
  

 
 
 
 
 

ABSTRACT 
 
 
 

 
Title of Document: NECESSARY BIAS IN NATURAL 

LANGUAGE LEARNING 
  
 Lisa Sue Pearl, Doctor of Philosophy, 2007 
  
Directed By: Associate Professor, Department of 

Linguistics/UMIACS 
Associate Director, Neural and Cognitive 
Science Program 
Co-Director, Laboratory for Language and 
Media Processing 
Amy Weinberg 

 
 

 This dissertation investigates the mechanism of language acquisition given the 

boundary conditions provided by linguistic representation and the time course of 

acquisition.  Exploration of the mechanism is vital once we consider the complexity 

of the system to be learned and the non-transparent relationship between the 

observable data and the underlying system.  It is not enough to restrict the potential 

systems the learner could acquire, which can be done by defining a finite set of 

parameters the learner must set.  Even supposing that the system is defined by n 

binary parameters, we must still explain how the learner converges on the correct 

system(s) out of the possible 2n systems, using data that is often highly ambiguous 

and exception-filled.  The main discovery from the case studies presented here is that 



  

learners can in fact succeed provided they are biased to only use a subset of the 

available input that is perceived as a cleaner representation of the underlying system. 

 The case studies are embedded in a framework that conceptualizes language 

learning as three separable components, assuming that learning is the process of 

selecting the best-fit option given the available data.  These components are (1) a 

defined hypothesis space, (2) a definition of the data used for learning (data intake), 

and (3) an algorithm that updates the learner’s belief in the available hypotheses, 

based on data intake.  One benefit of this framework is that components can be 

investigated individually.  Moreover, defining the learning components in this 

somewhat abstract manner allows us to apply the framework to a range of language 

learning problems and linguistics domains.  In addition, we can combine discrete 

linguistic representations with probabilistic methods and so account for the 

gradualness and variation in learning that human children display. 

 The tool of exploration for these case studies is computational modeling, 

which proves itself very useful in addressing the feasibility, sufficiency, and necessity 

of data intake filtering since these questions would be very difficult to address with 

traditional experimental techniques.   In addition, the results of computational 

modeling can generate predictions that can then be tested experimentally. 
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Chapter 1: A Theory of the Language Learning Mechanism 

1.1 The Mechanism of Language Learning 
 Language learning is a curious enterprise, effortless for children while often 
effortful for adults.  This intriguing dichotomy has been the subject of intense 
research in linguistics and psychology, and this dissertation focuses on how children 
could accomplish the difficult task of language learning with such unconscious ease. 
 Understanding the mechanism of language learning is vital once we consider 
the complexity of the system to be learned.  Like many other systems, the linguistic 
system is comprised of many different pieces.  In addition, again like many other 
systems, the linguistic system often has a non-transparent relationship to the 
observable data points generated by it, which is what a learner has access to.  Both of 
these conspire to make language learning a non-trivial undertaking.   
 One way to address this problem is to constrain the systems the learner could 
acquire by defining a finite set of parameters the learner must set in order to “learn” 
the language(s) of the surrounding environment (as in Chomsky (1981), among many 
others).  This serves to ease the learner’s burden since only systems with particular 
features will be considered.  However, this does not solve the problem of language 
learning.  Suppose, for example, that the potential systems a learner could acquire are 
described by n binary parameters.  This still leaves 2n possible systems for the learner 
to choose from, which is a large number indeed (as noted by Clark (1994), among 
many others) even for n as low as 10 or 20.  The problem remains of how the learner 
chooses from among that set of potential systems, given the observable data which is 
often highly ambiguous and exception-filled.  This is what a theory of the mechanism 
of language learning endeavors to explain. 
 Investigation of the language learning mechanism requires knowledge of both 
the system to be acquired and the time course of acquisition.  Theoretical linguistics 
can provide a description of the object of acquisition, which is the linguistic system 
that adults use and children must acquire.  Experimental research can furnish the 
milestones of acquisition: by a certain age, children behave as though they know 
certain pieces of the linguistic system.  Given these two boundary conditions - the 
linguistic representations and the trajectory of language learning -  we can then 
explore the means by which learners could acquire pieces of the system in the time 
frame that they do. 

1.2 Language Development: Constraints on the Hypothesis Space 
 
 From the biological perspective, the development of language is an interaction 
between internal and external factors (Yang, 2002; Baker, 2001; Lightfoot, 1982; 
among many others).  One interpretation of internal factors would be as constraints on 
the hypotheses under consideration by the learner.  The most prominent instantiation 
of such constraints are linguistic parameters (Chomsky, 1981), though there are other 
ways the learner’s hypotheses might be constrained.  It is, however, crucial that the 
learner’s hypothesis space be defined by the time the learner is attempting to decide 
which hypothesis is correct for the exposure language.   
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 The hypothesis space may be defined in terms of parameters, with one 
parameter value per hypothesis (as in Yang (2002)).  But the hypothesis space does 
not have to be defined this way; for instance, the learner might instead have a 
hypothesis space defined over the amount of structure posited for the language: linear 
vs. hierarchical (see, for example, Perfors, Tenenbaum, & Regier (2006)).  The key 
point is that the learner’s hypothesis space is defined, however that may be 
instantiated.  External linguistic experience will then shift the learner’s beliefs in the 
various hypotheses under consideration.   

1.3 Formalizing the Language Acquisition Mechanism 
 
 The language acquisition process has been described formally by Yang 
(2002), using three components: a language learning algorithm L, a set S of potential 
states the learner can be in, and experience from the linguistic environment E.  The 
learning algorithm L takes the initial state S0 of the learner, which includes a defined 
hypothesis space of the linguistic structures under consideration, and updates it with 
external linguistic experience E until the learner reaches the target state ST.  
 
(1) L(S0, E)  ST 
 
 When the learner is in ST, the learner has acquired the adult system of 
linguistic knowledge. The learning algorithm L encapsulates the mechanism of 
language learning, as it is the procedure by which the learner converges on the 
appropriate linguistic hypothesis (formalized as the learner being in state ST) by the 
appropriate time.  However, there are sub-components of L that can be made explicit.   
In addition to a procedure to update the learner’s beliefs about the correct hypothesis, 
L should also include a procedure that decides which data to learn from (the data 
intake (Fodor, 1998b)).   
 The entire learning framework thus consist of three parts: (1) a definition of 
the hypothesis space, (2) a definition of the data intake, and (3) a definition of the 
algorithm that searches the available hypotheses and, based on the intake, converges 
on the correct one(s).  We can easily map these framework components to the formal 
definition components described previously.  The definition of the hypothesis space is 
part of the definition of the learner’s initial state S0.  The data intake and update 
procedure are captured in the learning procedure L. 

1.4 Domain Specificity and Domain Generality 
 
 Defining the learning theory in this somewhat abstract manner allows us to 
apply it to a range of learning problems.  In addition, we can combine discrete 
linguistic representations (the defined hypothesis space) with probabilistic methods 
(the update procedure).  This is a quite a useful outcome, as linguistic representations 
are often associated with domain-specific knowledge while probabilistic methods are 
often associated with domain-general knowledge and the debate has long raged over 
whether language learning is domain-general or domain-specific. 
 Dividing the learning theory into three components allows us to examine them 
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separately, and importantly allows for a learning theory that can be both domain-
specific and domain-general.  Thus, this framework allows for a synthesis of the two 
approaches, retaining the positive benefits of each.  Learners may be constrained in 
the representations that comprise the hypothesis space, the data they deem relevant 
for learning, or the procedures they use to update their beliefs about the available 
hypotheses. 

1.5 Investigating the Components of the Learning Framework 
 
 Each of the components of the learning framework can be investigated 
separately.  The question of exactly how the hypothesis space is defined, for instance, 
has been the source of vast amounts of spilled ink and hard feelings.   Scores of 
theoretical and experimental work (Chomsky, 1981; Hamburger & Crain, 1984; 
Thornton & Crain, 1999; Lidz, Waxman, & Freedman, 2003; among many others) 
have been dedicated to identifying what hypotheses children entertain at given points 
in time, how they are constrained in what hypotheses they initially consider, and how 
they are constrained in what hypotheses they might later posit.  Recently, 
experimental work has also been devoted to investigating the updating procedure,  
instantiated as a domain-general statistical updating procedure akin to Bayesian 
updating.  Based on the psychological evidence for such a probabilistic updating 
procedure in adults (Thompson & Newport, 2007; Bonatti et al., 2005; Newport & 
Aslin, 2004; Tenenbaum & Griffiths, 2001; Cosmides & Tooby, 1996; Staddon, 
1988), recent experimental work has tackled the existence of a similar probabilistic 
procedure in young language learners (Gerken, 2006; Gerken, 2004; Saffran, Aslin, & 
Newport, 1996; Saffran, Newport, & Aslin, 1996; among many others).1 
 We can look also to the data intake filtering component.  Intuition about how 
learners might behave leads us in two opposite directions.  On the one hand, using all 
available data could uncover a full range of patterns and variation.  This is especially 
true from the viewpoint of statistical modeling. Probabilistic models are often 
inhibited by sparse data (in fact, many smoothing techniques exist precisely for this 
reason (Jurafsky & Martin, 2000; Manning & Schütze, 1999)), so any truncation of 
the data set available for language acquisition seems ill-advised.  On the other hand, 
the observable data is noisy.  Perhaps data that are more transparently related to the 
underlying linguistic system (more “informative” or more easily “accessible” data) 
are easier for the learner to extract the correct systematicity from.  Thus, even though 

                                                
1 Note that the learner’s ability to track probabilities does not negate the need for constraints on the 
hypothesis space.  Some experimental work on young language learners in fact supports constraints on 
the hypotheses the learner considers.  Specifically, Gerken (2004) show that infants can induce an 
abstract generalization from data that does not exhaustively signal this generalization.  In order to do 
this, the hypothesis space containing that abstract generalization must already be defined. Learners 
must posit (and analyze data for) that specific generalization as opposed to however many other 
generalizations are compatible with the observed data.  Gerken (2006) demonstrates that infants have a 
preference for making a more restrictive generalization when two are available.  In order to do this, the 
hypothesis space has to already be defined – one hypothesis for the more restrictive generalization and 
one hypothesis for the less restrictive one.  So, probabilistic learning is a procedure that is used once 
the hypothesis space is constrained to those two hypotheses.  Probabilistic learning is not an alternative 
to defining the hypothesis space. 
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such data would be significantly sparser, they would lead to the correct 
generalizations about the underlying system that produced the observable data. 

1.6 Computational Investigations of Data Intake Filtering 
 
 In the current work, I examine several language learning case studies that 
suggest children must filter their data intake down to a more informative and 
accessible (if sparser) subset of the available data.  Key to this work is the exploration 
via computational modeling of both synchronic and diachronic data, since the most 
direct experimental technique of testing filtered data in a naturalistic environment is 
logistically (and ethically) difficult to implement.  We would have great trouble 
restricting the intake of a young child (let alone a whole group of young children) for 
an extended period of time and seeing the effect of this restriction on the acquisition 
of the target language.  For simulated learners, however, this restriction is quite 
simple.  It is perfectly feasible to restrict the data intake of a simulated learner in any 
way we choose and then observe the effect on the model’s learning.   
 One question that might reasonably arise is how much use a simulated learner 
actually is.  Why do we believe that a model of a learner is at all realistic?  As 
Goldsmith & O’Brien (2006) note:  
 
“When the model displays unplanned (i.e. surprising) behavior that matches that of a 
human in the course of learning from the data, we take some satisfaction in 
interpreting this as a bit of evidence that the learning models sheds light on human 
learning.”  
 
 In short, if the simulated learner accords with human behavior in some non-
trivial way that is not purposefully built into the model, we conclude that the 
assumptions the learning model has made accord with the human learning algorithm.  
And indeed, there has been a recent surge of computational modeling work 
examining the effect of data filtering on language acquisition (Sakas & Fodor, 2001; 
Sakas & Nishimoto, 2002; Yang, 2002; among others).   
 This dissertation continues the nascent computational modeling tradition by 
investigating data intake filtering in three separate case studies covering different 
learning problems in various domains of linguistics: the syntax-semantics interface, 
syntax, and metrical phonology.  In each case, the hypothesis space is defined using 
domain-specific hypotheses and the update procedure is an adapted form of the 
domain-general procedure of Bayesian updating.  With these two components set, we 
can then investigate the effects of the remaining component: data intake filtering. 

1.7 Organization of Dissertation 
 
 The dissertation proceeds as follows: 
 Chapter 2 describes the adaptation of Bayesian updating to a linguistic 
framework, specifically a hypothesis space with two pre-specified hypotheses.  This 
chapter is meant as a primer to the mathematical underpinnings of the update 
procedure that will be assumed in the subsequent chapters.  
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 Chapter 3 examines the case of learning anaphoric one in English, a language 
learning problem that spans the domains of structure and reference in the world.  
Experimental evidence has suggested that children have acquired this knowledge by 
18 months (Lidz, Waxman, & Freedman, 2003) and I explore how a child could 
accomplish this feat, given realistic estimates of the data available to children.  Based 
on the learning models results, I argue that data intake filtering is a necessary part of 
successful acquisition of English anaphoric one.    
 Chapter 4 explores a scenario where the adult target state is a probability 
distribution between two hypotheses.  This was the case for Old English word order 
between 1000 and 1200 A.D.  Under the assumption that the Old English shift from 
Object Verb to Verb Object order is due to misconvergences on the correct target 
probabilities during learning (Lightfoot, 1991), I implement a model of Old English 
language change for a population of individuals that use a particular learning 
algorithm.  Correct population-level behavior only results when individuals filter their 
data intake during learning in specific ways.  This case study serves as a second 
argument for the necessity for data intake filtering, in addition to the feasibility of 
data intake filtering in a realistic system. 
 Chapter 5 investigates how a child could learn English metrical phonology.  
This is a difficult task as the system is complex, involving 9 interacting parameters 
(Dresher, 1999), and the observable data from the target language is extremely noisy.  
For this scenario, we can examine the feasibility of data intake filtering in a truly hard 
learning environment.  I examine two methods of implementing a specific data intake 
filter, and demonstrate that both methods can lead to successful acquisition.  The 
ability to solve the language acquisition problem for the complex, noisy system of 
English metrical phonology is again support for the feasibility and sufficiency of data 
intake filtering. 
 Chapter 6 summarizes the main points from the case studies examined in the 
dissertation and highlights the contributions from this dissertation to linguistics, 
learnability, and computational modeling. 
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Chapter 2: Bayesian Updating in a Linguistic Framework 
 
 The formal characterization of language learning from Yang (2002) consists of 
a language learning algorithm L, a set S of potential states the learner can be in, and 
experience from the linguistic environment E.  The language learning algorithm L 
contains specifications for (a) the data intake the learner uses to update beliefs in 
available hypotheses and (b) the update procedure itself.  In this chapter, I will 
describe the instantiation of the update procedure I will use for the case studies in the 
following chapters: an adapted form of Bayesian updating. Specifically, I will 
demonstrate how a standard implementation of this updating procedure (Manning & 
Schütze, 1999) can be adapted to language learning problems. 

2.1 Bayesian Updating: Overview 
 
 Bayesian updating is a probabilistic updating procedure that is widely used in 
natural language processing tasks to update the probabilities of alternate available 
hypotheses (Manning & Schütze, 1999). Specifically, it calculates the conditional 
probability of the hypothesis, given the data.  Probabilistic reasoning has been shown 
to be the optimal strategy for solving problems and making decisions given noisy or 
incomplete information (J. Pearl, 1996).   Like many other systems, the linguistic 
system is often learned from observable data that is highly ambiguous and exception-
filled.  Thus, a probabilistic component seems necessary to the language learning 
mechanism.  
 There is also evidence for the psychological validity of a procedure like 
Bayesian updating as a method used by adult humans (Tenenbaum & Griffiths, 2001; 
Cosmides & Tooby, 1996; Staddon, 1988) and infants (Gerken, 2006).  Specifically, 
these studies demonstrate probabilistic convergence on the more restrictive 
hypothesis compatible with the observable data.  This is in line with the Bayesian 
updating procedure adopted here when there are two hypotheses under consideration 
that differ in their level of restrictiveness (section 2.1.5). 
  The main purpose of Bayesian updating is to infer the likelihood of a given 
hypothesis, given a series of examples as input.  The implementation of Bayesian 
updating depends greatly on the structure of the hypothesis space, since the relation of 
the hypotheses to each other affects how probability is shifted between the different 
hypotheses.  I will now examine several instances of hypothesis spaces below and 
their effect on Bayesian updating. 

2.1.1 A Simple Case: Two Non-overlapping Hypotheses, Equally Likely 
 
 Suppose there are two non-overlapping hypotheses in the set: A and B.  By 
non-overlapping, I mean that the examples in the input will either favor A or favor B 
unambiguously.  There are no examples that signal (or can be accounted for by) both 
A and B – each hypothesis covers a distinct set of data points. Suppose also that the 
learner who will be using Bayesian updating has no reason to be biased towards one 
hypothesis, so the initial probabilities assigned to both A and B are 0.5.  These are the 
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prior probabilities associated with each hypothesis. 

    
Figure 1. Two non-overlapping hypotheses, equally probable initially.  The shading 
reflects how much probability is associated with each hypothesis.   
 
 The learner then encounters some amount of data (say d1 data points) and uses 
Bayesian updating to shift the probability mass between A and B to reflect the 
distribution in the data intake.  Each data point will cause the learner to shift the 
probabilities a small amount until the probability distribution among the hypotheses 
eventually matches the probability distribution encountered in the intake.   

(a) (b)  

  (c)  
Figure 2.  Two non-overlapping hypotheses with equal initial probability after seeing 
various distributions of intake (the total amount is quantified as d1 data points).  The 
shading reflects how much probability is associated with each hypothesis. 
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 If the data intake consists only of examples of A, the learner will eventually 
shift the probability so A is 1.0 and B is 0.0 (2a).2  Conversely, if the data intake 
consists only of examples of B, the learner will eventually shift the probability so A is 
0.0 and B is 1.0 (2b).  In each of these cases, the learner shifts all the probability to a 
single hypothesis, thereby converging on one hypothesis as correct.  However, it is 
possible that the learner will encounter a mixed distribution between A and B in the 
data intake.  If so, the learner will shift the probability to reflect the bias in the 
perceived distribution since the target state is a probabilistic distribution between A 
and B.  As a concrete example, if the input is consistently 30% A examples and 70% 
B examples, the learner will eventually shift the probability of A to be significantly 
less than that of B, reflecting the 30-70 distribution (2c). 
 

2.1.2. A Variant on the Simple Case: Two Non-overlapping Hypotheses, with an 
Initial Bias for One Hypothesis 
 
 Suppose the hypothesis space again has two non-overlapping hypotheses, A 
and B.  However, suppose the learner is biased towards A initially, so A has a higher 
prior probability associated with it than B does.  For example, let the initial 
probability assigned to A be 0.7, and the initial probability assigned to B be 0.3.  This 
scenario could represent a case where A is the default hypothesis and B is the 
exceptional (or marked) hypothesis – thus, B has a lower prior probability. 

     
Figure 3. Two non-overlapping hypotheses, with an initial bias towards hypothesis A.  
The shading reflects how much probability is associated with each hypothesis. 
 
 The learner then encounters some amount of data and uses Bayesian updating 
to shift the probability mass between A and B to reflect the distribution in the data 
intake.  As before, a learner encountering all A or all B examples will eventually shift 
the probability so that one hypothesis is 1.0 while the other is 0.0.  However, because 
the prior probability of A is higher than that of B, it will take a smaller number of A 
examples to cause the probability of A to reach 1.0 (less than the d1 data points in the 
unbiased hypothesis space) (4a).  Conversely, since B is the disfavored hypothesis 
                                                
2 However, it is possible that the endpoints (0.0 and 1.0) will only be reached in the limit.  Still, after 
encountering overwhelming data in support of one hypothesis over the other, the learner using 
Bayesian updating will likely be very near the endpoints.  This point will hold true for all Bayesian 
updating examples in the remaining sections of this chapter. 
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initially, it will take a larger number of B examples to cause the probability of B to 
reach 1.0 (more than the d1 data points in the unbiased hypothesis space) (4b).  If the 
data intake has a mixed distribution, the same logic applies: a data distribution 
favoring A will be reflected more quickly in the probabilities the learner assigns to 
the hypotheses than a data distribution favoring B (4c). 

(a)  (b)  

  (c)  
Figure 4.  Two non-overlapping hypotheses with an initial bias for hypothesis A after 
seeing various distributions and quantities of intake.  The shading reflects how much 
probability is associated with each hypothesis. 

2.1.3 A Less Simple Case:  Two Overlapping Hypotheses, Equally Likely 
 
 Suppose there are two overlapping hypotheses in the set: A and B.  By 
overlapping, I mean that there are two types of examples, unambiguous and 
ambiguous.  Unambiguous examples either signal A or signal B.  Ambiguous 
examples can be accounted for by both hypotheses.  Thus, while each hypothesis has 
a unique subset of examples associated with it, there is also a subset that can be 
covered by both hypotheses. Suppose also that the learner has no reason to be biased 
towards one hypothesis, so the initial probabilities assigned to both A and B are 0.5. 
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Figure 5. Two overlapping hypotheses, with equal probability initially.  The shading 
reflects how much probability is associated with each hypothesis. 
 
 The learner then encounters some amount of data and uses Bayesian updating 
to shift the probability mass between A and B to reflect the distribution in the data 
intake.  The important consideration is whether a given data point is unambiguous or 
ambiguous.  If unambiguous (for either A or B), the updating will work the same as in 
the simple non-overlapping case, and the probability will be shifted slightly in favor 
of the hypothesis the data point is unambiguous for.   
 However, if the data point is ambiguous, the learning procedure must decide 
what to do with it.  One possibility is to simply ignore the data point – this is the same 
as applying an unambiguous data filter that updates based only on unambiguous data 
points.  This is a filter that will be explored in detail in chapters 4 and 5.  Another 
possibility is to employ some strategy to deal with the ambiguous data point: use 
knowledge of the hypothesis space layout to assign partial credit (an approach 
explored in section 2.1.5 and chapter 3), use an informed guessing strategy (Fodor & 
Sakas, 2001), or randomly assign the data point to one hypothesis based on the 
current probabilities of both hypotheses (Yang, 2002).  The random assignment 
method assumes that the effect of such ambiguous data will wash out in the face of 
the unambiguous data.   
 If the learner uses some strategy to extract information from an ambiguous 
data point in the overlapping hypothesis scenario, the learner will need to encounter 
more total data points than in the equivalent non-overlapping hypothesis scenario in 
order to converge on a hypothesis (more than d1 data points).  This is simply a result 
of using both unambiguous and ambiguous data points to update the probabilities.  
Interestingly, if the learner uses an unambiguous data filter and ignores ambiguous 
data points, then we have a learning scenario that is very similar to the non-
overlapping scenario: the learner must encounter d1 unambiguous data points in order 
to converge on the correct hypothesis. (In the non-overlapping hypothesis space, all 
data points are unambiguous.) Still, the total quantity of data points the learner 
encounters in the overlapping case will be greater than d1, since the learner 
encounters both unambiguous and ambiguous data points.  However, the only data 
points that cause any updating are the d1 unambiguous ones. 
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2.1.4 A Variant of the Less Simple Case: Two Overlapping Hypotheses, with an 
Initial Bias for One Hypothesis 
 
 A variant of the overlapping case has biased initial probabilities.  For instance, 
suppose hypothesis A has a prior probability of 0.7 while hypothesis B has a prior 
probability of 0.3.  There are unambiguous examples of A, unambiguous examples of 
B, and ambiguous examples that can be accounted for by both A and B.   
 In terms of how the model deals with unambiguous and ambiguous data 
points, this scenario works the same as the unbiased overlapping scenario described 
in the previous section.  The learner can either ignore the ambiguous data points, or 
employ some method to attribute them to one hypothesis. 
 However, as in the biased non-overlapping scenario described before, the 
number of data points the learner must encounter to converge on a hypothesis 
depends on how the data intake distribution relates to the prior probability 
distribution.  If the data intake distribution is biased in the same direction as the prior 
probability distribution (say, 0.8 for A and 0.2 for B), the learner will need to 
encounter fewer data points to converge on the correct probability distribution.  
Conversely, if the data intake distribution is biased in the opposite direction from the 
prior probability distribution (say, 0.2 for A and 0.8 for B), the learner will need to 
encounter more data points to converge on the correct probability distribution. 

2.1.5 An Even Less Simple Case: Two Overlapping Hypotheses in a Subset Relation, 
Equally Likely 
 
 Suppose the hypothesis space again consist of two overlapping hypotheses, 
but one hypothesis is a subset of the other hypothesis.  Let A be a subset of B, so all 
examples of A are also examples of B (Tenenbaum & Griffiths, 2001; Manzini & 
Wexler, 1987; Berwick, 1985; Berwick & Weinberg, 1984; Pinker, 1979).  That is, 
while B has unambiguous examples, there are no unambiguous examples for A – all 
examples covered by hypothesis A can also be covered by hypothesis B.  Suppose the 
initial probabilities assigned to both A and B are 0.5.  
 

    
Figure 6. Two overlapping hypotheses in a subset relation, with equal probability 
initially.  The shading reflects how much probability is associated with each 
hypothesis. 
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 Suppose the learner encounters only unambiguous examples for B in the data 
intake (say, d2 data points).  Eventually, the learner will shift all the probability to B 
(B = 1.0, A = 0.0). 
 

    
Figure 7.  Two overlapping hypotheses in a subset relation with equal probability 
initially, after seeing d2 data points that are unambiguous for hypothesis B.  The 
shading reflects how much probability is associated with each hypothesis. 
 
