov Chain 
Monte Carlo algorithm (Marthi et al. 2002) to 
implement a kind of limited short-term memory. 
This learner is similar to the original GGJ ideal 
(BatchOpt) learner in that it uses something like 
Gibbs sampling. However, the OnlineMem 
learner does not sample all potential boundaries; 
instead, it samples some number s of previous 
boundaries using the decay function b-d to select 
the boundary to sample; b is the number of 
potential boundary locations between the 
boundary under consideration bc and the end of 



the current utterance while d is the decay rate. 
Thus, the further bc is from the end of the current 
utterance, the less likely it is to be sampled. 
Larger values of d indicate a stricter memory 
constraint. All our results here use a set, non-
optimized value for d of 1.5, which was chosen 
to implement a heavy memory constraint (e.g., 
90% of samples come from the current utterance, 
while 96% are in the current or previous 
utterances). Having sampled a set of boundaries2, 
the learner can then update its beliefs about those 
boundaries and subsequently update its lexicon.  

3 Cross-linguistic input 

We evaluate the Bayesian learner on input 
derived from child-directed speech corpora in 
seven languages: English, German, Spanish, 
Italian, Farsi, Hungarian and Japanese. All 
corpora were taken from the CHILDES database 
(MacWhinney, 2000). When corpora were 
available only in orthographic form, they were 
first converted into the appropriate phonemic 
form. Afterwards, the corpora were syllabified. 
Where possible, we utilized adult syllabification 
judgments. All other words were syllabified 
using the Maximum-Onset principle, which 
states that the beginning of a syllable should be 
as large as possible, without violating the 
language’s phonotactic constraints. 

   Our corpora vary in a number of important 
ways. Although we attempt to limit our corpora 
to early child-directed speech, some of our 
corpora contain speech directed to children as 
old as age five (e.g. Farsi). Many of our corpora 
do, however, consist entirely of early child-
directed speech (e.g., English, Japanese). 
Similarly, the same amount of data is not always 
easily available for each language. Our shortest 
corpus (German) consists of 9,378 utterances, 
while the longest (Farsi) consists of 31,657.  

   The languages themselves also contain many 
differences that potentially affect syllable-based 
word segmentation. While our English and 
Hungarian corpora contain 2,330 and 3,029 
unique syllables, respectively, Japanese and 
Spanish contain only 526 and 524, respectively. 
Some languages may be easier to segment than 
others based on distributional factors. Fourtassi 
                                                             

2 All OnlineMem learners sample s=20,000 boundaries 
per utterance. For a syllable-based learner, this works out to 
approximately 74% less processing than the BatchOpt 
learner (P&P). 

et al. (2013) show, for example, that English has 
less ambiguous segmentation than Japanese. In 
addition, the languages also have differences in 
their syntax and morphology. For example, 
Hungarian and Japanese are both agglutinative 
languages that have more regular morphological 
systems, while English, German, Spanish, Italian 
and Farsi are all fusional languages to varying 
degrees. If a language has regular morphology, 
an infant might reasonably segment out 
morphemes rather than words. This highlights 
the need for a more flexible metric of 
segmentation performance: A segmentation 
strategy which identifies units useful for later 
linguistic analysis should not be penalized. 

4 Learning results & discussion 

We analyze our results in terms of word token F-
scores, which is the harmonic mean of token 
precision and recall, where precision is the 
probability that a word segmented by the model 
is a true word (# identified true / # identified) and 
recall measures the probability that any true 
word was correctly identified (# identified true / 
total # true). F-scores range from 0 to 100, with 
higher values indicating better performance. 
Performance on all languages is presented in 
Table 1. An error analysis was conducted where 
we systematically counted the following 
“reasonable errors” as successful segmentation: 

(i) Mis-segmentations resulting in real words. 
For example, the word “alright” might be 
oversegmented as “all right”, resulting in two 
actual English words. Most languages show 
errors of this type, with more occurring for the 
bigram model, with the least in English 
(BatchOpt: 4.52%) and most in Spanish 
(BatchOpt: 23.97%). We restrict these errors to 
words which occur minimally ten times in the 
corpus in order to avoid accepting errors in the 
corpora or nonsense syllables as real words. 