 But what if hypothesis A (the subset hypothesis) is the correct one for the 
target language?  All examples covered by hypothesis A are also covered by 
hypothesis B – they are thus ambiguous data points.  It is impossible for the learner to 
encounter any unambiguous data points for hypothesis A.  If the data intake consists 
only of these ambiguous data points, one might expect the learner to remain at a 
neutral probability of 0.5 for each hypothesis since these data points are compatible 
with each hypothesis.  The learner would be doomed never to converge on the correct 
hypothesis, the subset hypothesis A. 
 One way to save the learner from this fate is to exploit the layout of the 
hypothesis space.  The Bayesian updating procedure can take advantage of the subset-
superset relation of the hypotheses to favor hypothesis A when encountering an 
ambiguous data point.  The logic is as follows: 
 
 (1) Logic of Favoring the Subset Hypothesis For an Ambiguous Data point    
  (a) If hypothesis B (the superset hypothesis) was correct, the data  
  intake should contain at least  some examples covered only in the  
  superset B (i.e. unambiguous B examples). 
  (b) If only examples covered by the subset A are encountered in the 
  data intake, it  becomes more and more unlikely that hypothesis B is 
  correct.   
  (c) Therefore, the more the learner encounters only data points in the 
  subset A (even though these are ambiguous data points), the more the 
  learner will favor the subset hypothesis A. 
 
 A learner taking advantage of this logic will therefore consider a restriction to 
the subset A more and more probable as time goes on if only subset data points are 
encountered.  This logic can be implemented in the Bayesian updating procedure 
itself, and has been referred to as the size principle (Tenenbaum & Griffiths, 2001).  
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Essentially, the smaller size of the set of examples covered by hypothesis A benefits 
hypothesis A when ambiguous examples are encountered.  Specifically, the likelihood 
of encountering these examples given the smaller set covered by A is greater than the 
likelihood of encountering these examples given the larger set covered by B.  So, A is 
slightly favored when encountering an ambiguous example covered in its subset.3 
After a sufficient number of ambiguous examples in the data intake (and, importantly 
for the basic version of the size principle, no unambiguous examples of the superset 
B), A will be highly favored. 
 We note that there is a disparity between the quantity of data points required 
to converge on B when using unambiguous data points as compared to the quantity 
required to converge on A using ambiguous data points.  In particular, if the learner 
requires d2 data points to reach probability p for B when encountering unambiguous 
B data points, the learner will require more than d2 data points to reach p for A when 
encountering ambiguous data points.  This is because the size principle allows A to 
only be slightly favored for an ambiguous data point while B is exclusively favored 
for an unambiguous B data point, though the actual amount of favoring depends on 
the relative sizes of A and B.   
  
 

    
Figure 8. Two overlapping hypotheses in a subset relation with equal probability 
initially, after seeing more than d2  data points that are examples of A.  The learner 
uses the size principle to converge on hypothesis A.  The shading reflects how much 
probability is associated with each hypothesis. 
 
 If the data intake has a mixed distribution (both unambiguous B examples and 
ambiguous examples), the unambiguous B examples will have more effect on the 
learner’s probability distribution than the ambiguous examples that slightly favor A.  
Both types of data points, however, will contribute to the final probability the learner 
converges on.  Again, the number of data points required to converge on the final 
probability will be greater in this case (more than d2 data points) than if only 
unambiguous B examples were encountered and the correct hypothesis was B 
exclusively. 

                                                
3 The amount A is favored depends on the relative sizes of A and B, which the learner must already 
know (perhaps as a separate prior) or empirically derive from the data.  The smaller A is compared to 
B, the more A is favored given an ambiguous data point.   
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Figure 9.  Two overlapping hypotheses in a subset relation with equal probability 
initially, after seeing more than d2 data points that are a mix of unambiguous B 
examples and ambiguous examples in the subset A.  The learner uses the size 
principle to converge on the probability that reflects the distribution observed in the 
input.  The shading reflects how much probability is associated with each hypothesis. 
 
 It is important to note that exploiting the hypothesis space layout using the 
heuristic of the size principle is a non-trivial contribution to the learning problem for 
hypotheses arrayed in a subset-superset relationship. Though it is a heuristic and so 
not guaranteed to succeed for all cases, it nonetheless has an advantage over 
approaches that do not exploit the hypothesis space layout.  Specifically, if only 
subset data are encountered, it will converge on the subset.  
 Suppose, however, that the learner did not use a heuristic like the size 
principle for learning.  An instantiation of learning like this that still retains the 
advantages of probabilistic learning is the Naïve Parameter Learner (Yang, 2002), 
and the rate at which the learner shifts probabilities is represented by a parameter, 
gamma.  A more conservative learner will have a smaller gamma, while a more 
liberal learner will have a larger gamma.  For a data point, the Naïve Parameter 
Learner (NP learner) chooses one hypothesis and determines if the data point is 
compatible with it.  If so, that hypothesis is rewarded while the remaining ones are 
punished; if not, it is punished while the remaining ones are rewarded.  The update 
equations are given in (2), assuming two hypotheses, G1 and G2 (from Yang (2002)). 
 
(2) Update equations for the NP learner for a hypothesis space with two hypotheses, 
G1 and G2, given a data point d and testing G1 against d 
 (a) If G1 is compatible with d,  
  pG1 = pG1 + gamma*(1 – pG1) 
  pG2 = (1-gamma)*pG2 
 (b) If G1 is not compatible with d, 
  pG1 = (1-gamma)* pG1 
  pG2 = gamma + (1-gamma)*pG2 
 
 To give a concrete example, suppose pG1 = pG2 = 0.5, and gamma = 0.005.  
Suppose data point d is encountered.  The learner will test G1 with a 50% chance, and 
G2 with a 50% chance.  Suppose the learner tests G1, and G1 is compatible with d.  
Then, the updated pG1 = 0.5 + 0.005(1-0.5) = .5025.  The updated pG2 = (1-0.005)*0.5 
= 0.4975.   
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 As another example, suppose again that pG1 = pG2 = 0.5, and gamma = 0.005. 
Suppose data point d is encountered, and the learner tests G1 and finds it is not 
compatible with d.  Then, the updated pG1 = (1-0.005)*0.5 = 0.4975, and the updated 
pG2 = 0.005 + (1-0.005)*0.5 = 0.5025. 
 As these two examples show for a hypothesis space that consists only of two 
hypotheses, when one hypothesis is punished by a certain amount, the other is 
rewarded by that same amount. If there were more than 2 hypotheses, the amount the 
tested hypothesis (G1) is punished/rewarded (gamma) would be distributed among 
the alternative hypotheses (G2…Gn).   
 The NP learner is implicitly driven by the availability of unambiguous data for 
one hypothesis – the alternative hypothesis is punished whenever it is used to 
interpret such unambiguous data points. Yet, if all data come from the subset 
hypothesis, then there will be no unambiguous data to punish the superset hypothesis.  
The NP learner encounters only ambiguous data, and is actually driven to 
convergence on either hypothesis, given sufficient data.  This is shown in figure 10, 
assuming a hypothesis space where G1 is a subset of G2, and learning rates 
represented by gamma = 0.001 to 0.005, given 100,000 data points.  The more liberal 
the learner is, the more likely the learner is to converge to one hypothesis or the other.  
Importantly, there is no guarantee that the learner will converge on the subset 
hypothesis, even though all data points come from the subset hypothesis. 
 

 
Figure 10. The NP learner, given ambiguous data from only the subset hypothesis, 
G1. This shows the results of 10 learners for each value of gamma, where gamma 
represents how conservative/liberal learning is.  The NP learner has a tendency to 
converge to one hypothesis or the other, but is just as likely to converge to the subset 
G1 as the superset G2.   
 
 So, for learning cases where the hypotheses have a subset-superset relation to 
each other, approaches that do not exploit the hypothesis space layout will have 
difficulty converging on the subset hypothesis.  The heuristic of the size principle 
provides a way to use this information to bias the learner towards the correct 
hypothesis. 
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2.1.6 Hypothesis Spaces for Language Learning 
 
 As we have seen, the layout of the hypothesis space and the relations between 
the hypotheses greatly affect how Bayesian updating uses the data intake to shift 
probability between alternate hypotheses.  Crucially for Bayesian updating to be able 
to function, the hypothesis space must already be specified (cf. Tenenbaum, Griffiths, 
& Kemp (2006) for theory-based Bayesian models that emphasize this point).  
Otherwise, the Bayesian updating procedure has nothing over which to operate.  In 
short, if the learner has no options to select from, Bayesian updating cannot help. A 
Bayesian updating procedure dovetails with a defined hypothesis space; it does not 
replace it. 
 For language learning, a simple interpretation in the parametric framework of 
the generative tradition (Chomsky, 1981) is that there is a hypothesis space associated 
with each parameter, and alternative hypotheses within a given hypothesis space 
correspond to opposing values for linguistic parameters.  For instance, suppose we 
examine the syntactic parameter of Verb-Second movement.  A language with Verb-
Second movement (such as German) will move the tensed Verb to the second phrasal 
position in the main clause; a language without Verb-Second movement (such as 
English) will not.  The Verb-Second hypothesis space thus contains the hypotheses 
Verb-Second-Movement and No-Verb-Second-Movement.  A learner of either 
German or English will encounter data points from the target language and use the 
data intake to converge on the appropriate hypothesis for that language. 
 In the remaining chapters, we will examine different hypothesis spaces in 
different domains of linguistics.  Chapter 3 explores a language learning problem that 
spans syntax and semantics: English anaphoric one.  Both the syntactic and semantic 
hypothesis spaces for English anaphoric one contain two overlapping hypotheses in a 
subset-superset relation, and these hypotheses are equally probable initially.4   
 Chapter 4 investigates a language learning problem in Old English syntax 
where the target state is a probabilistic distribution between two hypotheses, Object-
Verb order and Verb-Object word order, that changes over time.  The hypotheses are 
overlapping – that is, there are both unambiguous data points for each hypothesis and 
ambiguous data points.  Both hypotheses are equally probably initially.   
 Chapter 5 studies the language learning problem of English metrical 
phonology, which is a data set plagued by noisy and contradictory data.  There are 
nine separate interacting parameters, each with their own hypothesis spaces.  Each 
hypothesis space contains two hypotheses that are overlapping, and these hypotheses 
are equally probable initially. 
 
 
 
  

                                                
4 Note that it is an assumption of the model that these hypotheses are equiprobable initially, rather than 
a derivation from theoretical work or an observation from experimental work. 



 

 17 
 

2.2 Bayesian Updating: General Implementation for Language Learning in a 
Hypothesis Space with Two Hypotheses 
 
 I will now describe how the mathematical framework of Bayesian updating 
(Manning & Schütze, 1999) can be adapted to a language learning hypothesis space 
with two non-overlapping hypotheses, A and B.5  The only data points a learner 
encounters will be unambiguous for either A or B.  Note that we can use this same 
procedure for an overlapping hypothesis space (having both unambiguous data points 
and ambiguous data points) if the learner employs an unambiguous data filter that 
ignores the ambiguous data points.  In this scenario, the only data points the learner 
uses to update the hypothesis probabilities are the unambiguous data points, which 
signal either A or B.  
 I will then briefly sketch how to modify the Bayesian update functions to 
account for an overlapping hypothesis space where the hypotheses are in a subset-
superset relation.  The details of this modification will be described more thoroughly 
in chapter 3, since the specific modifications are dependent on properties of the 
hypotheses themselves. 

2.2.1 Updating with Unambiguous Data in a Hypothesis Space with Two Hypotheses 
 
 Suppose the hypothesis space consists of two hypotheses, A and B.  Let the 
probability of hypothesis A be pA and the probability of hypothesis B be pB. Below, I 
describe how to update pA.  Before updating, pA represents the prior probability of A; 
after updating, pA represents the posterior probability of A. The calculation of pB is 
straightforward once pA is known, since pB = 1 – pA, given that there are only two 
hypotheses in the hypothesis space and only one of them can be correct for any given 
data point. 
 I assume that the learner extracts information only from the current data point, 
and uses the information from this data point to update the probabilities of the 
hypotheses. Thus, the sequence length for the language learning Bayesian update 
function is 1.  Importantly, the learner does not store data points and subsequently 
conduct analyses across sequences of stored data points.  So, the learner is not 
required to remember past data points in their raw form (i.e. as utterances), which I 
believe is a favorable quality for a model that aims to be psychologically realistic. 

                                                
5 Of course there are several alternative approaches for the updating procedure. For instance, one 
might try likelihood ratios (Neyman, J. & Pearson, E., 1928) to shift probability between hypotheses, 
given a data point.  However, likelihood ratios require a prior knowledge of the success of the test used 
to identify the property of interest.  Mapping this to the language learning problem, the learner would 
need to know the success of whatever method is used to identify unambiguous data for identifying 
actual unambiguous data.  To know this, the learner must know what actual unambiguous data is.  To 
know that, the learner would need to already know the system, so as to accurately determine what 
unambiguous data for it is.  This, however, defeats needing to learn the system in the first place. 
 A more promising alternative is LaPlace’s rule of succession (Manning & Schütze, 1999) 
which normalizes the number of previous successes (e.g. data points identified as unambiguous) 
against the total number of data points observed.  Though similar to the adaptation of Bayesian 
updating used in this dissertation, it does not rely on a parameter corresponding to the period of 
fluctuation a learner is allowed.  The benefit of this parameter (t) is discussed in section 2.3.3. 
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 Because there are exactly two hypotheses in the hypothesis space, I use a 
binomial distribution to approximate a learner’s expectation of the data distribution to 
be encountered.  The binomial distribution is centered at pA, so the learner’s 
expectation is about the quantity of A data points that should be encountered in the 
data intake. 
 The binomial distribution is normally used to represent the likelihood of 
seeing r data points out of t total with some property.  For example, if these are coin 
flip data points, the property might be “is heads”.  There are only two choices for 
each data point: the property is either present or absent.  If these are coin flip data 
points, the coin is either heads or it isn’t (specifically, it’s tails).  For the hypothesis 
space we are considering, the data point is either an example of A, or it isn’t 
(specifically, it’s an example of B).  The highest confidence is assigned to the 
distribution where r A data points are observed our of t total: r = t*pA. Recall that the 
binomial distribution is centered at pA, and so the learner is most confident that the 
probability of seeing an A data point is pA.   So, r is the most probable number of A 
data points expected out of t total, given the current probability of hypothesis A, pA. 
 As an example, suppose pA is 0.5, as it is in the initial state in an unbiased 
hypothesis space before the learner has encountered any data points.  The binomial 
distribution is centered at 0.5, which we can interpret as the learner having the most 
confidence that half the total data points encountered will be A data points.  
Specifically, the learner will expect r = t*0.5 data points to be A data points. 
 To update pA after seeing a single unambiguous A data point a, we can follow 
Manning & Schütze’s (1999) Bayesian updating algorithm and calculate the 
maximum of the a posteriori (MAP) probability.  The a posteriori probability is the 
probability that pA is the correct probability to center the binomial distribution at after 
seeing an unambiguous data point A; pA represents the expected probability of 
encountering an A data point. We maximize this probability because we are using a 
probability distribution (specifically, the binomial distribution) to approximate the 
learner’s expectation about the data distribution to be encountered.  We want the 
maximum a posteriori probability that comes from using this probability distribution. 
 We represent the a posteriori probability as Prob(pA| a)6, and calculate it using 
Bayes’ rule: 
 

(3) 

! 

Prob(pA | a) =  
Prob(a | pA) *  Prob(pA)

Prob(a)
 

 
 We can now examine individual pieces of the right hand side equation.  
Prob(a | pA) is the probability of encountering the unambiguous A data point a, given 
that pA is the correct probability to center the binomial distribution at.  For a single 
instance (i.e. for the single data point a), the probability of encountering 1 instance of 
a for 1 observation from the binomial distribution centered at pA is 

                                                
6 Prob(pA| a) is actually intended, rather than Prob(A| a).  This is because we are attempting to 
calculate the probability that pA is the correct probability to center the binomial distribution at, given 
data point a. So, Prob(pA | a) can be thought of as shorthand for Prob(pA is the correct center for 
binomial distribution that will match the distribution in the learner’s intake | a). 
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! 

1

1( ) *pA
1
* (1-  pA)

1-1, which is pA. 

 Prob(pA) is the probability that pA is the correct probability to center the 
binomial distribution at, i.e. that the learner should be most confident that an A data 
point will be encountered with probability pA.  Recall that a binomial distribution 
centered at pA will assign the highest confidence to the situation where r = (pA*t) A 
data points are encountered out of t total.  We can instantiate Prob(pA) as the 
probability of encountering r A data points out of t total in a binomial distribution for 
all values of r, from 0 to t.7 
 
(4) 

! 

Prob(pA)  =  
r

t( ) *pA
r * (1-  pA)t -r  (for each r,  0 "  r "  t)  

 
 Substituting these pieces back into equation (3) for the a posteriori probability 
yields (5): 
 

(5) 

! 

Prob(pA | a) =  
pA *  

r

t( ) *pA
r * (1- pA)t -r

Prob(a)
 (for each r,  0 "  r "  t)  

 
 We can now calculate the MAP probability by finding the maximum of this 
equation.  To do this, we take the derivative with respect to pA, set it equal to 0, and 
solve for pA. 
 
(6) Calculating the MAP probability  

! 

d

dpA

(Prob(pA | a) =  
d

dpA

(
pA *  

r

t( ) *pA
r * (1- pA)t -r

Prob(a)
) =  0   

 

! 

d

dpA

(
pA *  

r

t( ) *pA
r * (1- pA)t -r

P r o b ( a ) 
) =  0 (since Prob(a) is a constant w.r.t. pA)   

 

! 

pA =  
r +1

t +1
 

 
 Recall that r is the previous expected number of A data points encountered out 
of t data points total.  Hence, r = pA old*t.  Therefore, we write the update function for 
pA after encountering unambiguous A data point a as (7a). 
 
(7a) Update function for pA after seeing unambiguous A data point a 
 

  

! 

pA =
pA old * t +1

t +1
 

 
 
                                                
7 Note that approximating Prob(pA) this way is a non-standard assumption.  However, it yields update 
equations with psychologically desirable properties that other more standard assumptions do not. 
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 An intuitive interpretation of this update function is that the numerator 
represents the learner’s confidence that the encountered unambiguous A data point a 
is a result of the A hypothesis being correct; the denominator represents the total data 
encountered so far.  Thus, 1 is added to the numerator because the learner is fully 
confident that the unambiguous data point a indicates the A hypothesis is correct; 1 is 
added to the denominator because a single data point has been encountered. 
 As we observed before, given that there are only two hypotheses in the 
hypothesis space, we can calculate the new pB after seeing an unambiguous A data 
point a as pB = 1.0 – pA. 
 
(7b) Update function for pB after seeing unambiguous A data point a 
 

 

! 

pB =  1-  pA =  1-
pA old * t +1

t +1
 

  
 Now, we can also derive the update functions for pA and pB after seeing an 
unambiguous B data point b.  The derivation of the update function for pB after seeing 
b is identical to the derivation of the update function for pA after seeing a, and leads 
to equation (8). 
  

(8) 

! 

pB =
pB old * t +1

t +1
 

 
 Again, since there are only two hypotheses in the hypothesis space, pB = 1.0 – 
pA. So, if we wish to track the value of pA, we can substitute this into equation (7) and 
derive the update function for pA after an unambiguous B data point b is encountered. 
 
(9) 

  

! 

pB =
pB old * t +1

t +1

(1" pA) =  
(1- pA old) * t +  1

t +1

pA =  1-  
(1- pA old) * t +  1

t +1
=  

t +1 -  (t -  pA old * t +  1)

t +1

pA =  
pA old * t

t +1

 

 
 
 This update equation is identical to (7a), except that 0 is added to the 
numerator instead of 1.  This reflects the intuitive notion that the learner should have 
no confidence that the A hypothesis generated the unambiguous B data point b just 
encountered. 
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2.2.2 Updating with Ambiguous Data in a Hypothesis Space with Two Hypotheses 
 
 We have just seen how to derive the update functions for when an 
unambiguous data point is encountered.  Suppose, however, that the learner 
encounters an ambiguous data point and does not impose a filter that ignores such 
data for the purposes of updating.  Since this data point is ambiguous between 
hypotheses A and B, the value added to the numerator should be a reflection of the 
learner’s confidence that the data point indicates each of these hypotheses.   
 I now focus on the update of pA (recalling, of course, that we can easily derive 
pB as 1 - pA).  If an unambiguous A data point is encountered, 1 is added to the 
numerator to indicate full confidence in A (and no confidence in B).  Conversely, if 
an unambiguous B data point is encountered, 0 is added to the numerator to indicate 
no confidence in A (and full confidence in B).   So, if a data point is ambiguous 
between the two hypotheses, a value greater than 0 and less than 1 should be added to 
the numerator.  If the value added is 0.5, this would reflect no bias for either 
hypothesis (a truly ambiguous data point); if the value added is closer to 1, this would 
reflect a bias for the A hypothesis; if the value added is closer to 0, this would reflect 
a bias for the B hypothesis.  As an example, if the learner has reason to favor A 
(perhaps because A and B are in a subset-superset relation with A as the subset), the 
value added would be greater than 0.5 but less than 1.  The exact value would depend 
on the relative size of the sets of examples covered by A and B. 
  
(10) Hypothetical update function for pA after encountering an ambiguous data point,  
      A is a subset of B, and so there is bias for hypothesis A 
   

   

! 

pA =
pA old * t +m

t +1
, 0.5 <  m <  1 

 
 It is important to note that ignoring ambiguous data is not equivalent to adding 
0.5 to the numerator when encountering an ambiguous data point.  One might 
presume this since we interpreted the addition of 0.5 to the numerator as having no 
bias for either hypothesis.  The crucial difference is in the invocation of the update 
function: if the ambiguous data point is ignored, no updating occurs; if the ambiguous 
data point is used, the update function is invoked.  This has important consequences if 
the learner employs the strategy of adding 0.5 to the numerator when encountering an 
ambiguous data point.  Each ambiguous data point will cause an update that will drive 
pA closer to 0.5.   
 As an example, suppose the input stream contains 10% unambiguous A data 
points and 90% ambiguous data points.  If the learner imposes an unambiguous data 
intake filter, the learner will only update pA for 10% of the data points encountered 
and will always add 1 to the numerator. This results in a pA that is significantly 
greater than 0.5 (though possibly still less than 1).  Conversely, if the learner updates 
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for both unambiguous and ambiguous data points, the update function is always 
invoked; 10% of the time, pA is pushed closer to 1.0 but 90% of the time pA is pushed 
back towards 0.5.  This results in a pA that is significantly closer to 0.5 than the pA 
obtained by using only unambiguous data to update.  In short, the learner is less likely 
to converge on the correct hypothesis, A. 

2.2.3 About t 
 
 The update functions just derived depend on two parameters: the prior 
probability, pA old, and the total amount of data expected during the learning period, t.  
Expecting the learner to already know the prior probability seems reasonable, as it is 
the most recent value the learner has calculated using the update function.  Expecting 
the learner to already know the total amount of data during the learning period, 
however, may seem farfetched.  Yet, the underlying concept behind t can also be 
interpreted as the amount of change a real learner’s brain is allowed to undergo before 
settling into the final state.  This would be a biologically given constraint.  In my 
simulations, this amount is simply quantified as the total amount of data available as 
intake to the learner (i.e. the learner can use t data points of data to update the 
probabilities assigned to the different hypotheses). 
 The role of t in the update functions is to determine how much the probability 
should be shifted, given a single data point.  If t is small, a single data point shifts the 
probability a great deal.  This is a direct result of the fact that a small t means the 
expected data set will be small, and so only a small number of changes are allowed.  
Thus, the learner shifts the probability more liberally in an attempt to get to an 
appropriate target state before t runs out.  Conversely, if t is large, a single data point 
shifts the probability a lesser amount.  This is a direct result of the fact that a large t 
means the expected data set will be large, and so a large number of changes are 
allowed.  The learner in this case can afford to be more conservative when shifting 
probability because there are more chances to shift the probability before t runs out. 
 Importantly (and perhaps surprisingly), the value of t is essentially arbitrary: 
the final probability the learner settles on is independent of the size of t, provided t is 
not too small. The reason for this stability is that the behavior of the learner is 
dependent on the probability distribution of the data.  As long as t is large enough for 
the learner to observe a reasonably accurate sample of the probability distribution in 
the data intake, the learner will converge on a final probability that is the same across 
different values of t.  If t is small, each data point has a larger impact; if t is large, 
each data point has a smaller impact.  The final probability, however, does not 
change.  This will be demonstrated with an explicit example in the chapter 3. 8 
 The parameter t can also capture the notion of “critical period” or “period of 
fluctuation”, where learning of particular aspects of the linguistic system ceases 
abruptly after some maturational point.  Specifically, after the learner has encountered 
t amount of data in the intake, no more updating is possible.  The probabilities for the 
                                                
8 Note that this is different from saying that that t must be empirically determined for each learning 
problem.  It does not matter what t is for a given learning problem– the bias in the distribution is what 
drives the learner one way or the other.  The value of t simply quantifies the amount a given data 
points alters the learner’s associated probabilities for each hypothesis. 
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hypotheses are set, and future data points encountered have no effect.  In short, the 
data intake for this hypothesis space is then zero, no matter what the available input 
is.  This maps directly to the idea of a cut-off point for language learning, after which 
no further input can influence the learner’s linguistic hypotheses. 
 Equipped with these relations between the period of fluctuation, t, and the data 
intake, I can speculate on the time course of parameter-setting for individual 
parameters.  In this model, the period of fluctuation is defined by t: the size of t 
determines the length of the period of fluctuation.  If we link t to the amount of 
change a real learner’s brain is allowed to undergo and so view t as a biologically 
given constraint, we might expect that t should be invariant across different 
parameters.  If all parameters have the same period of fluctuation (as defined by t), 
we should expect all parameters to be set at the same time.  Yet, there is ample 
evidence that this is not the case.  How do we reconcile this with our view of t? 
 The answer lies in the relation between t, data intake, and the filtering 
component of the learning theory.  The period of fluctuation is defined by a constant 
value of t, but t is defined over the quantity of data points in the intake - not just in the 
available input.  The proportion of input that is used as intake can vary from 
parameter to parameter, based on the filters used to define intake.  High proportions 
of intake from input will allow the quantity of intake to accumulate more quickly over 
time; low proportions of intake from input will cause the quantity of intake to 
accumulate more slowly over time.  The more quickly intake is accumulated over 
time, the faster the learner reaches the data intake limit of t.  So, this view predicts 
that parameters that accumulate data intake more quickly will be set earlier than 
parameters that accumulate data intake more slowly. 
 As a concrete example, suppose learners implement an unambiguous data 
filter that causes the data intake to consist only of unambiguous data.  The time 
course of parameter-setting should then depend on the quantity of unambiguous data 
available in the input.  Yang (2004) provides a summary of evidence from 
experimental studies that suggests this is precisely what happens for certain syntactic 
parameters, including the information in table 2.1.9  Syntactic parameters with a 
larger proportion of unambiguous data in the input are acquired earlier while syntactic 
parameters with a smaller proportion of unambiguous data in the input are acquired 
later. 
 
 
 
 
 
                                                
9 This is no longer true if the learner uses ambiguous data as well, unless the combination of 
unambiguous and ambiguous data used yields these same correlations.  Again, one possibility is there 
is a correlation between the data intake (useable data) and the time course of acquisition.  In that case, t 
would again represent the amount of change allowed, but useable ambiguous data “uses up” some of t 
(in addition to unambiguous data using up some of t).  It is even possible that unambiguous data would 
use up more of t than useable ambiguous data would, perhaps in proportion to the amount of perceived 
ambiguity: the more unambiguous the data is, the more t is used up since the learner is more confident 
that the data is informative. 
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Parameter Target 

Language 
Unamb 

Data 
Frequency 

Time of Acquisition 

Verb-Raisinga French 7 % 1;8 (Pierce, 1992) 
Obligatory 
Subjectb 

English 1.2% 3;0 (Valian, 1991) 

Verb-Secondc German/Dutch 1.2% 3;0-3;2 (Clahsen, 1986) 
Scope-Markingd English 0.2% 4;0+ (Thornton & Crain, 1994) 

Table 2.1. The effect of data intake accumulation on parameter-setting.  Assuming an 
unambiguous data filter, syntactic parameters that have a higher proportion of input 
used as intake are the parameters that are acquired earlier.   
 
 Looking at the data in table 2.1, we can see the relation between the frequency 
of unambiguous data in the learner’s input and the time of acquisition.  We look first 
at Verb-Raising. In languages like French, the tensed verb moves before adverbs 
negation and adverbs (‘Jacques voit souvent/pas Simone’; ‘Jack sees often/not 
Simone’), in contrast to languages like English (‘Jack often sees Simone’) (1a).  
Unambiguous data signaling Verb-Raising comprise about 7% of the input, and 
children appear to have knowledge of Verb-Raising quite early.   
 We turn then to the Obligatory Subject.  In languages like English, a subject is 
required (‘He saw Rafael’, ‘It is raining’), while in languages like Spanish, the subject 
is optional (‘(Él) vio a Rafael’, ‘Llueve’; ‘(He) saw Rafael’, ‘Rains’).  Unambiguous 
data for Obligatory Subject is much less frequent than Verb-Raising data, and the 
time of acquisition is also later than that of Verb-Raising. 
 We can look to Verb-Second as well.  In languages like German and Dutch, 
the tensed Verb in the main clause is moved to the second phrasal position, following 
one phrase of any type (‘Ich liebe die Katzen’, ‘Die Katzen liebe ich’; ‘I-Subj love 
cats-Obj’, ‘Cats-Obj love I-Subj’).   Unambiguous data for Verb-Second appear 
approximately as frequently as unambiguous data for Obligatory Subject, and the 
time of acquisition is also approximately equivalent. 
 There is also evidence from Scope-Marking.  In German, Hindi, and other 
languages, long-distance wh-questions leave intermediate copies of wh-markers (‘Wer 
glaubst du wer Recht hat?’, ‘Who think you who right has?’, Who do you think has 
the right?).   For English children to know that English does not use this option, long 
distance wh-questions must be heard in the input, a type of data that is very infrequent 
in the available input to children.  And indeed, the time of acquisition is much later. 
 In summary, children could learn from a fixed quantity of relevant data points, 
irrespective of parameter, and this would accord with experimental evidence.  The 
quantity is constant across all parameters (t), but the availability of relevant data 
(intake) is not constant across all parameters.  This yields different time courses of 
parameter-setting. 
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2.3 Summary of Bayesian Updating Adapted to a Linguistic Framework 
  
 I have now described the mathematical framework I will employ in the 
subsequent chapters to explore different case studies in language learning.   In 
addition, I have sketched how values integral to the mathematical framework can be 
mapped to already existing concepts in the language learning literature.  This 
framework will be the basis for the updating procedure used by the learner to shift 
probability between competing hypotheses.  I reiterate that this updating procedure is 
domain-general, and is applicable across linguistic domains (and other cognitive 
domains).  However, the representations assumed for the hypothesis space and the 
filters tested in each case study will be domain-specific.  The separation of a learning 
theory into three distinct parts allows us to merge domain-specific components with 
domain-general components and thus have a theory that is both. 
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Chapter 3: The Case of Anaphoric One 

3.1 Anaphoric One: The Necessity of Domain-Specific Constraints 
 
 The phenomenon under investigation is the interpretation of the anaphoric 
element one in English.   Previous work has argued that infants’ knowledge of 
anaphoric one could not be derived from their experience with this form (Lidz & 
Waxman, 2004; Lidz, Waxman, & Freedman, 2003).  Instead, it was argued that 
the learner must be equipped with prior constraints on the hypothesis space.  
Because of these constraints, certain interpretations are simply never considered 
as potential hypotheses – specifically for anaphoric one, the learner would not 
consider the hypothesis that one is anaphoric to N0.  These constraints were 
described as being part of the domain-specific representational format for 
language learning.  However, subsequent work (Regier & Gahl, 2004) replied 
that a probabilistic learner could acquire this knowledge using the domain-
general learning procedure of Bayesian updating.  No constraints on the 
hypothesis space (or domain-specific constraints of any other kind) would then be 
required. Regier and Gahl (henceforth R&G) provided their learning model with 
a small set of hypotheses to choose from that were derived from domain-specific 
representational content.  Because there are no constraints on the hypothesis 
space, R&G’s model considers more hypotheses than the learner of Lidz, 
Waxman, and Freedman (henceforth, LWF). 
 The two sides are then set up.  The LWF learner requires a hypothesis 
space defined over domain-specific representations, as well as domain-specific 
constraints that preclude certain hypotheses from being considered. No filters on 
data intake are posited, and the learner is compatible with a Bayesian updating 
procedure. The R&G learner also requires a hypothesis space defined over 
domain-specific representations, but does not require additional constraints on the 
hypothesis space.  Instead, the R&G learner rules out the incorrect hypotheses 
using a particular implementation of Bayesian updating that exploits the layout of 
the hypothesis space.  R&G also do not explicitly posit filters on data intake, and 
thus claim that no additional information beyond probabilistic updating is 
required to converge on the correct interpretation of anaphoric one. 
 However, I will argue that R&G’s conclusion was too quick.  In 
particular, the R&G learner considers only a restricted source of evidence, which 
inflates the estimate of the learner’s success. By restricting the data intake this 
way, this model in fact implicitly implements two domain-specific filters on the 
learner’s data intake, which will be discussed in detail later in the chapter.  
However, when a model of a learner that is in the true spirit of the R&G proposal 
is set up, i.e. one that has no filters on data intake, we will find that this 
unconstrained Bayesian learning model does not display the correct behavior.  If 
the learner considers the full array of evidence in the input, the learner will fail to 
learn the correct interpretation of anaphoric one. 
 A Bayesian model without domain-specific constraints is plagued by a 
particularly pernicious problem in language learning.  Specifically, representations 
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across domains are aligned (e.g. strings of words project to interpretations about 
referents in the world).  In the case studied here, when we allow the learner to 
consider the correspondences across levels of representation (syntax and semantic 
reference), we find that an unrestricted Bayesian model fares very poorly.  This 
conclusion casts doubt on Bayesian learning as the sole source of constraints on 
learners.  In short, this case suggests that the overly general nature of domain-general 
learning must be reigned in by domain-specific representations and domain-specific 
filters on data intake. 

3.2 Why Learning Anaphoric One Is Interesting 
 
 To learn the correct interpretation of anaphoric one, it is believed that the 
learner must consider both the syntactic level of representation and the semantic level 
of representation.  At the syntactic level, the learner must learn what the linguistic 
antecedent of one is; at the semantic level, the learner must determine what object in 
the world the noun phrase containing one refers to.  Both of these levels contribute to 
the information a Bayesian learner would use when converging on the correct 
representation of one. A linguistic antecedent (syntax) can be translated into a 
reference to an object in the world (semantics) and so both syntactic and semantic 
representations are implicated in knowledge of one.  As we will see below, the correct 
syntactic representation for English adults is that the linguistic antecedent of one is a 
string classified as the category N’.  This syntactic knowledge has semantic 
consequences, which are what LWF used to determine if 18-month olds preferred that 
specific syntactic representation. In this way, we can see that the knowledge that one 
refers to N’ strings traverses both the syntactic domain and the semantic domain. 
 Acquisition of anaphoric one is an interesting learning problem because the 
data that would lead a learner to the correct representation are quite sparse. In 
particular, LWF estimated that less than 0.3% of the child’s input containing 
anaphoric one provided unambiguous evidence for the correct representation. 
Moreover, the rate of ungrammatical sentences containing anaphoric one was twice 
this amount, making the occurrence of useful (unambiguous) data below noise level. 
Given this pattern of data, LWF argued (following Baker (1979) and Hornstein & 
Lightfoot (1981)) that constraints on the representation of anaphoric one must be built 
into the learner’s domain-specific representations.  The learner should never consider 
hypotheses where one refers to categories smaller than N’, such as N0. 
 R&G countered that a learner using a domain-general Bayesian learning 
procedure could converge on this knowledge by using ambiguous data with certain 
properties. This particular class of ambiguous data functions as indirect negative 
evidence for the correct hypothesis10.  Using this ambiguous data, they argued, would 
make the proposed constraint on the linguistic representations unnecessary. The 
appeal of a domain-general learning procedure without domain-specific filters resides 
in the lack of biases found inside the learner.  However, R&G’s model made use of 
only some of the available ambiguous data and of only semantic data to converge on 
the syntactic representation. This decision implements two domain-specific filters on 

                                                
10 But see Lasnik (1987) for comments about indirect negative evidence in language learning. 
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the learner’s data intake. I will investigate the results of a probabilistic Bayesian 
learning procedure that removes these filters.  
 The procedure I develop uses all the available ambiguous data as well as both 
syntactic and semantic data to converge on the probabilities of competing 
representations. I will show that, even under the most generous estimates of the 
various parameters involved in such a model, a Bayesian learner lacking domain-
specific filters on data intake will fail to converge on the syntactic knowledge that one 
is anaphoric to N’ strings and fail to have the standard adult interpretation of what set 
of referents in the world one can refer to.  In short, the unconstrained Bayesian 
learner will not learn the preferred adult interpretation of anaphoric one, in contrast to 
what real children do. 
 The chapter proceeds as follows.  First, I will briefly describe the relevant 
parts of the grammar of anaphoric one.  I will then review the behavioral evidence 
indicating 18-month olds have acquired the adult representation of anaphoric one and 
the argument by LWF that the input available to children is too sparse to support 
acquisition of this knowledge.  Then, I address various proposals to circumvent the 
sparse data problem, and detail how the R&G proposal about a domain-general 
solution to this problem implicitly implements domain-specific filters on the data 
intake. Following that, I describe a Bayesian learning model that is truly domain-
general, in that it removes all implicit filtering on the data.  I show that such a model 
fails to acquire the adult interpretation of anaphoric one.  In addition, I describe how 
under a less charitable assumption of a certain parameter value, the Bayesian learning 
model would perform even more poorly. Then, I identify the source of the model’s 
failure. One contributing factor to the spectacular failure of the model derives from 
the link between syntax and semantics. A second contributor to this failure is the 
abundance of ambiguous data, which given Bayesian learning techniques, causes to 
the learner to misconverge. I argue that successful acquisition depends on a domain-
specific filter on the data. Finally, I speculate on the origin of the necessary domain-
specific filter, suggesting that its roots may lie in a syntactocentric approach to 
learning anaphoric one. 

3.3 Anaphoric One 

3.3.1 Adult Knowledge: Syntactic Categories and Semantic Referents 
 
 For English adults, the element one is anaphoric to strings that are classified 
as N’ (i.e., the antecedent for one is an N’ string), as in example (1) below.  The 
structures for the N’ strings are represented in figure 11.11 
 
(1a) One is anaphoric to N’ (ball is antecedent) 
 “Jack likes this ball and Lily likes that one.” 
(1b) One is anaphoric to N’ (red ball is antecedent) 
 “Jack likes this red ball and Lily likes that one.” 
 
                                                
11 Note that the precise labels of the constituents here are immaterial. If the structure is [DP this [NP red 
[NP ball]]], the conclusions reached in this chapter would not be changed. 
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Figure 11. Structures for the N’ strings this ball and this red ball. 
 
 These representations encode two kinds of information: constituency structure 
and category structure. The constituency structure tells us that in a Noun Phrase (NP) 
containing a determiner (det), adjective (adj) and noun (N0), the adjective and noun 
form a unit within the larger Noun Phrase. The fact that one can be interpreted as a 
replacement for those two words (as in (1b)), tells us that those two words form a 
syntactic unit. The category structure tells us which pieces of phrase structure are of 
the same type. That is, both ball and red ball are of the type N’. The following 
argument explains how we can conclude this. 
 Consider the following examples in which one cannot be anaphoric to a noun 
(cf. Baker (1979)): 
 
(2i) a. Jack met the member of Congress… 
 b.    *  …and Lily met the one of the Society for Creative Anachronism. 
 c. [NP the [N’ [N0 member] [PP of Congress]]] 
 
(2ii) a. Jack reached the conclusion that syntax is innate… 
 b.    *  …and Lily reached the one that learning is powerful. 
 c. [NP the [N’ [N0 conclusion] [CP that syntax is innate]]] 
 
These contrast with cases in which what follows the head noun is an adjunct/modifier. 
Here, one can substitute for what appears to be only the head noun. 
 
(2iii) a. Jack met the student from Peoria… 
 b. … and Lily met the one from Podunk. 
 c. [NP the [N’ [N’ [N0 student]] [PP from Peoria]]] 
 
(2iv) a. Jack met the student that Lily invited to the party 
 b. … and Lily met the one that Jack invited.  
 c. [NP the [N’ [N’ [N0 student]] [CP that Lily invited to the party]]] 
 
These cases differ with respect to the status of what follows the noun. In (2i) and (2ii) 
what follows the noun is a complement, but in (2iii) and (2iv) what follows the noun 
is a modifier. We can see that one can take a noun as its antecedent only when that 
noun does not take a complement. I will represent this by saying that one must take 
N’ as its antecedent and that in cases in which there is no complement, the noun by 
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itself is categorized as both N0 and N’.  In other words, in cases like (1a), it must be 
the case that ball = N’, as in the structure in Figure 11.  If it weren’t, we would have 
no way to distinguish this case from one in which one cannot substitute for a single 
word, as in (2i) and (2ii). 

3.3.2 The Pragmatics of Anaphoric One 
 
 In addition, when there is more than one N’ to choose from (as in (1b) above), 
adults generally prefer the N’ corresponding to the longer string (red ball).  For 
example, in (1b) an adult (in the null context) would often assume that the ball Lily 
likes is red – that is, the referent of one is a ball that has the property red (cf. Akhtar 
et al. (2004)).  This semantic consequence is the result of the syntactic preference for 
the larger N’ red ball.  If the adult preferred the smaller N’ ball, the semantic 
consequence would be no preference for the referent of one to be red, but rather for it 
to have any property at all. Importantly, though, this preference is not categorical. It is 
straightforward to find cases where it is overridden, as in (3): 
 
(3) Jack likes the yellow bean but Lily likes that one. 
 
Here, it is quite easy to take one to refer to bean and not yellow bean. 

3.3.3 Children’s Knowledge of Anaphoric One 
 
 But do children prefer one to be anaphoric to an N’ string (and more 
specifically the larger N’ string if there are two), rather than to an N0 string?  If so, the 
semantic consequence would be readily apparent: the antecedent for one would be 
phrasal, and hence the referent of one would be sensitive to properties mentioned by 
modifiers in the antecedent.  LWF conducted an intermodal preferential looking 
paradigm experiment (Golinkoff et al., 1987; Spelke, 1979) to see if infants did, in 
fact, have a preference for the referent of one to have properties mentioned by the 
modifier in the antecedent (i.e., for a red bottle if a potential antecedent of one is red 
bottle). 
 

 
 
Figure 12. LWF experimental set up.  
 
 The infant in the LWF experiment is first shown a bottle of one color while 
several utterances of the form “Look!  An adjective bottle.” are played 
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simultaneously.  Then, in the test stage, two bottles are shown – one of the adjective 
color and one of another color.  The utterance “Do you see another one?” is played 
simultaneously and the infant’s looking preferences are recorded.   
 The 18-month olds demonstrated a significant preference for looking at the 
bottle that had the same property mentioned in the N’ string – e.g. the bottle that was 
red when the N’ string red bottle was a potential antecedent.  These same results were 
obtained when the infants listened to, “Look!  An adjective bottle” followed by  “Do 
you see another adjective bottle?” (See Lidz & Waxman (in prep.) for more empirical 
data supporting this.)  This suggests that the infants were interpreting these utterances 
similarly, namely that one referred to adjective bottle in the original test condition.   
 Notably, the infants’ response differed from the baseline condition where they 
heard, “Look!  An adjective bottle” followed by  “What do you see now?”  In the 
baseline condition, the infants had a novelty preference and looked longer at the non-
adjective bottle, e.g. a non-red bottle if they had previously seen a red bottle and 
heard, “Look!  A red bottle”.  
 LWF explained this behavior as a semantic consequence of the syntactic 
preference that one be anaphoric to the larger N’ string (red bottle). If the children 
had allowed one to be anaphoric to N0 (bottle), they would have behaved similarly to 
the baseline condition and had a preference for the new bottle they hadn’t seen 
before.  Since infants preferred the larger N’ string (as adults do) and this larger N’ 
string could not be classified as N0, LWF concluded that the 18-month olds have the 
syntactic knowledge that one is anaphoric to N’ strings in general. 

3.3.4. Sparse Data for Anaphoric One 
 
 In order to determine whether children’s knowledge could have been acquired 
on the basis of experience with the relevant forms and structures, LWF conducted a 
corpus analysis on child-directed speech. The important empirical question was how 
frequently data appeared in child-directed speech that signaled that one was anaphoric 
to N’ instead of N0.  If the data were not frequent, learning this syntactic knowledge 
would be difficult.  The distribution LWF found is displayed in table 3.1 below. 
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Total Data in Corpus Total # with anaphoric one 
54,800 792 
 
Data Type # of data points 
Unambiguous 2 
“Jack wants a red ball, but Lily doesn’t have another one for him.”  
(Lily doesn’t have another ball with the property red.) 
Type I Ambiguous 36 
“Jack wants a red ball, and Lily has another one for him.” 
(Lily has another red ball for Jack.) 
Type II Ambiguous 750 
“Jack wants a ball, and Lily has another one for him.” 
(Lily has a ball with any number of properties.) 
Ungrammatical 4 
“…you must be need one.” (Adam19.cha, line 940) 
Table 3.1. The distribution of utterances in the corpus examined by LWF. 
 
 All data are defined by a pairing of utterance and environment.  I will now 
elaborate on the pairings for each data type.  Unambiguous antecedent data have the 
following form: 
 
(4) Unambiguous antecedent example 
Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him.” 
Environment: Jack wants a red ball, but Lily doesn’t have another red ball – she has 
another ball with different properties. 
 
 Because Lily does indeed have a ball, the antecedent of one cannot be ball.  
However, Lily’s ball is not red, so the antecedent of one can be red ball.  Since red 
ball can only be classified as N’, these data are unambiguous evidence that one can be 
anaphoric to N’.   
 An example of this type taken from the Adam corpus in CHILDES 
(MacWhinney, 2000) is given here. (Adam40.cha, line 890) 
 
(5) CHI: Do you have another flat tire? 
 MOT: No. I don’t think I have one. 
 
 In this context, the mother had a tire, but not a flat tire, so the antecedent of 
one is unambiguously flat tire. 
 
 Type I ambiguous antecedent data have the following form: 
 
(6a) Type I ambiguous antecedent example 
Utterance: “Jack wants a red ball, and Lily has another one for him.” 
Environment: Lily has a ball for Jack, and it has the property red. 
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(6b) Type I ambiguous antecedent example 
Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him .” 
Environment: Lily doesn’t have another ball at all. 
 
 For data of the form in (6a), Lily has a ball, so the antecedent of one could be 
ball.  However, Lily also has a ball that is red, so the antecedent of one could be red 
ball.  Because ball could be classified as either N’ or N0, these data are ambiguous 
between one anaphoric to N’ and one anaphoric to N0. 
 An example of this type taken from the Adam corpus in CHILDES 
(MacWhinney (2000)) is given here (Adam01.cha, line 291). 
 
(7) MOT: That’s a big truck. 
 MOT: There goes another one. 
 
 In this context, one could be taken to refer to either truck or big truck. 
 For data of the form in (6b), Lily does not have a ball – but it is unclear 
whether the ball she does not have has the property red.  For this reason, the 
antecedent of one is again ambiguous between red ball and ball, and one could be 
classified as either N’ or N0. There were no examples in either Adam or Nina’s 
corpus of this form. 
 Type II ambiguous antecedent data have the following form: 
  
(8a) Type II ambiguous antecedent example 
 Utterance: “Jack wants a ball, and Lily has another one for him.” 
 Environment: Lily has a ball for Jack, and it has various properties. 
 
(8b) Type II ambiguous antecedent example 
 Utterance: “Jack wants a ball, but Lily doesn’t have one for him.” 
 Environment: Lily does not have another ball. 
  
 For both forms of type II ambiguous data, the antecedent of one must be ball.  
However, since ball can be classified as either N’ or N0, such data are ambiguous 
with respect to what one is anaphoric to.  
 An example of this type taken from the Adam corpus of CHILDES 
(MacWhinney (2000)) is given here (Adam01.cha, line 566). 
 
(9)  CHI: my pillow my 
 MOT: That’s a good one to jump on. 
 
 Because there are no modifiers in the antecedent, my pillow, this data is 
uninformative about the structure of one. 
 There were no examples in either Adam or Nina’s corpus of the form (8b). 
 Ungrammatical data involve a use of anaphoric one that is not in the adult 
grammar, such as in (10): 
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(10) Ungrammatical antecedent example 
Utterance: “…you must be need one.” 
 
 Since the utterance is already ungrammatical, it does not matter what 
environment it is paired with.  The child will presumably be unable to resolve the 
reference of one.  Such data is therefore noise in the input. 
 The vast majority of the anaphoric one input consists of type II ambiguous 
data (750 of 792, 94.7%).  Type I ambiguous data makes up a much smaller portion 
(36 of 792, 4.5%).  Ungrammatical data are quite rare (4 of 792, 0.5%), and 
unambiguous data rarer still (2 of 792, 0.25%).   Since LWF considered unambiguous 
data as the only informative data, they concluded that such data seemed far too sparse 
to definitively signal to a learner that one is anaphoric to N’.   
 This seems in line with theory-neutral estimations of the quantity of data 
required for acquisition by a certain age (Legate & Yang, 2002).  Specifically, other 
linguistic knowledge acquired by 20 months required at least 7% unambiguous 
signatures in the available data (Yang (2004) referencing Pierce (1992)).  At least 
1.2% unambiguous data was required for acquisition by 36 months (Yang (2004) 
referencing Valian (1991)). So, independent of what acquisition mechanism is 
assumed, having 0.25% unambiguous data makes it unlikely that the learner would be 
able to acquire the correct interpretation of anaphoric one by 18 months.    
 LWF’s experimental results, however, suggested that 18-month olds know 
that one is anaphoric to N’.  They therefore claimed that such knowledge does not 
need to be learned.  Instead, the learner would have other innate biases that would 
allow this knowledge to be derived from the data available.  One possibility (cf. 
Hornstein & Lightfoot (1981), Baker (1979)) would be that the child is constrained 
only to hypothesize phrasal antecedents for pronouns. Thus, once the child identified 
one as a pronominal form, the possibility that it was anaphoric to Nº would simply 
never be considered as a potential hypothesis.   
 