(ii) Productive morphology. Given the syllabic 
nature of our corpora, only syllabic morphology 
can be identified. Languages like English, 
Spanish and Italian have relatively few errors 
that produce morphemes (e.g., BatchOpt: 0.13%, 
0.05%, and 1.13% respectively), while Japanese, 
with more syllabic morphology has many such 
errors (e.g., BatchOpt: 4.69%). 



  English German Spanish Italian Farsi Hungarian Japanese 

Unigram 

BatchOpt 55.70 73.43 64.28 70.48 72.48 64.01 69.11 
OnlineOpt 60.71 58.41 74.98 65.05 75.66 56.77 71.56 
OnlineSubOpt 65.76 70.95 77.15 66.48 74.89 60.21 71.73 
OnlineMem 58.68 73.85 67.78 66.77 67.31 60.07 70.49 

Bigram 

BatchOpt 80.19 84.15 80.34 79.36 76.01 70.87 73.11 
OnlineOpt 78.09 82.08 82.71 75.78 79.23 69.67 73.36 
OnlineSubOpt 80.44 82.03 80.75 73.59 67.54 65.48 66.14 
OnlineMem 89.58 88.83 83.27 74.08 73.98 69.48 73.24 

Table 1. Token F-scores (presented as percents, from 0 to 100) for each learner across every language. 
Higher Token F-scores indicate better performance. 

 (iii) Common sequences of function words. 
For example, a learner might identify “is that a” 
as a single word, “isthata”. These errors tend to 
be more common for unigram learners than 
bigram learners, which makes sense from a 
statistical standpoint since the unigram learner 
is unable to account for commonly occurring 
sequences of words and must do so by positing 
the collocation as a single word. Still, function 
word sequence errors are relatively uncommon 
in every language except German (e.g., 
BatchOpt: 21.73%) 

   Table 2 presents common examples of each 
type of acceptable error in English. 

 True Word(s) Model Output 
Real words  something some   thing 

alright all   right 
Morphology  going go   ing 

really rea   lly 
Function 
word  

you   can youcan 
are   you areyou 

Table 2. Example reasonable errors of each 
type from English that result in real words, 
morphology, or function word collocations. 

   Generally speaking, the bigram learners tend 
to outperform the unigram learners, suggesting 
that the knowledge that words depend on 
previous words continues to be a useful one (as 
GGJ, PGS, and P&P found for English), 
though this difference may be small for some 
languages (e.g., Farsi, Japanese). Overall, 
performance for English and German is very 
high (best score: ~90%), while for other 

languages the learners tend to fare less well 
(best score: 70-83%), though still quite good. 
These results match previous work which 
indicated that English is particularly easy to 
segment compared to other languages (Johnson 
2008; Blanchard et al. 2010; Fourtassi et al. 
2013)  

   Importantly, the goal of early word 
segmentation is not for the infant to entirely 
solve word segmentation, but to get the word 
segmentation process started. Given this goal, 
Bayesian word segmentation seems effective 
for all these languages. Moreover, because our 
learners are looking for useful units, which can 
be realized in different ways across languages, 
they can identify foundational aspects of a 
language that are both smaller and larger than 
orthographic words. 

5 Conclusion 

We have demonstrated that Bayesian word 
segmentation performs quite well as an initial 
learning strategy for many different languages, 
so long as the learner is measured by how 
useful the units are that it identifies. This not 
only supports Bayesian word segmentation as 
a viable cross-linguistic strategy, but also 
suggests that a useful methodological norm for 
word segmentation research should be how 
well it identifies units that can scaffold future 
language acquisition. By taking into account 
reasonable errors that identify such units, we 
bring our model evaluation into alignment with 
the actual goal of early word segmentation.   