3.4  Learning Anaphoric One 

3.4.1 Suggestions for Learning that One is Anaphoric to N’ 
 
 Two replies to LWF made suggestions for how this syntactic knowledge could 
be learned from the available data.  The first reply by Akhtar et al. (2004) noted that 
even if the percentage of unambiguous data is quite small, 18-month olds have still 
been exposed to an estimated 1,000,000 utterances; this should yield a larger quantity 
of unambiguous data than the LWF corpus analysis obtained. So, a learner using only 
unambiguous data would encounter more unambiguous examples by 18 months.  
Still, the overall percentage of unambiguous data remains quite small (0.25%). 
 However, it is unlikely that this is even a fair estimate of the amount of data 
that the child has been exposed to. This is because much of the first year of life is 
spent learning phonological and lexical properties of the language which would be 
prerequisites to learning syntax. To derive a fairer estimate of the amount of relevant 
data an 18-month old might have been exposed to, I assume that learning the 
syntactic and semantic properties of one can only commence once the child has some 
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repertoire of syntactic categories. Thus, I estimated that the learning period begins at 
14 months because there is experimental data supporting infant recognition of the 
category Noun and the ability to distinguish it from other categories such as Adjective 
at this age (Booth & Waxman, 2003).  If learners hear approximately 1,000,000 
sentences from birth until 18 months, they should hear approximately 278,000 
sentences of input between 14 months and 18 months.  The adjusted expected 
distribution of anaphoric one data is displayed in table 3.2. 
 
Total Data before 18 months Total # with anaphoric one 
~278,000 4017 
 
Data Type # of data points 
Unambiguous 10 
“Jack wants a red ball, but Lily doesn’t have another one for him.”  
(Lily doesn’t have another ball with the property red.) 
Type I Ambiguous 183 
“Jack wants a red ball, and Lily has another one for him.” 
(Lily has another red ball for Jack.) 
Type II Ambiguous 3805 
“Jack wants a ball, and Lily has another one for him.” 
(Lily has a ball with any number of properties.) 
Ungrammatical 19 
“…you must be need one.” 
Table 3.2. The expected distribution of utterances in the input to learners between 14 
and 18 months. 
 
 Perhaps the most striking feature of this distribution is that there are still 
pitifully few unambiguous data points available.  With only 10 chances to hear 
unambiguous data (on this estimate), a learner could well miss out due to fussiness, 
distraction, or other vagaries of toddler life.  Moreover, this is still 0.25% of the 
anaphoric one data, which is well below the estimate of the amount of unambiguous 
data needed to acquire knowledge by 36 months (estimated at 1.2%, Yang (2004)), let 
alone by 18 months. 
 R&G offer a solution: make use of the type I ambiguous data as well, which 
gives 183 additional data points (on this estimate).  Using a Bayesian learning model 
that implements the size principle of Tenenbaum & Griffiths (2001), R&G 
demonstrate how a learner could use both unambiguous and type I ambiguous data to 
converge on the correct representation.  I review their learning model in the next 
section. 

3.4.2 A Regier & Gahl Bayesian Learner 
 

The power of R&G’s model comes from using indirect evidence available in 
the type I ambiguous data.  This is an attractive strategy, since there are nearly 20 
times as many type I ambiguous data as there are unambiguous data (183 to 10).  This 
raises the useable data for the learner up to 4.8% (193 of 4017), which seems more in 
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line with the amount required for acquisition as early as 18 months (Yang (2004)).  
The indirect evidence itself is derived solely from the environment in which type I 
ambiguous data are uttered – specifically, by the learner examining the distribution of 
the referents of one.  For example, suppose the learner hears type I ambiguous data 
such as the example in (6a) (repeated below as (11)): 

 
(11) Type I Ambiguous  
Utterance: “Jack wants a red ball, and Lily has another one for him.” 
Environment: Lily has a ball for Jack, and it has the property red. 
 

Since the adult preference is to choose the larger N’ as the antecedent, the 
antecedent of one will nearly always be red ball and the referent of the NP containing 
one will have the property red.  The learner is able to observe the simultaneous 
presence of the larger N’ as potential antecedent (red ball) and a referent in the world 
of one with the property mentioned in the N’ (red). Note that this observation requires 
the learner to have a very abstract notion of what to generalize over.  It is insufficient 
to generalize over a single property such as “red” or “behind his back”; instead, the 
learner must generalize over “property mentioned in the N’ antecedent”.   

Now, the connection between the N’ antecedent and a referent with the 
property mentioned in the N’ will be true for some portion of the type I ambiguous 
data.12 Crucially, for R&G’s model, it is never true that the referent of one 
definitively lacks the property mentioned in the N’ antecedent (i.e. the referent of one 
is definitively not red when the antecedent is red ball).  A Bayesian learner using the 
size principle is very sensitive to this fact in the following way: 

 
(12) Bayesian Learner Logic 

(a) For type I ambiguous data, suppose that the referent of one could have any 
property, and not necessarily have the property mentioned in the larger N’ 
antecedent.  Suppose also that the set of potential referents for an utterance 
like (11) is represented in figure 13. 
 

                                                
12 This reasoning will not work for type I ambiguous data of the form in (2b): “Jack wants a red ball, 
but Lily doesn’t have another one for him”, where Lily does not have a ball.  This is because the 
learner cannot tell whether or not the ball Lily doesn’t have has the property red.  These data are 
therefore not useful as indirect evidence. Such data did not occur in the Adam and Nina corpora from 
which my estimates are derived. 
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Figure 13. The set of potential referents for one in the world when an utterance such 
as “Jacks wants a red ball, and Lily has another one for him” is heard. 

 
(b) The actual distribution of  referents observed by the learner, however, is 
only a particular subset of all the possible referents. 
 

   
Figure 14. The observed set of referents for one when an utterance such as “Jack 
wants a red ball, and Lily has another one for him” is heard. 

 
(c) It is highly unlikely that the referent of one is only ever a member of the 
subset if the referent could be any member of the superset.  The Bayesian 
learner will therefore consider a restriction to the subset to be more and more 
probable as time goes on. This is the size principle of Tenenbaum & Griffiths 
(2001): if there is a choice between a subset and the superset, and only data 
from the subset is seen, the learner will be most confident that the subset is the 
correct hypothesis. Thus, the learner uses the lack of data for the superset as 
indirect evidence that the subset is correct.   

 The specific instantiation of the bias for the subset (red balls) given a 
single subset data point is based on the likelihood of encountering that subset 
data point. The likelihood of choosing a specific member of the subset (a red 
ball) is higher if members can be drawn only from the subset (red balls), as 
opposed to if members can be drawn from the superset (all balls).  This occurs 
because the superset necessarily has more members to choose from, and 
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therefore there is a lower probability of choosing a specific subset member. 
 The amount of bias a subset data point gives the subset depends on the 
relative sizes of the subset and superset.  If the superset (all balls) has many 
more members than the subset (red balls), the likelihood of drawing a specific 
member from the subset (a red ball) when any member from the superset 
could have been chosen is low.  The bias towards the subset (red balls) given a 
subset data point (a red ball) is then higher.  In contrast, if the superset (all 
balls) has only a few more members than the subset (red balls), the likelihood 
of drawing a specific member from the subset (a red ball) when any member 
from the superset could have been chosen is higher.  The bias towards the 
subset (red balls) given a subset data point (red ball) is then lower. 

 
 

 
Figure 15. Comparison of different ratios of superset to subset, the likelihood of 
choosing a member of the subset, and the effect on subset bias. 

  
(d) Once the learner is biased to believe that there is a restriction to the subset 
of referents described by the property mentioned in the N’ (red in red ball), 
the learner then assumes that the correct antecedent is, in fact, the larger N’.13  
Since the larger N’ cannot be classified as N0, the learner then knows that one 
always has an N’ antecedent. 
 
(e) For the LWF experiment, a Bayesian learner would have converged on the 
subset of red bottles as the potential referents of one in the test utterance.  
Given a choice between a red and a non-red bottle, the Bayesian learner 
therefore looks at the bottle that belongs to the correct subset: the red bottle.  

 
 A great strength of the R&G model is that the bias to choose the subset, given 
indirect evidence, does not need to be explicitly assumed.  Instead, it falls out neatly 
from the mathematical implementation of the Bayesian learning procedure itself that 
uses the size principle of Tenenbaum & Griffiths (2001).   

                                                
13 R&G’s model demonstrates how this could happen after very few type I ambiguous data. 
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 However, as I noted before, the model implemented in the R&G study still 
harbors two implicit biases about domain-specific data filters on the learner’s intake.  
The first bias is that only unambiguous and type I ambiguous data are used; type II 
ambiguous data are ignored even though they may also provide indirect evidence to a 
Bayesian learner.  The second bias is that only semantic data (the referents of one) are 
used to converge on the syntactic knowledge of what one is anaphoric to; syntactic 
data are ignored.   
 In the remaining sections of the chapter, we will see that stripping away these 
two biases  (and thus creating an unbiased learner truer to the spirit of R&G’s 
proposal) leads to markedly different results from those of R&G.  Specifically, once 
we remove these two biases, we will discover that a Bayesian learner will not learn 
that one is anaphoric to N’ with high probability and will not choose the adult 
interpretation of the larger N’ constituent with high probability when there is a choice 
between N’ constituents. So, this unrestricted Bayesian learner will (a) have a 
preference for the wrong syntactic analysis (N0) and (b) a preference for the wrong 
semantic interpretation (smaller N’ (ball): do not require the referent to have the 
property mentioned in the antecedent), even if the correct syntactic analysis is chosen. 
 The benefit that comes from using indirect negative evidence to shift the 
majority of the probability to the subset in the hypothesis space is tempered by the 
link between the two levels of representation.  Specifically, the semantic 
interpretation is a projection from the syntax.  If indirect learning leads to the subset 
N0 in the syntax, then the semantic preference to choose the interpretation consistent 
with the larger N’ constituent when there is a choice between two N’ constituents will 
not be helpful to the learner in most cases.  This is simply because the learner will not 
choose the N’ analysis very often, and so will have no need to access the semantic 
interpretation preference.  Thus, the existence of multiple levels of representation 
reduces the efficacy of this kind of learner. 

3.5 An Equal-Opportunity Bayesian Learner 

3.5.1 Introducing the Equal-Opportunity Bayesian Learner 
 
 I will refer to the unrestricted domain-general learning model as the Equal-
Opportunity (EO) Bayesian Learner since it removes the two implicit biases of 
R&G’s Bayesian learner and so gives equal treatment to all data.  First, it denies 
privileged status to a subset of the data and instead uses all the data available: 
unambiguous, type I ambiguous, and type II ambiguous.  Second, it denies privileged 
status to semantic data – syntactic and semantic data are both used to shift probability 
between opposing hypotheses. There is an intuitive logic to using both types of data, 
since one should presumably use syntactic data (among other kinds of data) to 
converge on syntactic knowledge.14 This syntactic knowledge has semantic 

                                                
14 Note that even if we believed the knowledge about one was stated purely in semantic terms, the data 
that any grammar predicts will include both syntactic data (i.e. what the linguistic antecedent for one 
is) and semantic data (what the referent of one is).  So, excluding either kind of data is an arbitrary 
restriction on the learner that would need to be justified.  For this reason, the hypothesis to include both 
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consequences, which are displayed in the LWF experiment. If a Bayesian learning 
procedure, unconstrained by domain-specific filters, is to be an effective domain-
general learning solution, it should correctly acquire knowledge that spans domains 
such as syntax and semantics as well as knowledge contained completely within these 
domains. 

3.5.2 The Hypothesis Space 
 
 The hypothesis space is defined for both the syntactic and semantic domains. 
The syntactic domain contains hypotheses about what strings can be antecedents for 
one.  Each hypothesis covers a set of strings, and is classified by the syntactic 
category that can generate all the strings in the hypothesis.  The semantic domain is a 
projection of the syntactic domain and contains hypotheses about the interpretation of 
one (specifically what referents in the world one can refer to).  Each hypothesis 
covers a set of referents, and is classified by what properties the referents in that set 
must have.  In both domains, there are two hypotheses to choose from. Each 
hypothesis makes predictions about the data that will be encountered and, 
consequently, the elements that will be analyzable under that hypothesis.  
 For each domain, the elements analyzable by one hypothesis are a subset of 
the elements analyzable by the other.  For syntax, the hypotheses under consideration 
are (a) that one is anaphoric to strings that are classified as N0 and (b) that one is 
anaphoric to strings that are classified as N’.  Every string in N0 can also be classified 
as N’ but there are strings in N’ that cannot be classified as N0. Therefore, the strings 
that comprise the N0 set are a subset of the strings that comprise the N’ set.  
 
 

    
Figure 16. The syntax hypothesis space, N0 vs. N’.  All the elements in the sets are 
strings that are possible antecedents of one.  Every string classified as N0 can also be 
classified as N’.  In addition, there are strings in N’ that are not in N0, and so the N0 
set is a subset of the N’ set. 
 

For the semantic interpretation, the referents of one could have the restriction 
that they must have the property named by the modifier; alternatively, the referents of 
one could have no restriction on what property they have.  Since the modifier is 
linguistically not part of the N0 (recall figure 11) and instead is part of the N’ phrase,  
                                                                                                                                      
syntactic and semantic data does not rely on a particular specification of knowledge about anaphoric 
one. 
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I will refer to the property named by the modifier as the N’-property. I will refer to 
referents with no restrictions as being any-property referents, since these referents can 
have any property (though of course they must still be instances of the noun in the 
antecedent, e.g. balls, if the antecedent is red ball).  So, in the semantic domain, the 
two hypotheses under consideration are (a) that the referent of one is restricted to 
have the N’-property and (b) that the referent of one can have any property (is not 
restricted to have the N’-property). 

Just as in the syntactic domain, the elements predicted by one hypothesis are a 
subset of the elements predicted by the other (see figure 17).  Every referent that has 
the N’-property (say red for red ball) is a member of the N’-property set.  By 
definition, every member of the N’-property set is also a member of the any-property 
set, since the N’-property is one of the properties available for objects to have.  
However, there are members of the any-property set (say green balls for the linguistic 
antecedent red ball) that do not have the N’-property (red).  So, since all the members 
of the N’-property set are members of the any-property set, the N’-property set is a 
subset of the any-property set. Moreover, some members of the any-property set are 
not members of the N’-property set. So, the any-property set is a superset of the N’-
property set in the semantic domain.   

 

     
Figure 17. The semantic hypothesis space, N’-property vs. any-property.  Any-
property is a superset of N’-property. Note that in order to define the sets (N’-
property vs. any-property), the utterance must be used to determine the salient 
property that the referent of the antecedent has.  The salient property can be 
determined from the linguistic antecedent of one. 
 
 The difficulty for a Bayesian learner becomes apparent when we examine how 
the two prediction spaces defined by the hypotheses are connected.  Specifically, in 
the syntactic domain, the relative complement of the subset in the superset (the set of 
strings that are in the superset but not the subset, such as red ball) is linked to the 
subset in the semantic domain; the subset in the syntactic domain is linked to the 
superset in the semantic domain.  For ease of exposition, I will refer to the relative 
complement of the subset in the superset as the “exclusive superset”. 
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Figure 18. In the syntactic domain, the exclusive superset is linked to the subset in the 
semantic domain.  The subset of the syntactic domain is linked to the superset in the 
semantic domain.   
 
 This is due to the compositional property of syntactic representations: larger 
syntactic constituents (such as the N’ red ball) have meanings that are restrictions on 
the meanings (and so the referents) of their constituent subparts. In syntax, the strings 
in the exclusive superset (e.g. red ball) designate a subset of referents in the 
semantics (e.g. the red balls); the strings in the subset of the syntax (e.g. ball) 
designate the superset of referents in the semantics (e.g. all balls). 
 Because the syntactic and semantic representations are linked in this fashion, a 
Bayesian learner that relies on indirect evidence to shift probability towards the 
subset will receive conflicting information from across the two domains. For instance, 
the learner will encounter ambiguous data that favors the syntactic subset (the wrong 
answer for English anaphoric one).  The learner will also encounter ambiguous data 
that favors the semantic subset which is linked to the exclusive superset in the syntax 
that implicates N’ (the correct answer for English anaphoric one).  However, this will 
not negate the aforementioned syntactic evidence that favors the syntactic subset N0. 
Yet, the learner shouldn’t ignore available syntactic information since anaphoric one 
has a representation at the syntactic level.  Thus, we can see that an unrestricted 
Bayesian learner that uses all available data (syntactic and semantic) will need to 
overcome conflicting information across domains in order to converge on a high 
probability for the correct representations of anaphoric one. 
 It is important to recognize that the problem of linked hypothesis spaces 
extends far beyond the particular case of anaphoric one. Because syntactic structures 
are semantically compositional, this problem will persist across the acquisition of any 
aspect of the grammar that depends on the link between syntax and semantic 
reference. 

3.5.3 EO Bayesian Learning 
 
 The EO Bayesian learning model uses Bayesian reasoning to update the 
learner’s confidence in each of two alternative hypotheses.  The implementation I will 
use differs from the R&G learner by being more conservative about updating the 
probabilities of the competing hypotheses.  I will first describe the R&G Bayesian 
implementation, and then describe the implementation I will use here.  I detail the 
learning process independently for each of the two domains (syntax and semantics) 
that are relevant for determining the appropriate structure of anaphoric one.  I then 
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describe how to implement the updating algorithm, given that these two domains are 
linked. 
 
3.5.3.1 The R&G Bayesian Learner Implementation 
 
 The R&G learner is quite liberal about shifting probability to the superset 
hypothesis: a single piece of data for the exclusive superset is enough to shift all the 
probability to that hypothesis.  However, as we have seen, the correct hypothesis for 
English anaphoric one is in the subset in the semantic domain: the learner should 
prefer the larger N’ constituent, e.g. red ball, and thus restrict referents to those that 
have the N’-property, e.g. red balls.  The success of this learner for converging on the 
correct semantic hypothesis for anaphoric one relies on the assumption that there will 
never be unambiguous data for the semantic superset.   
 Recall that the semantic superset hypothesis is that one refers to an object that 
does not need to have the property mentioned in the linguistic antecedent.  This is the 
any-property hypothesis.  Unambiguous data for the superset would be an utterance 
where one refers to an object that does not have the property mentioned in the 
antecedent.  For instance, if the utterance is “…red ball…one…”, unambiguous 
superset data would be the situation where the referent of one does not have the 
property ‘red’, e.g. it is a purple ball. 
 It is crucial for R&G’s model that this type of data never occurs, though it is 
entirely possible that the learner might encounter this type of data as noise.  If the 
referent of one in the above utterance was a purple ball (perhaps by accident), the new 
probability for the subset hypothesis (the N’-property hypothesis) in the semantic 
domain would be 0.  I detail why this occurs below. 
 Suppose that we refer to the probability that the N’-property hypothesis is 
correct as pN’-prop.  Suppose the learner initially has no bias for either semantic 
hypothesis, and so the initial probability of pN’-prop is 0.5 before any data is 
encountered. This probability will increase as each piece of ambiguous (subset) data 
is observed, due to the size principle which biases the learner to favor the subset 
hypothesis if ambiguous data is observed.    
 Let u be a piece of unambiguous data for the superset hypothesis, where the 
utterance is “…red ball….one…” and the referent of one is a non-red ball.  The 
learner now calculates the updated probability that the N’-property hypothesis is 
correct, using Bayes’ rule.  The updated pN’-prop given the observation of u is 
represented as the conditional probability p(N’-prop| u).  To calculate this probability, 
we use Bayes’ rule. 
 
(13) Calculating the conditional probability p(N’-prop| u) using Bayes’ rule 
 

! 

p(N'-prop | u) "  p(u | N'-prop) *p(u)  
 
 The probability p(u|N’-prop) is the likelihood of observing the unambiguous 
superset data u, given that the N’-property hypothesis is true.  In this case, the referent 
of one in u specifically doesn’t have the N’-property (‘red’). Therefore, it could not 
possibly be generated if the N’-property hypothesis was true, since the N’-property 
hypothesis requires the referent of one to have the property mentioned in the 
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linguistic antecedent.  So, the probability of observing u if the N’-property hypothesis 
is true (p(u|N’-prop)) is 0. 
 We substitute this value into the equation in (13) to get 

! 

p(N'-prop | u) "  0*p(u) =  0.  Therefore, the updated probability for pN’-prop after 
seeing a single piece of unambiguous superset data u is 0, no matter what the previous 
probability of pN’-prop was. 
 Since this is not terribly robust behavior for a learner, I have adapted the 
Bayesian updating approach described by Manning & Schütze (1999) to generate a 
more conservative Bayesian updating approach, detailed in the previous chapter.  
Unlike the liberal R&G model, the learner using this more conservative approach 
shifts probability much more slowly between hypotheses.  Only after observing a vast 
majority of evidence for one hypothesis would a conservative Bayesian learner shift 
the vast majority of the probability into that hypothesis.   
 
3.5.3.2 Updating the Syntax Hypotheses 
 
 Recall that there are two hypotheses under consideration in the syntactic 
domain: the N’ hypothesis and the N0 hypothesis. The N’ hypothesis takes the 
antecedent of one to be a constituent of the category N’; the Nº hypothesis takes the 
antecedent of one to be a constituent of the category N0. 
 I represent the probability that the N’ hypothesis is correct with pN’. Because 
there are only two hypotheses in the hypothesis space, and because probabilities 
range from 0 to 1, the probability that the N0 hypothesis is correct is 1 – pN’.  I set the 
initial value of pN’ before the learner has observed any data to 0.5 as an instantiation 
of the assumption that both hypotheses are equiprobable.   
 The update function requires a single parameter t, which represents the total 
amount of data expected during the learning period, as described in the previous 
chapter, and can be thought of as the total amount of change the real learner’s brain is 
allowed to undergo before settling into the final state.  In the simulated learner here, I 
quantify that amount of change as the total estimated amount of useable data 
available during the learning period (4017 data points, if using all available data). Of 
course, the value of t is essentially arbitrary, but in order to model this learning 
process, it needs to be estimated. The model uses t to determine how much 
probability shifting should be done, given a single piece of data. If t is small, only a 
small number of changes are allowed and each piece of data shifts the probability 
quite a lot; conversely, if t is large, a large number of changes are allowed and each 
piece of data shifts the probability a smaller amount.  The value of t I use here will 
allow the modeled learner to converge as close as possible to an endpoint (e.g. pN’ ≈ 
1.0).  In this way, I hope to estimate the best-case scenario for this kind of learner. 
While the t estimate presented here seems fair, I present a range of possible t-values 
in the results section. What we will see there is that the size of t does not influence the 
final probability of the correct interpretation of anaphoric one. 
 The exact update functions for pN’ depend on the data type observed – 
unambiguous, type I ambiguous, or type II ambiguous.  Unambiguous and type I 
ambiguous data cause the learner to use the function in (14a), which is essentially an 
implementation of the indirect negative evidence update function used by the R&G 
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model.  Type II ambiguous data, which were not considered by the R&G learner, 
cause the EO Bayesian learner to use the function in (14b).  
 
(14a) Update function for unambiguous and type I ambiguous data 
 Utterance: “…red ball…one…”  
 World: referent has the property red (unambiguous & some type I ambiguous) 
 or it is unknown if referent has the property red (some of type I ambiguous) 
 

 

! 

pN' =
pN' old * t +1

t +1
 

 
(14b) Update function for type II ambiguous data 
 Utterance: “…ball…one…” 
 World: referent has various properties (type II ambiguous) 
 

 

! 

pN' =
pN' old * t +pN' | a

t +1
 

  
 The update function for unambiguous data is derived by using the 
mathematical framework laid out in the previous chapter.  To briefly summarize, a 
binomial distribution centered at pN’ is used to approximate the learner’s expectation 
of the distribution of the data to be observed.  Data points from this distribution fall 
into two classes: they either have the “property” of being an N’ data point or they do 
not have this property (and are instead N0 data points).  If pN’ is 0.5 (as it is initially), 
the learner expects half the informative data points to be N’ data points.  Using the 
derivations described in the previous chapter, we can then derive equation (14a) for 
updating pN’.  
 An intuitive interpretation of the unambiguous data update function is that the 
numerator represents the learner’s confidence that the observed unambiguous N’ data 
point u is a result of the N’ hypothesis being correct; the denominator represents the 
total data observed so far.  Thus, 1 is added to the numerator because the learner is 
fully confident that u indicates the N’ hypothesis is correct; 1 is added to the 
denominator because a single data point has been observed. 
 Unambiguous data signal that the N’ hypothesis is correct (in that only the N’ 
hypothesis could have produced u) and so should be treated with full confidence by 
the learner.  In contrast, the type I ambiguous data do not indicate that only the N’ 
hypothesis could have produced u – these data are ambiguous between the N0 and N’ 
hypotheses.  Thus, a smaller value should be added to the numerator for such data to 
indicate less than full confidence that only the N’ hypothesis could have produced u.   
 However, I will allow the Bayesian learner to treat the type I ambiguous data 
with full confidence in the N’ hypothesis. I make this allowance for two reasons.  
First, I know of no principled way to reasonably estimate how much confidence 
should be associated with a type I ambiguous data point.  Second, this allowance is 
generous towards the Bayesian learner because it allows the model to overestimate 
the confidence the learner has in the N’ hypothesis. If I was less generous and 
lessened the confidence in the type I ambiguous data, the probability of N’ would 
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only be lower than what I present here. As we will see below, even with this generous 
estimate, the learner will fail to assign sufficient probability to the N’ hypothesis. 
 The update function for type II ambiguous data (14b), which comprise 3805 
of the data points, depends on the prior probability that N’ is the correct hypotheses 
(pN’ old), t, and a confidence value (pN’ | a).  The intuitive interpretation for this function 
remains the same as the interpretation for the function in (14a): the numerator 
represents the learner’s confidence that the observed ambiguous utterance-world 
pairing a is a result of the N’ hypothesis being correct; the denominator represents the 
total data observed so far.  Thus, a value less than 1 (pN’ | a) is added to the numerator 
because the learner is only partially confident that ambiguous data point a indicates 
the N’ hypothesis is correct; and, 1 is added to the denominator because a single data 
point has been observed.  The partial confidence value pN’ | a depends on the 
likelihood that the utterance in a, which has only a noun string as the antecedent of 
one (ex: “…ball…one…”), would be produced if any N’ string could have been 
chosen from the set of N’ strings (pN from N’).  
 The partial confidence value is the probability that one is anaphoric to N’ in 
type II ambiguous data point a.  This is equivalent to the probability that one is 
anaphoric to N’ in general, given that a has been observed.  I write it as Prob(N’ | a) 
and calculate it by using Bayes’ rule. 
 

(15) Prob(N’| a) = 

! 

Prob(a |N') *Prob(N')

Prob(a)
 

 
 I now describe the individual pieces of the right hand side of the equation in 
(15).  Prob(a | N’)  is the probability of observing a type II ambiguous data point a, 
given that the N’ hypothesis is true.  Recall that a type II ambiguous data point has an 
utterance with a noun-only antecedent, such as “…ball…one…”.  The N’ hypothesis 
states that the linguistic antecedent of one must be an N’ constituent.   
 It is possible for a noun-only string to be an N’ constituent: this is the situation 
where a noun-only string is chosen from the set of N’ constituents, which consists of 
both noun-only strings (“ball”, “bottle”, etc.) and other strings that include modifiers 
(“red ball”, “bottle in the corner”, etc.).  The probability we want is the probability of 
choosing a noun-only linguistic antecedent for one (such as in type II ambiguous 
utterance a), given the entire set of N’ constituents.  Suppose there are n noun-only 
strings and o other strings in the N’ constituent set.  I refer to the probability of 
choosing a noun-only string (such as “ball”) as pN from N’, and it is calculated below in 
(16). 
 

(16) Prob(a | N’) = 

! 

n

n + o
 = pN from N’ 

 
 Prob(N’) is the current probability that the N’ hypothesis is correct.  This is 
simply pN’. 
 Prob(a) is the probability of observing a type II ambiguous utterance a, no 
matter which hypothesis is correct.  To calculate this value, we can sum the 
conditional probabilities of observing a for each hypothesis (Prob(a | N’) + Prob(a | 
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N0)) .  If N’ is the correct hypothesis, the probability of observing a is Prob(a | N’) 
from above.  If N0 is the correct hypothesis, then the linguistic antecedent of one is an 
N0 constituent, which is always a noun.  In that case, the probability of observing a 
noun-only linguistic antecedent (such as in a) is 1.  We can calculate Prob(a) in (17). 
 
(17) Prob(a)  = 

! 

phypothesis* p(a | phypothesis)
hypotheses

"  

  = pN’*p(a | pN’) + pN0*p(a | pN0) 

  = pN’*

! 

n

n + o
 + (1-pN’)*1 

 
 Substituting these pieces back into the right hand side of the equation in (15), 
we obtain (18). 
 

(18) Prob(N’| a) = 

! 

(
n

n + o
) *pN'

pN'*(
n

n + o
) +  (1" pN' ) *1

 = 

! 

pN from N'*pN'

pN'* pN from N' + (1" pN' ) *1
 = pN’ | a 

  
 As we can see, the partial confidence value pN’ | a depends only on pN from N’ 
and the current pN’.  This partial confidence value, which will be less than 1, is added 
to the numerator of the type II ambiguous data update function instead of 1.  The 
larger pN from N’ is, the less biased the learner’s confidence is towards the subset N0 
hypothesis when a type II ambiguous data point is observed.  This is because a higher 
pN from N’ signals that the superset N’ is not much larger than the subset N0.  So, the 
learner is not heavily biased towards the subset because the likelihood of choosing 
data point a from the subset is not much higher than the likelihood of choosing data 
point a from the superset.  Thus, the more likely it is that a noun-only string could be 
chosen from the N’ constituent set, the less the N’ hypothesis is penalized when this 
type of data is seen. 
 The likelihood value pN from N’ is what allows the learner to retrieve 
information from the type II ambiguous data. The more unbalanced the ratio of noun-
only strings to other strings in the N’ set, the stronger the effect of the size principle 
will be that biases the learner towards the subset N0 hypothesis. Example (19) 
displays how much biasing occurs after a single piece of type II ambiguous data, 
assuming a current pN’ of 0.5, a ratio of noun-only strings to total N’ strings of 0.25, 
and a t of 4017. 
 
(19) Updated pN’ after a single type II ambiguous data point a 
Let pN’ = 0.5, pN from N’ = 0.25, and t = 4017. 
Updated pN’ = .499925 (a very slight bias for the N0 hypothesis) 
 
 While the amount of bias towards the N0 hypothesis is quite small, keep in 
mind that the majority of the data is type II ambiguous and so these small biases will 
add up over time. 
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3.5.3.3 Updating the Semantics Hypotheses 
 

Recall that there are two hypotheses under consideration in the semantic 
interpretation domain that are projections from the syntactic domain: the N’-property 
hypothesis and the any-property hypothesis.  The N’-property hypothesis requires the 
referent of one to have the property mentioned in the N’ antecedent (e.g. red if the 
potential antecedent was red ball); the any-property hypothesis allows the referent of 
one to have any property. In this case, it’s the N’-property hypothesis that represents 
the subset hypothesis. Thus, as above, the size principle will favor this hypothesis for 
any data that is compatible with both hypotheses. 

I represent the probability that the N’-property hypothesis is correct with pN’-

prop.  Because there are again only two hypotheses in the hypothesis space, the 
probability that the any-property hypothesis is correct is 1- pN’-prop.  I set the initial 
value of pN’-prop before the learner has observed any data to 0.5 as an instantiation of 
the assumption that both hypotheses are equiprobable. 

The update function requires two parameters: t and c.  As before, t represents 
the total amount of data expected during the learning period and is instantiated in this 
model as 4017, the estimated amount of data available during the learning period.  
The parameter c represents the number of properties (or categories of referents) in the 
world that the learner is aware of (e.g. red, striped, behind his back, etc.). 

For the semantic domain, the data are divided according to how the properties 
of the referent of one compare to the salient property in the N’ antecedent.  The data 
types, representing the utterance-world pairings, are same-property, different-
property, and unknown-property.  
 Same-property examples are those in which the potential antecedent of one 
mentions some property and the referent of one also has that property. Some of the 
data analyzed as type I ambiguous in the syntactic domain are same-property data.  
There are 183 or less data points of this form (because some portion of type I 
ambiguous are unknown-property data points). 
 
(20a) Example of same-property data (syntax: type I ambiguous)  
 Utterance: “Jack wants a red ball, and Lily has another one for him.” 
 World: Lily has another red ball for Jack. 

 
 The referent of one (the ball that Lily has) has the same property mentioned 

in the N’ antecedent (red). 
The data analyzed as unambiguous in the syntactic domain are also same-

property data in the semantic domain. There are 10 data points of this form.  Because 
these data necessarily include negation, seeing why they are same-property data is a 
bit complicated. Consider the example in (20b). 

 
(20b) Example of same-property data (syntax: unambiguous) 

Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him.” 
World: Lily has a non-red ball for Jack. 

 



 

 49 
 

The speaker in this situation is asserting the absence of a red ball. The referent 
of one is a red ball that is not present in the situation. Thus, the meaning of one 
includes the property mentioned in the antecedent. 

Because the N’-property hypothesis depends on matching the property overtly 
mentioned in the modifier (e.g. red of red ball), type II ambiguous data are not 
informative for choosing between the two hypotheses.  This is simply because there is 
no overtly mentioned modifier, as shown in (20c).  Therefore, the semantic 
interpretation projection from the syntactic hypothesis space is a single hypothesis 
(the any-property hypothesis).  Since the semantic domain only has one hypothesis 
for type II ambiguous data, no information can be inferred about the correct 
hypothesis when there is more than one semantic interpretation to choose.  The 
learner therefore ignores the semantic hypothesis space when encountering type II 
ambiguous data. 

 
(20c) Example of same-property data (syntax: type II ambiguous) 
 Utterance: “Jack wants a ball, and Lily has another one for him.” 

World: Lily has a ball with some property for Jack. 
   
A different-property example is given in (21), when the potential antecedent 

has a property mentioned in the modifier (e.g. red of red ball), but the referent of one 
does not have this property.  This situation would occur in rare cases, perhaps as 
noise or perhaps because of a pragmatic bias.  
 
(21) Example of different-property data (syntax: type I ambiguous) 
 Utterance: “Jack likes a red ball, and Lily likes that one.” 
 World: Lily likes a ball that is not red. (i.e., the referent of one is a non-red 
 ball, even though the potential antecedent mentions the property red). 
 
 In this case, the semantic interpretation hypothesis unambiguously favored is 
the any-property hypothesis, since the data point is specifically in the exclusive 
superset of balls that do not have the N’-property (red).  So, this kind of data strongly 
biases the learner towards the any-property hypothesis, the superset hypothesis in the 
semantic domain.  That, in turn, biases the learner towards the subset in the syntactic 
domain (the smaller N’ constituent, if the N’ analysis is chosen). However, I will be 
generous and assume that this data does not occur in the EO Bayesian learner’s 
dataset.  This assumption will cause the EO Bayesian learner to overestimate the 
probability assigned to the N’-property hypothesis, pN’-prop. 
 Finally, we come to the unknown-property data, as in (22). 
 
(22) Example of unknown-property data (syntax: type I ambiguous) 

Utterance: “Jack wants a red ball, but Lily doesn’t have another one for him.” 
World: Lily has no ball for Jack. 

 
In the examples in (22), the speaker is asserting the absence of a ball. The 

referent of one is a ball, with some unknown properties, that is not present in the 
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situation. Thus, the referent of one may or may not include the property (red) 
mentioned in the potential antecedent. 

 A portion of type I ambiguous data consists of unknown-property data.  Such 
data cannot be used for updating the probabilities of the opposing semantic 
hypotheses.  However, I will be generous and allow R&G’s assumption to hold true: 
none of the type I ambiguous data are of this form. Therefore, I will allow all type I 
ambiguous data to be of the form in (20a), which is an example of same-property 
data. This gives an overestimation of pN’-prop, which is the subset in the semantic 
hypothesis space. Consequently, this will bias the learner towards the superset in the 
syntactic hypothesis space, N’. Thus, the model here will again overestimate the 
amount of probability the learner will assign to the correct hypothesis for the structure 
and interpretation of anaphoric one, given an utterance with more than one potential 
antecedent.  

Table 3.3 represents the expected distribution of data for updating the 
semantic hypotheses in this model. 

 
Total Data before 18 months Total # with anaphoric one 
~278,000 4017 
 
Data Type # of data points 
Same-Property 10 + 183 
“Jack wants a red ball, and Lily has another one for him.” 
(Lily has a red ball for Jack.) 
 “Jack wants a red ball, but Lily doesn’t have another one for him.”  
(Lily has a non-red ball for Jack.) 
Different Property 0 
“Jack likes this red ball, and Lily likes that one.” 
(Lily likes a ball without the salient property that the antecedent referent has.) 
Unknown Property 0 
“Jack wants a red ball, but Lily doesn’t have another one for him.” 
(Lily has no ball for Jack.) 
Table 3.3. The expected distribution of utterances in the input to the Bayesian learner 
for updating the semantics hypotheses.  Note that the type II ambiguous data points 
are uninformative in the semantic interpretation domain, so those 3805 data points are 
ignored. 
 

The exact update functions for pN’-prop depend on the data type observed.  
However, the only update function relevant for this model is the same-property 
update function (23), which is similar to its syntactic counterpart in (14b).  In both 
cases, the subset hypothesis is favored upon encountering an ambiguous data point. 
 
(23) Update function for same-property data 

 

! 

pN' -prop =
pN' -prop - old * t +pN' -prop | s

t +1
 

 



 

 51 
 

 The same-property update function is derived using the same reasoning as the 
type II ambiguous update function in the syntactic domain.  We again have two 
hypotheses (N’-property and any-property), and so we can use a binomial distribution 
to approximate the learner’s expectation of the distribution of data to be encountered. 
The binomial distribution is centered at pN’-prop, so the learner’s expectation is about 
how many N’-property data points should be observed. To update pN’ after seeing a 
single same-property data point s, we again follow the framework laid out in the 
previous chapter and calculate the maximum of the a posteriori (MAP) probability. 
 Like the type II ambiguous data update function in the syntactic domain, 
however, we will add a value smaller than 1 to the numerator. Intuitively, this smaller 
value represents the learner’s smaller confidence that the same-property data point s 
indicates that the N’-property hypothesis is correct.  I call this smaller value the 
partial confidence value, and represent it as pN’-prop | s. 
 The partial confidence value pN’-prop | s is the probability that the referent of 
one must have the N’-property mentioned in s.  This is equivalent to the probability 
that the referent of one must have the N’-property in general, given that s has been 
observed.  I write it as Prob(N’-prop | s) and calculate it by using Bayes’ rule. 
 

(24) Prob(N’-prop| s) = 

! 

Prob(s |N'-prop)*Prob(N'-prop)

Prob(s)
 

 
 I now describe the individual pieces of the right hand side of the equation in 
(24).  Prob(s | N’-prop)  is the probability of observing a same-property data point s, 
given that the N’-property hypothesis is true.  Recall that in a same-property data 
point, the referent of the antecedent of one must have the same mentioned property 
that the referent of one has.  The N’-property hypothesis states that the referent of the 
antecedent of one must have the property described by the linguistic antecedent of 
one.  Therefore, if the N’-property hypothesis is true, the probability of observing a 
same-property data point is 1. 
 
(25) Prob(s|N’-prop) = 1 
   
 Prob(N’-prop) is the current probability that the N’-property hypothesis is 
correct.  This is simply pN’-prop. 
 Prob(s) is the probability of observing a same-property utterance s, no matter 
which hypothesis is correct.  To calculate this value, we sum the conditional 
probabilities of observing s for each hypothesis (Prob(s | N’- prop) + Prob(s | any-
prop)) .  If N’-property is the correct hypothesis, the probability of observing s is 
Prob(s | N’-prop) from above.  If any-property is the correct hypothesis, then there is 
no restriction on what property the referent of the linguistic antecedent of one has.  I 
estimate the probability of that referent having the same property by chance as the 
referent of one as simply 1/c, where there are c properties in the world.  I calculate 
Prob(s) in (26). 
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(26) Prob(s)  = 

! 

phypothesis* p(s | phypothesis)
hypotheses

"  

  = pN’-prop*p(s | pN’-prop) + pany-prop*p(s | pany-prop) 

  = pN’-prop*1 + (1-pN’-prop)*

! 

1

c
 

 
 Substituting these pieces back into the right hand side of the equation in (24), 
we obtain (27). 
 
27) Prob(N’-prop| s) = 

! 

1*pN' -prop

pN' -prop *1+  (1" pN' -prop) *
1

c

 = 

! 

pN' -prop

pN' -prop * + 
(1" pN' -prop)

c

 = pN’-prop | s 

 
 As we can see, the partial confidence value pN’-prop | s depends only on c and 
pN’-prop.  This partial confidence value, which will be less than 1, is added to the 
numerator of the same-property data update function instead of 1.  The larger c is, the 
larger the ratio between the any-property superset and the N’-property subset.  The 
larger that ratio is, the more the learner is biased towards the subset hypothesis when 
encountering a same-property data point.  Thus, when c is large, the learner’s 
confidence in the N’-property hypothesis is high when encountering a same-property 
data point.  So, the more properties there are in the learner’s world, the more the N’-
property hypothesis is rewarded when this type of data is seen.  As for the 
denominator of the update function, we add 1 because a single data point has been 
observed.  

3.5.4 The Updating Algorithm for Linked Domains 
 
 Recall that there is an inherent connection between the syntax and the 
semantic interpretation. In particular, the subset hypothesis in the syntax (N0, or the 
smaller N’ constituent) corresponds to the superset hypothesis in the semantics (any-
property), and the exclusive subset in the syntax (larger N’ constituents) corresponds 
to the subset (N’-property) in the semantics (figure 18). Given this arrangement of 
hypothesis spaces, any piece of data impacting a hypothesis in one domain should 
impact the corresponding hypothesis in the other domain by the same amount. I now 
provide a description of how I model this process. 
 First, suppose the learner receives an unambiguous or type I ambiguous data 
point (which have two strings as potential antecedents, e.g. red ball or ball). This data 
point can be analyzed in either domain, syntax or semantics. So, the learner chooses 
which one to analyze it in first. Then, the update functions described above are 
employed to determine the amount the probability that should be shifted within that 
domain. Next, the probability is shifted in the other domain by the same amount. See 
figure 19, which shows the learner analyzing the data in syntax and updating both 
syntax and semantics. Now, the learner analyzes the data point in the other domain, 
applies the update functions described previously to determine the amount the 
probability that should be shifted within this domain. Next, the probability is shifted 
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in the other domain by the same amount. See figure 20, which shows the learner 
analyzing the data in the semantics and updating both semantics and syntax. 

  
(a)      (b) 

  
(c)      (d) 
 
Figure 19.  The learner encounters an unambiguous data point (a) and analyzes it first 
in the syntactic domain (b), and then updates the probability of the syntax hypotheses 
(c) and the probability of the linked semantics hypotheses (d). 
 

  
(a)      (b) 
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(c)      (d) 
Figure 20. After analyzing the data point in the syntax domain and updating the 
probabilities across the domains, the learner then starts at the state in (a) and analyzes 
the data point in the semantics domain (b).  Then, the learner updates the probability 
of the semantics hypotheses (c) and the probability of the linked syntax hypotheses 
(d).   
 
 The update process differs for a type II ambiguous data point, however.  This 
is because there is only one string that is the potential antecedent (e.g. ball), and the 
projection from the syntax to the semantics leaves only one interpretation (any-
property).  Type II ambiguous data points are thus uninformative for the semantic 
interpretation domain.  So, the learner simply updates in the syntax domain alone, as 
shown in figure 21.  The semantic interpretation domain is ignored for this type of 
data. 
 

(a) (b)  
 
 

(c)  (d)  
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Figure 21. The learner encounters a type II ambiguous data point (a) and analyzes it 
in the syntactic domain (b), and then updates the probability of the syntax hypotheses 
(c).  The final state after update is show in (d).  Importantly, the semantic domain is 
not influenced by the type II ambiguous data point because there is only one semantic 
interpretation available for an antecedent with no modifiers (e.g. ball), the any-
property hypothesis.  The semantic domain is only influenced when there is more 
than one potential antecedent, leading to more than one semantic interpretation. 

3.5.5 What Good Learning Would Look Like 
 
 In the model, the learner initially assigns equal probability to the two 
hypotheses in each of the two domains: in the syntax, N0 and N’, and in the 
semantics, N’-property (corresponding to the larger N’ constituent interpretation, e.g. 
red ball) and any-property (corresponding to the smaller N’ constituent interpretation, 
e.g. ball).  The probability of choosing the preferred adult interpretation, given an 
utterance with two potential antecedents, depends on choosing the correct hypothesis 
in each domain.  So, if the learner hears, “Look!  A red bottle!  Do you see another 
one?” (as in the LWF experiment), the interpretation of one is calculated as in (28), 
which is schematized in the decision tree in figure 22. 
 
(28) Interpreting one in “Look!  A red bottle!  Do you see another one?” 
 (a) Determine if the antecedent of one should be N0 or N’, using pN’. 
 (b) If the antecedent is N0, then the referent can have any-property. 
 (c) If the antecedent is N’, use pN’-prop to determine if the smaller N’ 
 constituent interpretation (any-property) or the larger N’ constituent 
 interpretation (N’-property) should be used. 
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Figure 22. Decision tree to interpret anaphoric one in utterances with more than one 
potential antecedent, such as “Look!  A red bottle!  Do you see another one?” The 
probability of having the adult interpretation (one = red bottle) is pN’*pN’-prop. 
 
 The probability of choosing the preferred adult interpretation (the larger N’ 
constituent is the antecedent of one) is the product of the probability of choosing the 
correct hypothesis in the syntax (N’) and that of choosing the correct hypothesis in 
the semantic interpretation (N’-property = larger N’ constituent): 0.500 * 0.500 = 
0.250. Given that the end state should be a probability near 1, a good learning 
algorithm should have a trajectory like that illustrated in figure 23. In short, the 
learner should steadily increase the probability of choosing the preferred adult 
interpretation. 
 

   
Figure 23.   The idealized trajectory of the probability of the correct interpretation for 
anaphoric one as a function of the data points encountered by the learner. 

3.5.6 Simulating an EO Bayesian Learner 
 
 Now that we have established how an EO Bayesian Learner learns and what 
the ideal learning outcome would be, we can simulate learning over our estimate of 
the set of data that 18-month olds have been exposed to. Each data point is analyzed 
in both the syntax and semantics domains, as relevant to the data type; and, each data 
point is classified for both syntax (unambiguous, type I ambiguous, or type II 
ambiguous) and semantics (same-property only, by generous assumption). 
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 3.5.6.1 Syntax 
 
 The probability pN’ is updated as each data point is observed.  The model 
requires a value for pN from N’, the probability of choosing a noun-only string from the 
N’ string set.  This requires that we determine how many strings are in the N’ set. 
There are two ways of doing this.  First, we could allow a string to consist of 
individual vocabulary items (“bottle”, “ball”, “ball behind his back”, etc.). 
Alternatively, we could allow a string to consist of individual categories (Noun, Noun 
PrepositionalPhrase, etc.).  Recall that as pN from N’ increases, the ratio between 
superset size and subset size decreases and the N’-hypothesis is not penalized as 
much by a type II ambiguous data point.  This means that a higher pN from N’ will 
generate a higher estimate for pN’. Therefore, to be generous and maximize the 
model’s estimate of pN’, I choose the option that maximizes the value of pN from N’ and 
allow the strings in the N’ set to consist of individual categories instead of vocabulary 
items. The number of categories is necessarily smaller than the number of vocabulary 
items in those categories, and so this yields a larger value for pN from N’. 
 Let the set of strings in N’ = {Noun, Adjective Noun, Noun 
PrepositionalPhrase, Adjective Noun PrepositionalPhrase}.15 The probability of 
producing a Noun string from this N’ string set is 1/4 or 0.25.  We can now look at 
the semantic domain. 
 
3.5.6.2 Semantics 
 
 The probability pN’-prop is updated as each data point is observed.  The model 
requires a value for c, the number of properties in the learner’s world.  Recall that as c 
increases, the ratio between the superset (any-property) and subset (N’-property) 
increases; the higher this ratio, the more the subset hypothesis (N’-property) is 
rewarded whenever a same-property data point is encountered.  Data from the 
MacArthur CDI (Dale & Fenson, 1996) suggest that 14-16 months olds know at least 
49 adjectives.  Therefore, I estimate that an 18-month old learner should be aware of 
at least 49 properties in the world.16   
 Note however that it is unlikely all 49 properties to choose from would be 
represented in a given situation (nice balls vs. red balls vs. blue balls vs. pretty balls, 
etc.).  Instead, a subset of the available categories the learner knows would be 
available in each case (perhaps as few as two: a red ball vs. a blue ball, for instance).  
So, assuming the learner considers the potential 49 properties the semantic referent in 
a given situation could have had will be an overestimation of the categories the 
learner actually considers.  Because of this, the simulated learner will receive more 
bias towards the semantic subset (the correct interpretation of anaphoric one) than a 
real learner would.  This will again yield an overestimation of a real learner’s 

                                                
15 This is still a conservative estimate – there are likely to be additional category strings in N’, such as 
Adjective Adjective Noun, because language is recursive.  Additional strings would again lower pN from 

N’. 
16  In reality, there are still more properties due to the combination of adjectives (nice red, big striped) 
and prepositional phrases (nice…behind his back, big striped…in the corner). I will not consider the 
consequences of recursive modification here.   
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probability of choosing the more restricted referent set in the semantics, and thus an 
overestimation of the probability of the learner choosing the correct interpretation. 
 
3.5.6.3 Linked Domain Updating 
 

Recall that the update algorithm analyzes each data point in two domains and 
shifts the probability between the opposing hypotheses within each domain and 
across domains accordingly, as relevant.  As we can see in figure 24, the learning 
trajectory as a function of the amount of data seen does not match our ideal learning 
outcome. In fact, as the learner encounters more data, the probability of the adult 
interpretation steadily drops to a final value of 0.171. This final value represents the 
product of the probability of the correct syntactic hypothesis (pN’), which is 0.310 
(1000 simulations, sd = .00377) and that of the correct semantic interpretation 
hypothesis (pN’-prop), which is 0.551 (1000 simulations, sd = .00382).17   Thus, based 
on the data observed, the learner is extremely unlikely to access the preferred adult 
interpretation for one  (i.e., that one is anaphoric to strings described by N’, and that 
the referent of one must have the N’ property) in an utterance with two potential 
antecedents. 

 

   
Figure 24.  The EO Bayesian Learner’s trajectory as a function of the amount of data 
encountered compared against the idealized trajectory for a learner. 
 
3.5.6.4 Changing t 
 

Recall that this model contains a parameter, t, which represents the amount of 
change the learner can undergo in the course of learning. I quantify this parameter as 
the number of data points the learner can use to update its probabilities. In my 
simulation, this was 4017, the number of data estimated during the learning period for 
an 18-month old.  However, one might be concerned that the value of t might play a 
critical role in determining the final probability of converging on the correct 

                                                
17 Note that this value is obtained using the procedure in which the learner chooses at random whether 
to analyze the data point in the syntax first or in the semantics first for unambiguous and type I data. 
The same value is obtained if the learner always analyzes the data point in the syntax first and if the 
learner always analyzes the data point in the semantics first. 
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interpretation of anaphoric one. In figure 25, I show the final probability of 
converging on the adult interpretation of anaphoric one as a function of the size of t. 

As we can see, the final value does not appreciably alter based on the size of t. 
The reason for this stability is that the behavior of the learner is dependent on the 
probability distribution of the data. In case t is small, each data point has a larger 
impact. In case t is large, each data point has a smaller impact. But, because the 
probability distribution is always the same, the learner always ends up with the same 
value so long as t is equal to the number of data points in the learning period. 
Moreover, if the learner encounters data after having seen t amount of data, this data 
cannot be used to update the probabilities. 