References  
Blanchard, D., Heinz, J., & Golinkoff, R. 2010. 

Modeling the contribution of phonotactic cues to 
the problem of word segmentation. Journal of child 
language, 37(3), 487. 

Echols, C.H., Crowhurst, M.J. & Childers, J.B. 1997. 
The perception of rhythmic units in speech by 
infants and adults. Journal of Memory and 
Language, 36, 202-225. 

Eimas, P.D. 1999. Segmental and syllabic 
representations in the perception of speech by 
young infants. Journal of the Acoustical Society of 
America, 105(3), 1901-1911. 

Fourtassi, A., Börschinger, B., Johnson, M., & 
Dupoux, E. 2013. Whyisenglishsoeasytosegment? 
Proceedings of the Fourth Annual Workshop on 
Cognitive Modeling and Computational Linguistics, 
1-10. 

Gambell, T. & Yang, C. 2006. Word Segmentation: 
Quick but not dirty. Manuscript. New Haven: Yale 
University 

Geman S. & Geman D. 1984. Stochastic Relaxation, 
Gibbs Distributions, and the Bayesian Restoration 
of Images. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 6, 721-741. 

Goldwater, S., Griffiths, T. & Johnson, M. 2009. A 
Bayesian framework for word segmentation: 
Exploring the effects of context. Cognition 112(1), 
21-54. 

Johnson, M. 2008. Unsupervised word segmentation 
for Sesotho using adaptor grammars. Proceedings 
of the Tenth Meeting of the ACL Special Interest 
Group on Computational Morphology and 
Phonology, 20-27. 

Jusczyk, P.W. & Derrah, C. 1987. Representation of 
speech sounds by young infants. Developmental 
Psychology, 23(5), 648-654. 

Jusczyk, P.W., Cutler, A. & Redanz, N.J. 1993. 
Infants’ preference for the predominant stress 

pattern of English words. Child Development, 
64(3), 675-687. 

Jusczyk, P.W. & Aslin, R.N. 1995. Infants’ detection 
of the sound patterns of words in fluent speech. 
Cognitive Psychology, 29, 1-23. 

Lignos, C. & Yang, C. 2010. Recession segmentation: 
Simpler online word segmentation using limited 
resources. Proceedings of the Fourteenth 
Conference on Computational Natural Language 
Learning, 88-97. 

MacWhinney, B. 2000. The CHILDES project: Tools 
for analyzing talk. Mahwah, NJ: Lawrence 
Erlbaum Associates. 

Marthi, B., Pasula, H., Russell, S. & Peres, Y., et al. 
2002. Decayed MCMC filtering. In Proceedings of 
18th UAI, 319-326. 

Pearl, L., Goldwater, S., & Steyvers, M. 2011. Online 
Learning Mechanisms for Bayesian Models of 
Word Segmentation, Research on Language and 
Computation, special issue on computational 
models of language acquisition. 

Phillips, L. & Pearl, L. 2012. “Less is more” in 
Bayesian word segmentation: When cognitively 
plausible learners outperform the ideal. In 
Proceedings of the 34th Annual Conference of the 
Cognitive Science Society. 

Saffran, J.R., Aslin, R.N. & Newport, E.L. 1996. 
Statistical learning by 8-Month-Old Infants. 
Science, 274, 1926-1928. 

Swingley, D. 2005. Statistical clustering and the 
contents of the infant vocabulary. Cognitive 
Psychology, 50, 86-132. 

Teh, Y., Jordan, M., Beal, M., & Blei, D. 2006. 
Heirarchical Dirichlet processes. Journal of the 
American Statistical Association, 101(476), 1566-
1581. 

Werker, J.F. & Tees, R.C. 1984. Cross-language 
speech perception: Evidence for perceptual 
reorganization during the first year of life. Infant 
Behavior & Development, 7, 49-63. 

 

 

 