 
 

 
Figure 25.  Final probability of the adult interpretation, given different values of t. All 
values are approximately 0.171.   

 
However, suppose the learner encounters fewer data points than t.  For 

instance, if the t for 18-month olds was actually larger than 4017, then the final 
probability would vary with respect to t.  Below, I show the final probability for t 
greater than 4017 data points. 

 

 
Figure 26. “Final” probability of the adult interpretation, given different values of t 
and a learning period of 4017 data points. Values approach the initial probability of 
0.250, reaching 0.206 if t is 8017 data points (roughly twice the t assumed in the EO 
Bayesian learner). 
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Here, we see that the larger t is, the less the final probability deviates from the 
0.250 initial probability.  This is because each data point shifts the probability less, as 
t is larger.  What we effectively see is the result of the 4017 data point cut-off 
(assumed for 18-month olds) not being at the end of the learning period.  Thus, the 
learner (or learner’s brain) expects to encounter more data points before settling onto 
the final probability; the “final” probability at 4017 data points is higher than the 
ultimate final probability at the end of the learning period.  If the learner encounters t 
data points, the final probability will be 0.171, as we saw in figure 25 above. 

3.5.7 The Outcome of an EO Bayesian Learner 
 
 To summarize, even with conservative estimates of various parameters, the 
EO Bayesian learner is heavily biased against the preferred adult interpretation of 
anaphoric one in an utterance with two potential antecedents. In fact, the probability 
of converging on the preferred adult interpretation of anaphoric one is quite small 
(0.171). In short, there is less than a one in five chance of an EO Bayesian learner 
converging on the correct interpretation for anaphoric one.  
 This result is strikingly different from that reported in R&G, who found 
overwhelming success for a Bayesian learner. What is the source of this difference? 
Recall that R&G’s model made use of only a subset of the available data and gave 
priority to semantic data over syntactic data.  However, if a Bayesian learner is 
unconstrained in its data intake, then we would expect that it does not favor one type 
of data over any other - favoring one type of data over another represents a domain-
specific filter.  
 This EO Bayesian model, in contrast, lacks any domain-specific filter on data 
intake. It uses all the available data (unambiguous, type I ambiguous, and type II 
ambiguous) and treats syntactic and semantic data as equally relevant to the learner. 
As we can see, such an unconstrained domain-general learning procedure on its own 
fails to converge on the correct interpretation of anaphoric one with high probability. 
 This failure is especially striking because of how generous I was regarding the 
data available to the EO Bayesian learner and how the learner interpreted that data.  
Below, I highlight where I was generous and see that revoking that generosity only 
pushes the final probability of choosing the preferred adult interpretation closer to 
zero. So, I will conclude that unconstrained (and specifically, unfiltered) Bayesian 
learning by itself is not sufficient to model human learning or behavior in this 
domain. 
 As noted above, there were two places in the construction of the model where 
I biased the learner towards the correct interpretation of anaphoric one.  First, I gave a 
generous interpretation of the available data by providing a liberal estimate of the 
amount of informative data in the environment. Second, I made conservative 
assumptions about the learner’s understanding of the environment. Even in the face of 
this generosity, the EO Bayesian learner failed.  
 In the first case, I was unable to determine a fair estimate of the amount of 
informative data in the environment – for example, the confidence a learner had in the 
type I ambiguous data (section 3.5.3.2), the quantity of type I ambiguous data that 
were informative (section 3.5.3.3), and the quantity of data indicating the non-
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preferred adult interpretation (section 3.5.3.3). Consequently, I maximized the size of 
the informative data set in order to get an upper bound on the probability of 
converging on the correct interpretation. In what follows, I leave these assumptions as 
is.  
 In the second case, however, I show one way in which we can relax the 
conservative assumptions about the learner’s understanding of the environment to 
make these assumptions more realistic.  As we will see, the results reported above 
represent an upper bound on the probability of converging on the correct 
interpretation of anaphoric one when there are two potential antecedents. Changing 
the relevant assumptions only decreases this probability further. 
 The conservative assumption I will examine concerns the value of pN from N’, 
which is the probability of observing a Noun-only string, given the set of all the N’ 
strings. I previously described the elements of the N’ string set as category strings, 
such as Noun and Adjective Noun.  However, if I describe the elements of the N’ 
string set as strings consisting of  vocabulary items, such as “bottle” and “red bottle”, 
the probability of observing a Noun-only string is much smaller:  it is the number of 
Noun-only strings divided by the total number of N’ strings in the learner’s language.  
The MacArthur CDI (Dale & Fenson, 1996) suggests that 14-16 month olds know 
about 247 nouns and 49 adjectives.  Therefore, the total number of N’ strings for an 
18-month old learner consists of at least all the nouns and adjective+noun 
combinations, which is 247+49*247=12350.18 Using these (still somewhat 
conservative) estimates, pN from N’ is 0.0201.  This is considerably smaller than the 
previous value of 0.25.  Recall that the smaller the value of pN from N’, the more the N’ 
hypothesis is penalized whenever a type II ambiguous data point is encountered. 
 Using this less generous value of pN from N’ (0.0201, instead of 0.25), the 
probability of converging on the adult interpretation is the product of the probability 
of the correct syntactic hypothesis (0.235, 1000 simulations with sd = 0.00316) and 
the probability of the correct semantic interpretation hypothesis (0.554, 1000 
simulations with sd = 0.00358), which is 0.130. On the current, more realistic 
estimate of the model’s parameter, the learner now has less than a one in six chance 
of converging on the preferred adult interpretation of anaphoric one in a situation 
where there are two potential antecedents for one. 

3.6 On the Necessity of Domain-Specific Filters on Data Intake 
 
 We began our discussion with the observation that a learning theory can be 
divided into three components: the representational format, the filters on data intake, 
and the learning procedure.  The EO Bayesian learner attempted to solve the problem 
of anaphoric one using a prespecified representational format19, but no domain-
specific filters or learning procedures. In contrast, the model presented by R&G, 

                                                
18  Again, this is a conservative estimate since there are still more N’ strings from combinations of 
prepositional phrases as well as adjectives with prepositional phrases, for instance – e.g. “bottle in the 
corner”, “big striped ball behind his back”, etc. The effects of recursive modification only exacerbate 
the problem. 
19 Although our model requires antecedent knowledge of X-bar theoretic structures, it is an 
independent question whether these are innate or derived from experience. 
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which also used a prespecified representational format and a domain-general learning 
procedure, used two domain-specific filters on data intake. This model succeeded. We 
can now examine (a) whether both of these filters are necessary to converge on the 
preferred interpretation of anaphoric one, and (b) whether we can derive the 
necessary filters in a principled fashion. 
 The first filter R&G’s learner considers is to use only semantic data. That is, 
alternative syntactic hypotheses were evaluated only with respect to the predictions 
they made about the referents of phrases containing anaphoric one. These are the 
semantic consequences of the syntactic hypotheses.  However, these hypotheses were 
not evaluated with respect to the predictions they made about the set of possible 
strings that would be available as antecedents for anaphoric one. So, the syntactic 
implications of the syntactic hypotheses were not considered.  The second filter 
R&G’s learner used was to systematically exclude type II ambiguous data. These are 
examples in which the antecedent for anaphoric one is an NP containing no modifiers 
(e.g. …ball…one…). 
 We can now ask what happens to the EO Bayesian learner if we use these 
filters, separately and together. First, consider a variant of the EO Bayesian learner 
that learns only from the semantic consequences of its syntactic hypotheses. In the 
semantic interpretation domain, that learner maintained two hypotheses: the N’-
property hypothesis and the any-property hypothesis. The probabilities of these two 
hypotheses are updated on the basis of semantic data. Moreover, these hypotheses are 
linked to the syntactic hypotheses. The N’-property hypothesis is linked to the N’ 
hypothesis (specifically, the exclusive superset of the N’-hypothesis); and, the any-
property hypothesis is linked to the N0-hypothesis. Consequently, by updating the 
probabilities of the semantic hypotheses, we also update the probabilities of the 
syntactic hypotheses. If we ignore the syntactic consequences of the hypotheses, then 
the only way to update the syntactic hypotheses is via the link to the semantic 
hypothesis space.  

If I simulate an EO Bayesian learner that only learns via the semantic analysis 
of the data, the final probability for pN’  and pN’-prop is 0.810.  There is no deviation, 
since the data points consist of the 10 unambiguous data points, which are maximally 
informative for the N’ and N’-property hypotheses, and the 183 type I ambiguous 
data points, which I generously assumed were maximally informative for the N’ and 
N’-property hypotheses.  Moreover, there are no countervailing data points for the 
alternative hypotheses (N0 in the syntax and any-property in the semantics).  Thus, 
the probability for the correct hypotheses is continually increased.  Because only data 
with semantic consequences is considered, the type II ambiguous data is ignored and 
so its effect on the final probability is nullified.  The final probability of converging 
on the correct interpretation is the product of the two probabilities, which is 0.656.   
This is a marked improvement over the unfiltered Bayesian learner; the semantics-
only filtered Bayesian learner is nearly four times as likely to converge on the 
preferred adult interpretation of anaphoric one.  However, this probability is still 
significantly below the ideal probability of 1.0, which would indicate absolute 
certainty of choosing the preferred adult interpretation.  Analyzing the data only in 
terms of its semantic interpretation can generate significant improvement, but seems 
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to still fall short of leading the learner to the correct interpretation with high 
probability. 
 The second filter that R&G’s model used was the exclusion of type II 
ambiguous data. We can now ask what happens if I follow R&G in excluding this 
data. This variant of the model will, like the original EO Bayesian learner, take into 
account both the semantic and syntactic consequences of its hypotheses, but ignore 
the type II ambiguous data.  Note that ignoring the type II ambiguous data is an 
explicit filter that specifies the exclusion of this type of data, rather than having the 
exclusion result from a restriction on the semantic interpretation (as in the semantics-
only filter we just examined). 
 To simulate this no-type-II-data filter, I considered only the unambiguous and 
type I ambiguous data points (193, by my estimate), as in the previous filter.  
However, both the syntactic data and semantic data was used for updating, thus 
making use of the link across the two domains and the fact that there are multiple 
sources of information.  When I run the model on this data set, the final probability 
for the N’ hypothesis in the syntax and the N’-property hypothesis in the semantics is 
0.930. The product of these two, which represents the probability of converging on 
the correct interpretation for anaphoric one is 0.865. This is again a sharp 
improvement over the filter-free variant of the model (over 5 times more likely to 
converge on the correct interpretation).  Additionally, the no-type-II-data filter 
outstrips the semantics-only filter in performance (0.865 probability against 0.656 
probability), and is far closer to the ideal probability of 1.0 that indicates certainty for 
choosing the preferred adult interpretation of anaphoric one. 
 I now consider the consequences of using both of these filters simultaneously. 
Recall that the effect of the semantics-only filter, which restricted the learner to using 
only the semantic analysis, was that only semantic data could impact the hypotheses. 
This results in the type II ambiguous data being excluded from consideration, as it is 
uninformative with respect to the alternate semantic interpretations since it has only 
one potential antecedent.  The no-type-II-data filter explicitly excludes type II data.  
So, if the model use these two filters in concert, the result is the same as when it used 
the semantics-only filter alone; the type II ambiguous data is excluded (by the 
semantics-only filter, due to its lack of semantic consequences, and by the no-type-II-
data filter explicitly) and only semantic data can impact the probabilities associated 
with the hypotheses (due to the semantics-only filter).  Thus, the resulting 
probabilities for the N’ hypothesis and N’-property hypothesis are 0.810 and the 
probability of the preferred adult interpretation of anaphoric one is 0.656.  Since 
using both filters yields an identical result to using the semantics-only filter alone, the 
benefit gained from using the no-type-II-filter is lost.  It is therefore in the interest of 
the learner to apply only the no-type-II-filter.  That is, the learner should ignore type 
II ambiguous data, but still use both syntactic and semantics data equally to update 
the hypothesis spaces. 
 To summarize, the EO Bayesian learner shows us that a learner not equipped 
with domain-specific filters on data intake cannot converge on the correct 
interpretation for anaphoric one. Figure 27 displays the learning trajectories and 
outcomes for the full set of simulations: no filter, semantics-only filter, no-type-II-
data filter, both filters. As we can see, using the no-type-II-data filter by itself yields 
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the highest probability for the correct interpretation. Moreover, the efficacy of this 
filter is negated when used with the semantics-only filter.  In other words, the ideal 
learner must use both syntactic and semantic evidence, but be restricted in which 
sentences it takes as opportunities to learn from.  
 
 

   
Figure 27.  The Bayesian Learner’s trajectory as a function of the amount of data 
encountered: no filters, semantics-only filter, no-type-II-data filter, and both 
semantics-only filter and no-type-II-data filter. 

3.7 Deriving the Necessary Domain-Specific Filter 
 

 The necessity of a filter on data intake now raises an important question. 
Where does this filter come from? It seems fairly obvious that the learner cannot 
come equipped with a filter that says “ignore type II ambiguous data” without some 
procedure for identifying this data.  What we really want to know is whether there is a 
principled way to derive the existence of this filter. Specifically, we want the filter to 
ignore type II ambiguous data to be a consequence of some other principled learning 
strategy.  
 Suppose there is a general principle that learning occurs only in cases of 
uncertainty, because it is only in cases of uncertainty that information is conveyed 
(Shannon 1948; cf. Gallistel 2001).  The learning algorithm therefore engages only 
when there is uncertainty about the identity of the antecedent. 
 One suggestion would be to call on the semantics-only filter, arguing that 
interpreting anaphoric one is simply a semantic problem.  This could be termed a 
semantocentric approach to learning, and so the syntactic implications are irrelevant 
for learning.  The result of this strategy would be that the learner only uses the 
semantic consequences of the data to update the hypotheses.  As we saw in the 
previous section, this would rule out type II ambiguous data (with a single string as 
potential antecedent, such as ball), because such data has only one semantic 
interpretation available (any-property)– thus, there is no uncertainty.  However, as we 
also saw in the previous section, this causes the learner to lose the useful effect that 
the syntactic data can have.  Specifically, if only semantic data are used, the benefit 
gained from having linked domains is lost.  The learner uses only semantic data to 
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update the both hypothesis spaces; the learner does not also use the syntactic aspect of 
the data to update both hypothesis spaces.  This leads to a lower probability of 
converging on the adult interpretation of anaphoric one.  
 Another suggestion is that the learner takes a syntactocentric approach, and 
the problem the learner faces is solely to do with the string that is the antecedent of 
anaphoric one.  The only influence semantic interpretation data has is as a reflection 
of various syntactic hypotheses that are entertained. Suppose that the learner comes 
equipped with a constraint against anaphora to X0 categories (Baker, 1979; Hornstein 
& Lightfoot, 1981) or is able to have derived it previously using a syntactocentric 
filter on the available data (Foraker et al, in press). The syntactic hypothesis space is 
reduced to a single hypothesis: one = N’. In this situation, the learner needs only to 
solve a different problem in the syntax domain: namely, which N’ is the appropriate 
antecedent in cases in which there are multiple N’s available. 
 For example, if the learner hears “Here’s a red ball. Give me another one, 
please,” there are two N’s available, red ball and ball. These two different 
antecedents have different semantic interpretations: red ball is restricted to red balls 
whereas ball is not. In other words, the N’-property hypothesis is linked to the larger 
N’ red ball, whereas the any-property hypothesis is linked to the smaller N’ ball.  
Choosing the appropriate antecedent can be achieved using the update functions 
described for the EO Bayesian learner. 

Now, in cases in which there is only one N’ available (as in type II ambiguous 
data), there are no choices to be made in finding an antecedent. That is, if the learner 
hears, “Here’s a ball. Give me another one, please,” the only possible antecedent is 
the N’ ball. Consequently, the learner has no uncertainty about the meaning of the 
expression and so does not invoke the learning algorithm.  

This last point is critical for motivating the learner’s choice to ignore type II 
ambiguous data. As noted above, having a range of available antecedents causes 
uncertainty about the antecedent. It is this uncertainty that triggers the learning 
algorithm. It is important to see at this point that this syntactocentric approach 
requires the learner to be concerned not with the category of the antecedent (N’ vs. 
N0), but rather the identity of the antecedent when there are two or more N’s to 
choose from.  However, allowing the learner to view this as a problem of which 
syntactic antecedent to choose rather then merely as a problem of interpretation 
causes the learner to use the syntactic aspect of the data as well, which we found was 
crucial for a more successful learner. 

3.8 Future Directions 
 

 Learning anaphoric one is a case study that can be mined further still.  For 
example, we can consider if learning success is possible in a hypothesis space that 
contains more than two hypotheses in a subset-superset relationship.  Does the learner 
only consider two overlapping hypotheses at a time (small N’ ball vs. larger N’ red 
ball), or can the learner achieve success when, say, three hypothesis are considered 
concurrently (small N’ ball, larger N’ red ball, even larger N’ big red ball)?   
 Moreover, we can open up the current hypothesis space containing only two 
possible N’s even more if we allow the learner to entertain syntactic hypotheses 
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involving antecedents containing covert modifiers.  Suppose, for example, that the 
learner hears, “Look, a bottle!  Oh, and it’s red!  Jack doesn’t have one like that.”  
Suppose also that Jack has a non-red bottle, so it is clear that one refers to a red bottle 
in the world.  The difficulty for the learner is that the antecedent of one in the 
available utterances is overtly bottle, but it is implicitly red bottle (as the bottle Jack 
doesn’t have is a red bottle).  Yet, red bottle does not appear overtly in the data.  The 
learner might then need to entertain a hypothesis where the antecedent contains a 
covert modifier that corresponds to the property the referent in the world has, e.g. 
(red) bottle when the referent in the world is a red bottle.  This would alter how the 
learner updates the probabilities associated with each hypothesis when considering 
information from both the potential syntactic antecedents and semantic referents in 
the world for anaphoric one data points.   
 I do note that before pursuing this it is worthwhile to determine via standard 
experimental techniques, such as those used by LWF (2003), how real learners 
interpret a data point of this kind.  If they do interpret one as referring to a red bottle 
in the example above (and so having a linguistic antecedent of red bottle, even though 
it is not explicit in the utterance), then the question of how to expand the learner’s 
syntactic and semantic hypothesis spaces appropriately becomes particularly relevant. 
 In addition, I have defined the hypothesis spaces by the number of data types 
that are compatible with each hypothesis (e.g. Noun, Adjective Noun, etc.).  But we 
might also include frequency of data type, especially when considering the relative 
size of one hypothesis space against another. For instance, suppose the N0 hypothesis 
space consists of data types{Noun} and the N’ hypothesis space consists of data types 
{Noun, Adjective Noun}.  The N’ hypothesis space is twice as big as the N0 
hypothesis, under this definition.  But suppose the learner has encountered 9 
examples of Nouns and 1 example of Adjective Noun.  Then the N’ hypothesis space 
is only 1/10 larger than the N0 hypothesis space, given the learner’s current 
experience.  This then influences the updating that occurs when encountering an 
ambiguous data point (Noun).  The relative size of the hypothesis spaces alters over 
time, as the learner encounters more examples from the input.  So, the impact of 
ambiguous data likewise alters over time.  Under these conditions, is acquisition 
success possible without filtering the data intake?  This is certainly a question worth 
exploring. 

3.9 Conclusion 
  
 The case of anaphoric one demonstrates the interplay between domain-
specificity and domain-generality in learning.  What we have seen here is that a 
domain-general procedure can be successful, but crucially only when paired with 
domain-specific filters on data intake.  Moreover, I have suggested that the particular 
domain-specific filter that yields the best result can plausibly be derived from a 
domain-specific constraint on representation (either innately specified or derived via a 
syntactocentric analysis).   
 In addition, I have tried to highlight the consequences associated with the 
existence of multiple, connected levels of representation in language. Because the 
levels of representation are linked to each other, conclusions drawn by the learner in 
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one domain also ramify in other domains. When the learner used both syntactic and 
semantic information with no filters, the result was very poor learning. When the 
learner used both syntactic and semantic information , in concert with the no-type-II-
data filter, the result was very good learning.  However, when I disconnected the two 
domains, as when the learner learned only from semantic data, the result was learning 
that was not as good (though still much better than no filtering of the data at all).  
This was due to some of the available information – the syntactic implications of the 
syntactic hypotheses – being ignored.  Thus, the connection between domains allows 
multiple analyses across domains of a single data point to each have an effect.  This, 
in turn, will magnify the effect of a given data point, thus increasing the amount of 
information that can be salvaged by the learner.  This lesson should be generalized to 
learning in any situation involving multiple linked levels of representation. 
 Finally, it is important to recognize that I have simulated learning only for one 
very specific case of grammar acquisition. However, the inherent semantic 
compositionality of syntactic representations provides a severe hurdle for Bayesian 
learning techniques that are biased towards the most restrictive hypothesis. As I have 
noted, as the syntactic structure grows, the set of referents in the semantics shrinks. 
Consequently, the most restrictive hypothesis in the syntax corresponds to the least 
restrictive hypothesis in the semantic interpretation, and vice versa. This makes it 
impossible to define a “most restrictive hypothesis” across both domains.  
 The existence of multiple, linked levels of representation in language, and 
presumably elsewhere in cognition, has important consequences for learning. A link 
between domains can amplify the positive effects that come from using data from 
multiple sources. Nonetheless, this link can structure the data in such a way as to 
nullify the essential advantage of unconstrained Bayesian learning techniques. 
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Chapter 4: The Case of Old English Word Order 

4.1 Filters on Data Intake for Syntactic Learning 
The phenomenon I examine in this chapter is an instance of syntactic learning, 

specifically the alternation between Object-Verb (OV) and Verb-Object (VO) order in 
Old English.  This case is another example where the learner has two hypotheses 
under consideration.  However, unlike the case of anaphoric one, the final state for 
adults in Old English is argued to be probabilistically distributed between the two 
hypotheses (Pintzuk, 2002; Kroch & Taylor, 1997; Bock & Kroch, 1989).  Evidence 
for this mixed adult state comes from texts in which both alternates are exhibited by a 
single author.  This is in contrast to final state where only one hypothesis is accessed 
(i.e. only one structural rule used) by adults. 

The hypothesis space for Old English OV/VO order consists of two 
hypotheses that overlap, but do not have a subset-superset relation.  Both the OV and 
VO hypotheses have data that will be unambiguous.  In addition, there is a quantity of 
data that is ambiguous between the two hypotheses since it can be analyzed 
successfully given either hypothesis.  The updating procedure is based off the one 
described in the mathematical framework in chapter 2.  I then use this definition of 
the hypothesis space and the updating procedure to investigate two filters on data 
intake proposed for syntactic learning. 

The two filters in question bias learners away from potentially misleading 
ambiguous data in the input, both stemming from a presumed preference for “simple” 
data (Dresher, 1999; Lightfoot, 1999, 1991; Fodor, 1998a).  These filters use a 
structurally-based notion of simplicity.  The first claims that children learn only from 
unambiguous data (Dresher, 1999; Lightfoot, 1999; Fodor, 1998a), and consequently 
do not activate the update algorithm whenever data is perceived as ambiguous.  The 
second proposal restricts learning to the data points found in “simple” clauses 
(Lightfoot, 1991), where simple clauses are defined as matrix clauses.  If there are 
available data points in embedded clauses, the update algorithm again is not activated 
and these data are effectively ignored by the learner.   

These filters are motivated by the perceived informativity and ease of 
comprehensibility of the relevant data.  As we saw in the previous chapter, an 
unambiguous data point allows the learner to be maximally confident in whichever 
hypothesis the data point signals.  So, the most probability is shifted when the learner 
encounters an unambiguous data point.  We can view this as unambiguous data points 
being the most informative data points available to the learner. For simple clauses, it 
has been claimed that children might restrict their attention to simple, subparts of 
utterances (Morgan, 1986), perhaps because of general cognitive restrictions on the 
complexity of data that they can handle.  So, matrix clauses, being “simpler”, are 
arguably easier for learners to extract information from. 

Nonetheless, filtering the data is not without its drawbacks.  The filters 
proposed above will radically truncate the data intake set.  It is well known that sparse 
data can inhibit a probabilistic model’s ability to converge on a solution.  Thus, we 
must determine if the subset of data circumscribed by these two filters can still allow 
learning to succeed, even if the subset is significantly smaller than the input data set. 
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In Old English, as we have already noted, the adult state is a probabilistic 
distribution between the two hypotheses, OV and VO word order.  Because the target 
state is not an endpoint (either all OV or all VO word order), it is more difficult to 
gauge learning success.  How close does the learner have to get to the adult 
probability distribution in order for learning to be deemed successful? 

At this point, we can make use of the fact that languages change over time.  
Specifically in the case of Old English, the population shifts from an OV-biased 
distribution around 1000 A.D. to a VO-biased distribution around 1200 A.D. (YCOE 
Corpus, Taylor et al., 2003; PPCME2 Corpus, Kroch & Taylor, 2000).  It has been 
proposed that certain types of change (such as the shift in Old English) result from a 
misalignment of the child’s hypothesis and the adult’s analysis of the same data 
(Lightfoot, 1999; 1991).  In other words, language change in this case results from 
imperfect learning of a very particular kind.   

Specifically, the idea is that language change in this case occurs because 
learners misconverge on the probability distribution; the learner’s probability 
distribution is very slightly different from the adult’s probability distribution. The key 
point is that the amount of difference between the learner’s probability distribution 
and the adult’s probability distribution will influence the rate of language change in a 
population over time. In order to model change at an attested pace, the acquisition 
model must hypothesize exactly the right amount of difference between the learner’s 
and adult’s probability distributions. 

Therefore, “successful” learning is defined as learning that leads to exactly the 
right amount of misconvergence within the individual learner.  This amount of 
misconvergence within the individual then leads to language change over time within 
the population of individuals.  We will find that the amount of misconvergence 
depends greatly on how the input is filtered during learning.  Thus, we can test 
proposals about data filtering by using models of language change. 

It is important to note the correlation between successful learning and 
imperfect learning for certain cases of language change.  Often, language learning 
research in synchronic cases may focus so much on the learner’s ability to reach the 
target adult state that we may overlook the fact that perfect learning will not 
necessarily lead to success in diachronic cases.  This is because perfect learning 
would entail no change over time.  This then creates a certain tension on the demands 
of a successful learning model – it must be good enough that learners can 
communicate effectively with the remainder of the population, but not so good that 
language change is impossible.  So, using successful language change as a metric for 
successful language learning attempts to keep this second point in mind.  

We will find, perhaps surprisingly, that the two proposed filters on data intake 
are crucial for a successful model of Old English language change that describes a 
population which begins strongly OV-biased at 1000 A.D. and ends strongly VO-
biased at 1200 A.D.  Without these filters, the simulated learners are unable to 
misconverge the precise amount necessary for the modeled population’s rate of 
change to match the historically attested population’s rate of change.  This supports 
the existence of these two filters on data intake during the normal course of syntactic 
learning. 
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The chapter proceeds as follows.  First, I will discuss the two filtering 
proposals in detail.  Then, I will examine the available information on the language 
change in Old English.  After that, I will discuss the model of language learning and 
language change that I will use.  Finally, I will present the modeling results and 
discuss their implications for language learning. 

4.2 Restricting the Data Intake 

4.2.1 Unambiguous Data 
 
4.2.1.1 Unambiguous Data for OV and VO Word Order 
 
 Unambiguous data is defined within a hypothesis space of opposing analyses 
for a certain piece of linguistic structure, such as OV or VO word order.   
Ambiguity is often faced by a child choosing the correct grammar for his or her 
language.  Let’s consider a simple example.  The child has to decide whether the 
stream of encountered speech belongs to a VO (Verb before Objects) language 
requiring rules like (1) or to an OV (Objects before Verbs) language requiring rules 
like (2).  
 
(1)  VO rule set examples 
 (a)  VP   V  NP  PP  (b) VP   V   NP 

 
(2)  OV rule set examples 
 (a) VP   NP  PP  V  (b)  VP   NP  V 

 
Modern English chooses the VO rule set (1).  Modern Dutch and German 

choose the OV rule set, which includes those in (2).  However, modern Dutch and 
German also generate strings that are compatible with some of the rules in set (1), 
such as in (3) below: 

 
(3)   IchSubj  seheTensedVerb    [den Fuchs]Obj 

I     see        the fox 
‘I see the fox.’ 
 
This example demonstrates an option available in modern Dutch and German 

which moves the tensed Verb of the matrix clause to the “second” phrasal position in 
the matrix clause, known as V2 movement (Lightfoot, 1999; Kroch & Taylor, 1997; 
among many others).  The tensed Verb sehe moves from its original position (after 
den Fuchs) to the second phrasal position in the sentence, and some other phrase (Ich) 
moves to the first phrasal position, as in (4). 

 
 (4)  IchSubj   seheTensedVerb   tSubj   [den Fuchs]Obj  tTensedVerb. 
 I  see    the fox 
 ‘I see the fox.’ 
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 Given the example in (3), one might reasonably wonder why we posit the 
analysis in (4) instead of simply assuming that modern German (and Dutch) word 
order is VO.  The reason is that VO order does not appear in matrix clauses across the 
board.  Languages like modern Dutch and German use VO order only for tensed 
Verbs in matrix clauses.  Non-tensed Verbs in matrix clauses and all Verbs in 
embedded clauses obey OV order and appear after the Object.  This forces us to 
assume a basic OV word order with an additional operation that moves the tensed 
Verb in matrix clauses. 

In the bold part of (5a), we see the basic OV order appearing in the embedded 
clause as den Fuchs sehen kann (Object Non-TensedVerb TensedVerb). In (5b), the 
non-tensed Verb sehen appears in the matrix clause after the Object den Fuchs, again 
displaying the OV order. The V2 rule moves the tensed modal kann to the second 
phrasal position, and the Subject Ich moves to the first phrasal position.  

 
(5a) IchSubj  denkeTensedVerb,     das    ich  [den Fuchs]Obj    
 I think       that    I      the    fox   
   
 sehenNon-TensedVerb    kannTensedVerb 
 see    can 
 
            ‘I think that I can see the fox.’ 
 
 (5b)  IchSubj    kannTensedVerb   tSubj [den Fuchs]Obj   sehenNon-TensedVerb     tTensedVerb 
 I     can   the fox           see 
 ‘I can see the fox.’ 
 
 At the beginning of language learning however, the child has not set the word 
order parameter for the language.  Therefore, both the OV and VO hypotheses are 
available with some probability.  The matrix clause Ich sehe den Fuchs can be 
covered by both hypotheses.  The OV hypothesis can use the analysis described in 
(4), matrix OV order with the V2 movement rule; the VO hypothesis can use the 
analysis in (6), matrix clause VO order without the V2 movement rule (which is the 
analysis used for modern English). 
 
(6) IchSubj  seheTensedVerb    [den Fuchs]Obj. 
 I  see  the fox 
 ‘I see the fox.’ 

 
Data points like (3) are therefore ambiguous between the two hypotheses 

under consideration.  A proposal to filter data intake down to the unambiguous data 
points would cause the learner not to activate the update procedure when 
encountering ambiguous data points.20  Instead, the learner uses only data points 
perceived as unambiguous.  Examples of perceived unambiguous data are in (5) 
above.  In (5a), if the child uses embedded clause data as intake, then the presence of 
                                                
20 Otherwise, the learner would require some strategy for how to update the probabilities when 
encountering ambiguous data, as we saw in the previous chapter. 
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the Verbs (both tensed kann and non-tensed sehen) after the Object would signal that 
the VO hypothesis is correct.  In (5b), the presence of the non-tensed Verb sehen after 
the Object again implicates the OV hypothesis since that order would not be 
generated by a VO system. 
 
4.2.2.2  Identifying Unambiguous Data 

 
If we believe that children filter their intake for syntactic learning down to 

unambiguous data, it is important to provide a plausible method for identifying 
unambiguous data.  Two methods have been proposed to identify unambiguous data: 
the domain-specific knowledge of cues (Dresher, 1999; Lightfoot, 1999) and the 
domain-specific procedure of parsing (Fodor, 1998; Sakas & Fodor, 2001).   

A cue for identifying unambiguous data is defined as a specific configuration 
in the surface structure of the data point that signals one parameter value (hypothesis) 
is correct.  The knowledge of what a cue for a given parameter value looks like is 
often presumed to already be available to the learner (Dresher, 1999; Lightfoot, 
1999), whether innately specified or derived through some other knowledge. A cue 
for OV/VO word order proposed by Lightfoot (1999) is described in (7). 
 
(7)  The Object is adjacent to the Verb (on the appropriate side) and the Verb is 
not in the second phrasal position.   
 
 This is considered a cue because the V2 movement rule deriving a VO order 
from an underlying OV order only allows a single phrasal constituent to come before 
the Verb.  If the Verb is preceded by more than one phrasal constituent, then its 
position is not the result of V2 movement.21 The form of this cue could be an 
underspecified piece of sentence structure (figure 28 below) or simply a linear pattern 
retrievable from the observable data (8).  Both are representations of the domain-
specific knowledge that a cue describes. 

 

   
Figure 28.  Underspecified pieces of sentence structure that could be the learner’s 
representation of a cue for OV vs. VO word order, as described by Lightfoot (1999). 
    
                                                
21 Note that this is the learner’s perception of the data, given a restricted knowledge base.  The adult 
grammar, in actuality, may contain other grammatical rules that allow V2 movement to create a clause 
with the Verb in the third position.  Thus, the learner may perceive data as “unambiguous” that is 
ambiguous when a fuller range of grammatical rules is considered. 
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(8) Linear patterns that could be the learner’s representation of a cue for OV vs. VO 
word order. 
 (a) OV cue: [  ]XP … Object Verb … 
 (b) VO cue: [  ]XP1  [  ]XP2 … Verb Object … 

 
 To identify unambiguous data, the learner matches the data point (or relevant 
piece of the data point) to the cue.  Example sentences that would match these cues 
are in (9).   
 
(9a)  Matching OV cue:  Subject Object     Verb.         
  Ich denke, das ich       den Fuchs sehe.  
    (XP = Subject, … = null) 
(9b)  Matching VO cue:  Adverb Subject Verb Object.    
    Yesterday, I        saw a dragon.  
    (XP1 = Adverb, XP2 = Subject, … =  null) 
 
 The cues method gives sentences like these privileged status, and such 
sentences are viewed as unambiguous evidence for the associated parameter value, 
OV or VO. 
 An alternative approach is to use the learner’s natural language 
comprehension  processes to discover if a data point should be considered 
unambiguous for OV/VO order (Fodor, 1998b; Sakas & Fodor, 2001).  The learner 
assigns possible structures to (or parses) the datum with all values of the relevant 
parameter set (in this example, the relevant parameter set PS = {OV/VO, +V2/-
V2}).22   If only one value of a parameter (e.g. OV) will allow a successful parse of 
the entire data point, then that data point is classified as unambiguous for that value of 
that parameter.  This procedure is shown in (10). 
 
(10) Parsing to identify unambiguous data for basic word order using the set of 
parameter values PS = {OV/VO, +V2/-V2} 
 (a) Data point: Subject Object Verb. 
 Sets of values from PS that will lead to a successful parse of the data =  
  {OV, -V2} 
 In this case, the only combination of values that will allow a successful parse   
 is OV and –V2.  Therefore, given this set of relevant parameter values, this   
 data point is unambiguous for both OV and –V2. 
 
 (b) Data point: Subject TensedVerb NonTensedVerb Object. 
 Sets of values from PS that will lead to a successful parse of the data =  
  {VO, +V2}, {VO, -V2} 
 In this case, two combinations of values will allow a successful parse of the   
 data point, and both use the VO value (and neither use the OV value).  Either  
 value of the V2 parameter can be used in combination with the VO value,  
 however. Therefore, given this set of relevant parameter values, this data point 
                                                
22 Note that the relevant parameter set for the learner may be (and likely is) a subset of the entire adult 
parameter set.  



 

 74 
 

 is unambiguous for VO only. 
 
 (c) Data point: Subject Verb Object. 
 Sets of values from PS that will lead to a successful parse of the data =  
  {OV, +V2}, {VO, -V2}, {VO, +V2} 

In this case, three combinations of values will allow a successful parse of the 
data point.  Importantly, neither parameter value for either parameter is crucial 
for parsing success.  There is at least one combination that uses the OV value, 
at least one that uses the VO value, at least one that uses the +V2 value, and at 
least one that uses the –V2 value.  Therefore, given this set of relevant 
parameter value, this data point is not unambiguous for any values of any 
parameters. 

 
 We will return in the next chapter to the discussion of the benefits and 
drawbacks of each method that the learner could use in identifying unambiguous data.  
For the case of Old English OV/VO order discussed in this chapter, both methods will 
identify the same set of utterances as unambiguous data, provided the relevant 
parameter set for parsing is restricted as described above.23   
 
4.2.2.3 Unambiguous Data Summary 

 
The unambiguous data filter reflects a very simple idea: the child learns only 

from the data perceived as “clean”, instead of guessing about data perceived as 
“unreliable”.  If the child is using cues, clean data are identified by the specific rubric 
of the cue.  If the child is using parsing, clean data are identified by having only one 
parameter value that yields successful parsing.  For both methods, it is important to 
note that a data point is unambiguous relative to a given parameter.  A data point 
unambiguous for parameter P1 may not be unambiguous for another parameter P2.  
For instance, as we saw in (10b), a data point can be unambiguous for VO order while 
being ambiguous for the V2 movement operation.   

In addition, an unambiguous filter reduces the set of data a child can learn 
from (since some data in the input are classified as unambiguous).  It is therefore 
quite important that there be enough data left in the child’s intake to learn from.  If 
the data perceived as unambiguous appear in sufficient quantity in the input, the 
learner will converge on the “correct” probability distribution for that parameter. 
Otherwise, the individual learner within the population will not be able to converge 
on the correct probability distribution, and will instead remain near the initial 
probability distribution.  Once individuals are unable to converge on the correct 
probability distribution, language change in the population as a whole will grind to a 
halt.  Thus, it is critical for the feasibility of an unambiguous data filter that the 
unambiguous data not be too sparse in the input. 

                                                
23 Specifically, the relevant parameter set for parsing should not include operations that can influence 
the position of the Object with respect to the Verb, such as Heavy Noun Phrase shift which will move 
the Object to a position following the Verb if the Object is phonologically “heavy enough”.  If the 
parameter set did include operations like this, many more data points would be considered ambiguous 
and therefore unusable for a learner employing an unambiguous data filter. 



 

 75 
 

4.2.3 Simple Clauses 
 
 The potential problem of data sparseness becomes worse when we add a 
proposal to learn from data in simple clauses only: the “degree-0” learning filter of 
Lightfoot (1991). Degree refers to the level of embeddedness. I adopt Lightfoot’s 
terminology “degree-0” to refer to matrix clauses and “degree-1” to refer to 
embedded clauses.24 This filter is motivated by a claim that it lessens the cognitive 
load of the learner; children use only structural information that spans a single matrix 
clause and at most a complementizer in the embedded clause.25 A learner using this 
filter would not use data such as (5a) as evidence for the OV order of German, since 
the useful structural information signaling OV order is in the embedded clause.  
Nonetheless, examples such as (5b) that contain non-tensed Verbs adjacent to the 
Object in the matrix clause are still in the degree-0 learner’s intake. 
  
4.2.4 The Influence of Input Filtering on Old English Language Change 
 
 Potential data sparseness aside, filtering of the input can go a long way toward 
explaining how changes to a language’s structure can spread fairly rapidly through a 
population.  Filtering requires learners to learn only from a specific subpart of the 
observable data.  If that subpart changes (perhaps due to external factors) so that it 
does not accurately reflect the adult probability distribution for the language as a 
whole, then children will “mislearn” the adult probability distribution.  These children 
subsequently contribute observable data to the next generation of children, who will 
subsequently “mislearn” the previous children’s “mislearned” probability 
distributions. This continues, spreading through the exponentially growing 
population26, until the population as a whole has shifted its probability distribution 
dramatically.  
 The loss of a strongly OV distribution in Old English is an especially 
interesting language change because the degree-0 unambiguous data distribution of 
the two word orders appears to be significantly different from the average adult’s 
probability distribution for the language as a whole.  The V2 rule’s restriction to 
matrix clauses means that while the distribution of clauses in the matrix is mixed 
between VO and OV order, Old English (before the change) is strongly OV in 

                                                
24 Lightfoot’s work follows Wexler & Culicover (1980) and Morgan (1986), who argue for less 
restrictive constraints on the learning domain. 
25 Note that this motivation wouldn’t necessarily hold for head-final languages like Japanese where the 
matrix clause can be split into two parts by an embedded clause: SubjectMain…SubjectEmbedded 
…ObjectEmbedded VerbEmbedded…ObjectMain VerbMain.  A degree-0 learner would need to track 
information spanning the embedded clause.  A learner with the cognitive resources to do that would 
most likely also have the cognitive resources to track the information in the embedded clause.  So, a 
degree-0 learner that is motivated by a limit on cognitive resources and who must learn a head-final 
language might be redefined as one using the information in the portion of the degree-0 clause that is 
adjacent, i.e. not split by any embedded clause material. 
26 Populations canonically grow at an exponential rate, with the current set of new population 
members typically outnumbering the previous set of new population members.  The exact amount that 
the current set of new members outnumbers the previous set of new members is described by the 
population growth coefficient, a constant value specific to a given population.  
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embedded clauses (see table 4.1 in section 4.4.1.2).  This is a case where 
unambiguous data and degree-0 data filters on data intake should create a mismatch 
between the adult’s underlying probability distribution and the probability 
distribution the child converges on. 
 Since we have historical records allowing us to calculate the rate of change 
from OV to VO, I model the effect of filtering by restricting my model to learn from 
simple unambiguous structures in the quantities found in the historical record at the 
beginning of the transformation of Old English from OV to VO.  The model will then 
create a set of successive generations, each diverging from the initial distribution to a 
designated extent; this is the rate of change.  Then, I can calculate the effect of these 
two filters on the rate of change in the model, and compare it to the actual rate 
calculated from the distribution of data found at various periods during this 
transformation in the actual historical record.   
 I do this in two steps. First, I ask if a population whose learners filter their 
input down to degree-0 unambiguous data is able to follow the historically attested 
trajectory.   Then I ask whether a model that uses additional data (ambiguous or 
embedded or both) during learning could also produce the observed historical patterns 
in the simulated population.  This provides us with the evidence we need to determine 
if children should use these filters during language learning. 

4.3 Old English  

4.3.1 OV and VO word order in Old English 
 

Between 1000 A.D. and 1150 A.D., the distribution in the Old English 
population consisted of mostly OV order utterances (11a) while the distribution in the 
population at 1200 A.D. consisted of mostly VO order utterances (11b) (YCOE 
Corpus, Taylor et al., 2003; PPCME2 Corpus, Kroch & Taylor, 2000).  

 
(11a)  heSubj    GodeObj    þancodeTensedVerb 
 he     God      thanked 
 ‘He thanked God’ 
 (Beowulf, 625, ~1100 A.D.) 
 
(11b) & [mid his stefne]PP  heSubj  awecDTensedVerb  deadeObj  [to life]PP  

     &   with his stem he awakened  the-dead to   life 
“And with his stem, he awakened the dead to life.” 
(James the Greater, 30.31, ~1150 A.D.)  

 

4.3.2 Unambiguous Data 
 
4.3.2.1 Unambiguous OV 

 
Unambiguous data for OV word order correlate with observable data of the 
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following types in Old English: (12a) the tensed Verb appears at the end of the clause 
or (12b) the non-tensed Verb remains in the post-Object position, while the tensed 
auxiliary moves.  

 
(12a) heSubj hyneObj  gebiddeTensedVerb 
       He  him  may-pray 
       ‘He may pray (to) him’ 
       (Ælfric's Letter to Wulfsige, 87.107, ~1075 A.D.) 
 
(12b) weSubj  sculenTensedVerb [ure yfele þeawes]Obj  forlQtenNon-TensedVerb 

       we  should  our evil practices abandon 
     ‘We should abandon our evil practices.’ 
      (Alcuin's De Virtutibus et Vitiis, 70.52, ~1150 A.D.) 
 
4.3.2.2 Unambiguous VO 
 
 A reasonable assumption might be that unambiguous VO data should be the 
counterpart of unambiguous OV data in form.  Specifically, one might assume that 
since Subject Object TensedVerb is unambiguous OV data, Subject TensedVerb 
Object should then be unambiguous VO data.  However, recall the V2 movement 
rule, which moves the tensed Verb to the second phrasal position of the clause.  As 
we will see below, when this movement rule is taken into account, sentences of the 
form Subject TensedVerb Object cannot be perceived as unambiguous VO data.  

4.3.2.2.1 V2 Interference 
 

Assuming V2, a simple Subject TensedVerb Object utterance could be parsed 
with either the OV (with V2 movement) or  the VO order parameter value (with or 
without V2 movement).  Example (13) shows this: the tensed Verb clQnsaD could 
begin in sentence final position (OV order) and move to the second position (13a), or 
it could be generated in this position all along (VO order) (13b). 

 
(13a)    heoSubj   clQnsaDTensedVerb tSubj  [þa sawle þQs rQdendan]Obj tTensedVerb 
 they       purified             the souls [the advising]-Gen  
 
(13b)   heoSubj    clQnsaDTensedVerb  [þa sawle þQs rQdendan]Obj 
 they     purified            the souls [the-advising]-Gen 
 ‘They purified the souls of the advising ones.’ 
           (Alcuin’s De Virtutibus et Vitiis, 83.59, ~1150 A.D.) 
 
 Because of V2 movement, unambiguous VO data in matrix clauses appears as 
the examples in (14): there is either (a) more than one phrase to the left of the Verb 
([mid his stefne]PP heSubj), ruling out a V2 analysis, or (b) some sub-piece of the 
verbal complex (upVerb-Marker) immediately preceding the Object.  
 



 

 78 
 

(14a)  & [mid his stefne]PP  heSubj  awecDTensedVerb  deadeObj  [to life]PP  

     &   with his stem he awakened  the-dead to   life 
 ‘And with his stem, he awakened the dead to life.’ 
 (James the Greater, 30.31, ~1150 A.D.) 
 
(14b) þaAdv     ahofTensedVerb    PaulusSubj   upVerb-Marker [his   heafod]Obj 
       then     lifted           Paul        up     his    head 
 ‘Then Paul lifted his head up.’ 
 (Blickling Homilies, 187.35, between 900 and 1000 A.D.) 
 

4.3.2.2.2 Verb-Markers 
 
 I will term sub-pieces of the verbal complex “Verb-Markers”.  A Verb-Marker 
is a word that is semantically associated with a Verb, such as a particle (‘up’, ‘out’), a 
non-tensed complement to tensed Verbs, a closed-class adverbial (‘never’), or a 
negative (‘not’) (Lightfoot, 1991).  Under the assumption that the learner believes all 
Verb-like words should be adjacent to each other (Lightfoot, 1991), a Verb-Marker 
can be used to determine the original position of the Verb.  For (14b), the Verb-
Marker up indicates the position where the tensed Verb originated before V2 
movement; since the Verb-Marker precedes the Object, the original position of the 
Verb is assumed to be in front of the Object as well.  So, this utterance type is 
perceived as unambiguous data for VO order. Examples of utterances with Verb-
Markers are in (15) below (Verb-Markers are in bold): the particle up is a Verb-
Marker in (15a) and the non-tensed Verb gewyrecean is a Verb-Marker in (15b). 
 
 (15a) þaAdv     ahofTensedVerb    PaulusSubj   upParticle [his   heafod]Obj  
  then      lifted               Paul       up     his    head 
 ‘Then Paul lifted his head up.’ 
 (Blickling Homilies, 187.35, between 900 and 1000 A.D.) 
 
(15b)  SwaAdv    scealTensedVerb   [geong guma]Subj    godeObj            
 Thus     shall       young men  good-things 
 gewyreceanNon-TensedVerb  
 perform 
 ‘Thus shall young men perform good things.’ 
 (Beowulf, 20, ~1100 A.D.) 
 

Interestingly, Old English Verb-Markers (unlike their modern Dutch and 
German counterparts) were unreliable as a marker of the Verb’s original position.   In 
many cases (such as the negative ne in (15c) below), the Verb-Marker would not 
remain adjacent to the Object.  If there were no other Verb-Markers adjacent to the 
Object, then no indication of the Verb’s initial position remained and the utterance 
could be interpreted as ambiguous between the OV or VO order hypotheses. In (15c), 
the adverbial næfre remains adjacent to the Object, and so this data point would be 
perceived as unambiguous for VO order. 
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(15c) neNegative  geseahTensedVerb     icSubj  næfreAdverbial [›a burh]Obj  
 NEG   saw       I    never  the  city 
 ‘Never did I see the city.’ 
 (Ælfric, Homilies. I.572.3, between 900 and 1000 A.D.) 

4.3.3 Causes of Language Change 
 
4.3.3.1 The Effect of the Unambiguous Data Distribution 
 
 As we have just seen, matrix clause cues (such as the location of a Verb-
Marker with respect to the Object) can be unreliable.  This causes data that potentially 
could have been perceived as unambiguous to be perceived as ambiguous.  Thus, a 
learner using an unambiguous data filter would potentially encounter a distribution of 
OV and VO data points that is different from the distribution the adult speakers of the 
population used to generate the entire data set.  In short, the learner’s intake can have 
a different distribution than that of the available input.  This difference in the intake 
can cause successive generations of Old English children to have different OV/VO 
probability distributions than their predecessors.  The Old English population would 
then shift to a strongly VO-biased distribution because of what the learners’ intake 
consists of. I will formally model this intuition by using actual quantitative data from 
the relevant historical periods coupled with an explicit probabilistic model. 
 
4.3.3.2 A Concern About Other Causes of Language Change 
 
 Before we examine the details of the model, I should address a concern about 
the cause of this particular language change in Old English.  I have assumed, based 
on Lightfoot’s (1991) claim, that language learning (an internal factor) is the 
instigator of the shift from a strongly OV-biased distribution to a strongly VO-biased 
distribution. However, one might wonder if external factors could have played a more 
significant role in this change.   
 I consider two potential external factors below: Scandinavian influence and 
Norman influence.  We will see that neither factor by itself could have caused the 
change in Old English from a strongly OV-biased distribution to a strongly VO-
biased distribution.  However, it is still possible that the correct combination and 
influence of external factors could have produced the recorded historical change, even 
in the absence of the imperfect learning approach advocated by Lightfoot (1991) and 
adopted here.  The contribution of the present work would then be to demonstrate 
how it is not necessary to have external factors in order to cause abrupt change at the 
population-level in such a limited timeframe.  

4.3.3.2.1 Scandinavian Influence 
 
 Scandinavian influence before 1000 A.D. is claimed to have caused Old 
English Verb-Markers to become unreliable (Kroch & Taylor, 1997).  Old Norse, the 
language spoken by the Scandinavians, used VO order and therefore introduced 
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variability into the OV ordered Old English.  Is it possible that continued 
Scandinavian influence alone caused the sharp change in the OV/VO distribution of 
Old English between 1150 A.D. and 1200 A.D.?  To accomplish this, a continuous 
stream of Scandinavian speakers would be the force that caused the overall 
composition of the Old English population to drift towards a VO-biased distribution 
by 1150 A.D.  These Scandinavians would learn Old English as a second language, 
and therefore likely learn it imperfectly, perhaps introducing a continuous VO bias 
into the data set available to learners in the population. 
 Old English learners, not filtering the input, would simply converge on 
exactly the distribution they encountered in the input from the mixture of native Old 
English and Scandinavian speakers using Old English as a second-language.  This 
scenario, however, would require an exponential increase of incoming Scandinavians 
in order to get the gradual population-level shift before 1150 A.D. and the sharp 
population-level shift after 1150 A.D.  This seems to be a rather unlikely event. 
 Still, there is another variant on this external factor.  Suppose there was some 
prestige associated with the Scandinavians such that Old English speakers altered 
their OV/VO usage to accommodate (see Giles & Powesland (1975) for 
accommodation theory) and sound more like the Scandinavian portion of the 
population.  So, Scandinavians would be learning Old English as a second language 
from native Old English speakers who would be more VO-biased (as a conscious 
social effort).  The overall composition of the population would then be increasingly 
more VO-biased as time went on.  Yet, in order to achieve the historical S-shaped 
trajectory of change, again there needs to be an exponential increase somewhere – 
either in the number of Scandinavians joining the Old English population or in the 
associated prestige with the Scandinavian VO-bias.  While less unlikely than the 
previous scenario, relying on an exponential increase of Scandinavian prestige 
doesn’t seem ideal as the sole factor driving change, either. 
 Nonetheless, we should not discount Scandinavian influence completely.  
Scandinavian influence combined with input filtering could well give the desired 
change.  Later in this chapter, we will see that adult utterances generated with OV 
order are more prone than their VO counterparts to becoming ambiguous in the 
observable data.  Scandinavian influence, being VO-biased, could have been 
responsible for this.  Thus, learners using an unambiguous data filter would have 
become more VO-biased over time since the VO data generated by the Old English 
speakers was less likely to become ambiguous.  Still, it is crucial to note that this 
scenario is the result of the combination of Scandinavian influence and language 
change caused by language learning.  Scandinavian influence alone seems unlikely to 
be the cause of the language change in Old English. 

 

 

4.3.3.2.2 Norman Influence 
 
 A second external source of influence is the Norman invasion in 1066 A.D.  
The Norman invaders spoke Old French, which was OV-biased in its distribution 
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(Kibler 1984): embedded clauses were predominantly OV order, as well as the matrix 
clauses. So, contact with Old French speakers would have biased the Old English 
population to become more OV.  However, between 1000 and 1150 A.D., the Old 
English population was already drifting towards being more VO in its distribution.  
So, any contact with Old French speakers would have hindered the population-level 
change to a VO-biased distribution.  This influence may have been tempered (and 
overcome) by the VO-biased Scandinavian influence.   
 Another possibility is disaccommodation with the OV-biased distribution 
from the Old French speakers if there was social stigma associated with the language 
of the Norman invaders (again, see Giles & Powesland (1975) for accommodation 
theory).  Old English speakers, disliking the invaders (and perhaps liking the 
Scandinavians) would be driven to more VO-biased usage. Still, it remains clear that 
contact with the Normans alone could not have caused the shift in Old English to a 
strongly VO-biased distribution unless, as discussed for the Scandinavian influence in 
the previous section, there was an exponential increase somewhere – in this case, in 
the social stigma associated with using an OV-biased distribution. 

4.4 The Model 
 
 I now describe the model at the individual level and the population level.  
Because I have posited that language change at the population level is driven by 
language learning at the individual level, I first examine the details of individual 
learning. In the model, the learner has different hypotheses for a structure in the 
language (such as OV and VO word order) available during learning, in line with 
work by Yang (2002), Dresher (1999), Lightfoot (1999), Fodor (1998a, 1998b), 
Niyogi & Berwick (1997, 1996, 1995), and Clark & Roberts (1993).  The target state 
after learning is complete is a probabilistic distribution between competing 
hypotheses (Yang, 2002; Pintzuk, 2002; Kroch & Taylor, 1997; Bock & Kroch, 
1989).  Because of this, individual linguistic behavior, whether child (Yang, 2003) or 
adult (Bock & Kroch, 1989), is represented as a probabilistic distribution of multiple 
structural hypotheses, specifically between OV and VO word order.  
 Population-level change in the model is the result of a build-up of individual-
level “mislearning” (Yang, 2002, 2000; Briscoe, 2000, 1999; Niyogi & Berwick, 
1997, 1996, 1995; Clark & Roberts, 1993; Lightfoot, 1991).  Thus, the population-
level model relies heavily upon the individual-level implementation. 

4.4.1 The Individual-Level Model 
 
4.4.1.1 Learning in the Individual 
 
 The individual-level model is a model of language learning.  An individual 
learner in the model is instantiated with a probability pVO of accessing VO word 
order.  The OV word order is accessed with probability 1 – pVO, as there are only two 
hypotheses under consideration. 
 In a language system where the adult speakers have pVO = 1.0 (modern 
English) or pVO = 0.0 (modern Dutch and German), all utterances are produced with 
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one word order (VO for modern English, OV for modern Dutch and German).  This 
directly impacts the distribution of unambiguous data, since all unambiguous data 
will be unambiguous for a single hypothesis (either OV words order or VO word 
order).   
 In contrast, a language system can also exist where the adult pVO is greater 
than 0.0 and less than 1.0, such as the state of Old English between 1000 A.D. and 
1200 A.D.  In a system like Old English, VO order is accessed for production with 
probability pVO (which is less than 1.0) and the OV order is accessed with probability 
1-pVO (which is greater than 0.0).  This will impact the distribution of unambiguous 
data: the data will have some distribution between pVO = 0.0 (all OV order data) and 
pVO = 1.0 (all VO order data).  The learner then determines her own pVO based on the 
distribution in the intake (which, in the model, will be filtered down to the degree-0 
unambiguous data). 
 The model assumes no initial bias for either hypothesis, so the initial value for 
a learner’s word order, pVO, is 0.5.  This can be interpreted as an unbiased value, since 
it is precisely in the middle of pVO = 0.0 (all OV order) and pVO = 1.0 (all VO order).  
Note that an unbiased pvo would predict that very young children of any language 
would have an unstable word order initially. I speculate that the reason why children 
always demonstrate knowledge of the correct word order by the time they reach the 
two word stage is because they have already been exposed to enough examples of the 
appropriate word order for their language to bias them in the correct way.   
 The final pVO value after the learning period is complete will range between 
0.0 and 1.0, and can be interpreted as a probabilistic access of the OV and VO words 
orders.   A pVO of 0.3, for example, would correspond to accessing VO order 30% of 
the time during production and OV order 70% of the time. 
 Since the initial pVO for the learner is 0.5, the learner initially expects the 
distribution of OV and VO data in the intake to be unbiased.  I use the Bayesian 
framework laid out in chapter 2 to model how the learner’s initial hypothesis about 
the OV/VO distribution (pVO) shifts with each additional data point from the intake.  
In addition to the support for its psychological validity in human cognition 
(Tenenbaum & Griffiths, 2001), Bayesian learning has also been used in other models 
of language evolution and change (Briscoe, 1999). 
 Since there are only two values for the OV/VO ordering (OV and VO), I 
represent the learner’s hypothesis of the expected distribution of OV and VO 
utterances as a binomial distribution centered around some probability p. Here, 
probability p is pVO and represents the learner’s belief about the likelihood of 
encountering a VO utterance. When pVO is 0.5, the learner is most confident that it is 
equally likely that an OV or the VO utterance will be encountered.  A pVO  near 0.0 
means the learner is most confident that a VO utterance will never be encountered; a 
pVO near 1.0 means the learner is most confident that a VO utterance will always be 
encountered. 
 The learner’s pVO is updated by calculating the maximum of the a posteriori 
(MAP) probability of the prior belief pVOprev, given the current piece of data from the 
intake. In essence, the model is starting with a prior probability and its expected 
distribution of OV and VO utterances,  and comparing this expected distribution 
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against the actual distribution encountered.  The updated probability is calculated as 
follows: 
 
(16a) If  the data point is analyzed as OV,  pVO = (pVOprev*t)/(t+c) 
(16b) If the data point is analyzed as VO, pVO = (pVOprev*t+c)/(t+c) 

 
 where t = total expected number of data points in the intake during the period 
of fluctuation (2000 in this model) and c = learner’s confidence in the input (ranging 
between 0.0 and 5.0), based on pVOprev.  Note that t refers to quantity of data points in 
the intake, and not the input.  Thus, the learner will encounter considerably more than 
2000 data points in the input; the fluctuation period, however, ends when 2000 data 
points from the intake have been encountered.  
 Also note that these equations are a modification of the update equations 
derived in chapter 2.  In those equations, c = 1.  However, I have modified this value 
since those equations (with c = 1) would not allow the learner to converge to 1.0 or 
0.0, even if all unambiguous data are of one value.  For example, with t = 2000, 
encountering all OV data points causes the final pVO to be 0.194 (not 0.0); 
encountering all VO data points causes the final pVO to be 0.816 (not 1.0).  I therefore 
modified c to allow the final pVO to be closer to the endpoint values (either 0.0 or 1.0) 
for each case. 
 The value c ranges linearly between 0 and a maximum value m, depending on 
what pVOprev is27: 
 
(17a) VO data: c = pVOprev * m 
(17b) OV data: c = (1 – pVOprev) *m 
 
 The value m ranges between 3.0 and 5.0.  The m for a particular mixture of 
degree-0 and degree-1 data is determined by seeing which m value allows the 
simulated Old English population to reach an average pVO value in the population 
between 1000 and 1150 A.D that accords with the historical data available.   For 
example, the value of m for an intake that consists only of degree-0 data is 5.0. 

With the new update functions, unambiguous data for one value the entire 
time will cause the final pVO to be much closer to the endpoint.  Seeing 2000 OV data 
points leaves pVO between .007 and .048 (depending on m); seeing 2000 VO data 
points leaves pVO between .952 and .993 (depending on m).   
 The final pVO at the end of the fluctuation period (after t data points from the 
intake have been encountered) will reflect the distribution of the data points in the 
intake.  Importantly, the distribution is reflected without the learner explicitly 
memorizing each individual piece of data for later analysis.  Instead, as each data 
point is encountered, the information is extracted from that data point and, using the 
equations in (16) and (17), integrated into the learner’s hypothesis about what the 
distribution of OV and VO data points is expected to be.   
 The individual learning algorithm used in the model is described in (18): 
                                                
27 The same effect could likely be achieved by holding c between 0 and 1, and letting t vary.  
However, this loses the intuition that t (the number of data points the learner expects, i.e. the amount of 
change allowed) should be the same across the different conditions investigated. 
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(18) Individual learning algorithm 
 (a) Set initial pVO to 0.5. 

(b) Get a data point from an “average” member of the population. The input 
for the learner is determined by sampling from a normal distribution around 
the average pVO of the population.   
(c) If the data point is degree-0 and unambiguous, use this data point as intake 
and then alter pVO accordingly. 

 (d) Repeat (b-c) until the fluctuation period is over, as determined by t. 
 
 For each data point encountered from the input, the learner determines if the 
data point belongs in the intake.  If so, pVO is updated using the equations in (16-17).  
This process of encountering input and integrating the information from data in the 
intake continues until the fluctuation period is over. At that point, the learner becomes 
one of the population members that contribute to the average pVO value that will 
influence future learners.  The higher the average pVO value is in the population, the 
more likely learners are to encounter unambiguous VO data. 
 
4.4.1.2 Old English Intake Data 
 
 As we have seen, the distribution in the learner’s intake controls the learner’s 
shift away from the unbiased probability of pVO = 0.5. The only way to shift pVO away 
from 0.5 is to have more data points of one word order than of the other in the intake.  
I will refer to this quantity as the bias one word order has over the other. 28 So, if the 
intake distribution is OV-biased, there are more OV data points in the learner’s 
intake.  If the intake distribution is VO-biased, there are more VO data points in the 
learner’s intake.  Note that if the intake is a subset of the input (due to filtering), the 
bias with respect to the available input is smaller than the bias with respect to the 
learner’s intake.  Table 4.1 displays the OV bias with respect to the input in the 
degree-0 (D0) and degree-1 (D1) clauses in Old English at various points in time. 
 
 
 
 
 
 
 

D0 Total 
# Clauses 

D0 Unamb 
OV 

D0 Unamb 
VO 

D0 OV Bias 
w.r.t. the 

inputa 

D0 OV Bias 
w.r.t. the 
intakeb 

1000 A.D. 9805 1389 936 4.6% 19.5%  

                                                
28 This differs from the advantage (Yang, 2000) one hypothesis has over another.  Advantage there is 
defined as inherent grammar incompatibility – one hypothesis will have an advantage when the 
opposing hypothesis is incompatible with data types.  Thus, it does not matter for advantage how 
frequent a data type is, e.g. how many data tokens appear in the intake.  It simply matters that there are 
data types one hypothesis is incompatible with. Advantage is thus different from the bias in the intake 
distribution, which very much depends on the quantity of data tokens that are unambiguous for one 
hypothesis vs. the other.  More specifically, a hypothesis with a lower advantage can still have a 
stronger bias in the data intake distribution, and vice versa. 
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1000 – 1150 A.D 6214 624 590 0.5% 2.8%      
1200 A.D. 1282 180 190 -0.8% c -2.7% c 
 

 D1 Total 
# Clauses 

D1 Unamb 
OV 

D1 Unamb 
VO 

D1 OV Bias 
w.r.t. the 

inputa 

D1 OV Bias 
w.r.t. the 
intakeb 

1000 A.D. 7559 3844 1583 29.9% 41.7% 
1000 – 1150 A.D 3636 1759 975 21.6% 28.7% 
1200 A.D. 2236 551 1460 -40.7% c -45.2% c 

Table 4.1. OV order bias in the input for degree-0 (D0) and degree-1 (D1) clauses.  
a The bias for the OV order with respect to the input is derived by subtracting the 
quantity of VO data from the quantity of OV data, and then dividing by the total 
number of clauses in the input.  For instance, the D0 OV bias at 1000 A.D. is 
calculated as (1389-936)/9805 = 4.6%. b The bias for the OV order with respect to the 
intake is derived by subtracting the quantity of unambiguous VO data from the 
quantity of unambiguous OV data, and then dividing by the total number of clauses in 
the intake.  For instance, the D0 OV bias at 1000 A.D. is calculated as (1389-
936)/(1389+936) = 19.5%. c Note that a negative OV bias means that the distribution 
is VO-biased. 
 
 The corpus data show a 4.6% bias with respect to the input for the OV order 
in the degreee-0 clauses at 1000 A.D.  We can interpret this as less than 5 out of every 
100 sentences of the available input are biasing the learner away from a pVO of 0.5 
(and towards an OV value of 0.0).  With respect to the intake, the OV order bias is 
much higher: just about 1 out of every 5 data points in the intake biases the learner 
towards 0.0 (OV order).   
 Interestingly, the OV bias in the degree-1 clauses is much higher (29.9% with 
respect to the input, and 41.7% with respect to the intake).  However, a degree-0 filter 
would cause the learner to ignore these data that would shift pVO towards 0.0 
significantly more often.  Nonetheless, the difference of the bias in the different 
distributions highlights the effect that data intake filtering can have: the bias in the 
distribution alters quite a lot depending on which data set the learner is using. 

4.4.2 Population-Level Model for Old English 
 
4.4.2.1 Population-Level Algorithm and Population Growth 

 
The population algorithm (19) centers on the individual acquisition algorithm 

in (18). 
 
 
 
 
 

(19) Population-level algorithm 
(a) Set the age range of the population from 0 to 60 years old and create 
18,000 population members. 
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(b) Initialize the members of the population to the average pVO at 1000 A.D. 
(c) Set the time to 1000 A.D. 
(d) Move forward 2 years. 
(e) Members age 59-60 die off.  The rest of the population ages 2 years. 
(f) New members are born.  These new members use the individual 
acquisition algorithm (18) to set their pVO. 
(g) Repeat steps (d-f) until the year 1200 A.D. 
 
The population members range in age from newborn to 60 years old. 29  The 

initial size of the population is 18,000, based on estimates from Koenigsberger & 
Briggs (1987). At 1000 A.D., all the members of the population have their pVO set to 
the same initial pVO, which is derived from the historical corpus data. Every two 
years, new members are born to replace the members that died as well as to increase 
the overall size of the population so it matches the growth rate extrapolated from 
Koenigsberger & Briggs (1987).  Populations are estimated to grow at an exponential 
rate characterized by the equation in (20). 

 
(20) Population growth equation 

population size = previous population size * ert 

 

For the Old English population in our model, r = 0.00400953 and t = time in 
years.  For example, at 1002 A.D., the estimated population size is 18000*e0.00400953*2 
= 18145.  Thus, once the oldest members (age 59-60) die off, enough new members 
are born to make the total population size at 1002 A.D. be 18145.  These new 
members encounter input from the rest of the population and follow the process of 
individual acquisition laid out previously in order to determine their final pVO. This 
process of death, birth, and learning continues until the year 1200 A.D.  
 
4.4.2.2 Population Values from Historical Data 

 
I use the historical corpus data to initialize the average pVO in the population 

at 1000 A.D., calibrate the model between 1000 and 1150 A.D. (recall that the 
confidence value c in update equation (16) needs calibration), and determine how 
strongly VO-biased the distribution has to be in the population by 1200 A.D.  But it is 
not straightforward to determine the average pVO at a given period of time.   

Both the degree-0 and degree-1 unambiguous data distributions are likely to 
be distorted from the underlying unambiguous data distribution produced by pVO 
because the degree-0 and degree-1 clauses have ambiguous data. The underlying 
                                                
29 The population members begin uniformly distributed between 0 and 60 years old, though this could 
easily be modified to a more skewed distribution where there are more younger members of the 
population than older.  In addition, the age maximum (60 years old) was arbitrarily chosen.  Having a 
lower maximum (say, 40 years old) would possibly speed the rate of change through the population.  
However, the overall results would likely be the same as found here since the population model must 
be calibrated so that the population remains sufficiently OV-biased before 1150 A.D.  That is, a 
sufficient OV-bias in the population before 1150 A.D. is a precondition.  The behavior we are 
interested in is how a population that is sufficiently OV-biased before 1150 A.D. changes between 
1150 A.D. and 1200 A.D.  Specifically, can it become VO-biased enough? 
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distribution in a speaker’s mind, however, has no ambiguous data – every clause is 
generated with OV or VO order.  As we can see in table 4.2, the degree-0 clauses 
have more ambiguous data than the degree-1 clauses.  Moreover, recall from table 1 
that the degree-1 clauses also have a magnified bias, compared to the degree-0 
clauses.  Taken together, I use these two observations to make the assumption that the 
degree-0 distribution is more distorted than the degree-1 distribution.   
 

 D0 Total # Clauses D0 # Unamb Clauses  D0 % Ambiga 

1000 A.D. 9805 2325 (9805-2325)/9805 = 76% 
1000-1150 A.D. 6214 1214 (6214-1214)/6214 = 80% 

1200 A.D. 1282 370 (1282-370)/1282 = 71% 
 

 D1 Total # Clauses D1 # Unamb Clauses D1 % Ambiga 

1000 A.D. 7559 5427 (7759-5427)/7759 = 28% 
1000-1150 A.D. 3636 2734 (3636-2734)/3636 = 25% 

1200 A.D. 2236 2011 (2236-2011)/2236 = 10% 
Table 4.2. Percentage of ambiguous clauses in the historical corpora. a The % Ambig 
is calculated by dividing the number of ambiguous clauses (Total - Unamb) by the 
total number of clauses. 

 
I then use the difference in distortion between the degree-0 and degree-1 

unambiguous data distributions to estimate the difference in distortion between the 
degree-1 distribution and the underlying unambiguous data distribution in a speaker’s 
mind.  In this way, I estimate the underlying unambiguous data distribution (produced 
by pVO) for an average Old English speaker at certain points in time.   

I will first step through the formalization of the procedure used to derive the 
underlying pVO at a given point in time.  Then, I will step through an explicit example 
from the Old English historical data. 

4.4.2.2.1 Procedure to Derive pVO from Historical Data 
 
 Let there be two hypotheses under consideration, h1 and h2.  For Old English, 
these are OV order (h1) and VO order (h2).  From historical corpora, we can gather 
unambiguous data points for h1 and h2 in both the degree-0 and degree-1 clauses.  
From these, we can calculate the number of ambiguous data points in the degree-0 
and degree-1 clauses.  The quantities gathered from historical corpora are u1d0 
(unambiguous data points for h1 in degree-0 clauses), u2d0 (unambiguous data 
points for h2 in degree-0 clauses), ad0 (ambiguous data points in degree-0 clauses), 
u1d1 (unambiguous data points for h1 in degree-1 clauses), u2d1 (unambiguous data 
points for h2 in degree-1 clauses), and ad1 (ambiguous data points in degree-1 
clauses) in table 4.3 below.   The quantities that must be derived are u1 and u2, which 
represent the quantities of unambiguous data for each hypothesis in the underlying 
distribution that the average population speaker produced.  In the underlying 
distribution, there are no ambiguous data because the speaker either accesses h1 or h2 
to produce the data point.  Once u1 and u2 are known, pVO can be derived (pVO = 
u2/(u1 + u2)). 
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 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 u1d0 u2d0 ad0 
Degree-1 u1d1 u2d1 ad1 
Underlying Distribution u1 u2 0 
Table 4.3. Formalization of quantities available from historical corpora and quantities 
to derive.  Quantities in bold can be gathered from historical corpora.  Quantities in 
italics must be derived and are used to calculate the average  pVO in the population. 

 
 Let γ represent the probability that the speaker accesses h1 during production. 
Since there are only two options under consideration, 1 - γ represents the probability 
the speaker accesses h2 during production. 
 Let the total quantity of degree-0 data be d0.  So, d0 = u1d0 + u2d0 + ad0.   
 Let the total quantity of degree-1 data be d1.  So, d1 = u1d1 + u2d1 + ad1. 
 We first must normalize the degree-1 data quantity to the degree-0 data 
quantity.  After normalization, u1d1’ + u2d1’ + ad1’ = d0 = u1d0 + u2d0 + ad0. 
 
(21) Equation quantities, original and normalized 
 (a) d0 = u1d0 + u2d0 + ad0 
 (b) d1 = u1d1 + u2d1 + ad1 
 (c) d0 = u1d1’ + u2d1’ + ad1’ 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 u1d0 u2d0 ad0 
Degree-1 u1d1’  

= u1d1*(d0/d1) 
u2d1’  

= u2d1*(d0/d1) 
ad1’ 

 = ad1*(d0/d1) 
Underlying 
Distribution 

u1 u2 0 

Table 4.4. Data quantities after normalization. 
 
 The value u1 represents the quantity of unambiguous h1 (OV) data generated 
by the speaker.  The value u2 represents the quantity of unambiguous h2 (VO) data 
generated by the speaker.  Since there are no ambiguous data, let these two quantities 
also sum to d0 (u1 + u2 = d0).  This represents the intuition that u1 and u2 have been 
“normalized” so that they can be compared against their counterpart values in the 
degree-1 and degree-0 distributions.  Note that since u1 and u2 have not been 
calculated yet, we can simply make them sum to the appropriate normalized value, 
d0. 
 
 
 
(22) Underlying distribution “normalization” 
 u1 + u2 = d0 
  
 Recall that the probability that a speaker accesses h1 when producing a data 
point is γ. Since the total quantity of unambiguous data points in the underlying 
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distribution has been normalized to d0, this probability can now be set equal to u1/d0.  
Thus, we can rewrite u1 as γ*d0. 
 
(23) Rewriting underlying distribution quantity u1 
 γ = u1/d0 
 u1 = γ*d0 
 
 I now make an assumption about the relation of underlying data distribution to 
the degree-1 data distribution.  Specifically, I assume that the degree-1 distribution 
originally had the same number of  h1 data points as the underlying distribution, but 
that some of these data points became ambiguous (due to various grammatical 
operations).  Thus, we can relate the underlying distribution h1 data point quantity u1 
to the degree-1 data quantities u1d1’ (normalized quantity of unambiguous data 
points for h1 in the degree-1 distribution) and ad1’ (normalized quantity of 
ambiguous data points in the degree-1 distribution). 
 
(24) Relation between u1 and u1d1’ and ad1’ 
 u1 = u1d1’ + the portion of ad1’ that were originally h1 data points 
 Let a1d1 = portion of ad1’ that were originally h1 data points  
 u1 = u1d1’ + a1d1 
  
 Recall from (23) that u1 can be rewritten in terms of γ and d0.  We can thus 
write an equation for a1d1, the portion of ad1’ that were originally h1 data points. 
 
(25) Writing an equation for a1d1 
 u1 = γ*d0   (from (23)) 
 γ*d0 = u1d1’ + a1d1   (from (24)) 
 a1d1 = γ*d0 – u1d1’ 
 
 Since there are only two hypotheses, the portion of ad1’ that were not 
originally h1 data points must have been h2 data points.  Given this, we can write an 
equation for a2d1, the portion of ad1’ that were originally h2 data points. 
 
(26) Writing an equation for a2d1 
 Let a2d1 = portion of ad1’ that were originally h2 data points 
 ad1’ = a1d1 + a2d1 
 a2d1 = ad1’ – a1d1 
 
 Moreover, using the same assumption as before about the relation between the 
underlying distribution and the degree-1 distribution, we can rewrite u2, the quantity 
of unambiguous data points for h2 in the underlying distribution. 
 
(27) Rewriting u2 
 u2 = u2d1’ + the portion of ad1’ that were originally h2 data points 
 a2d1 = portion of ad1’ that were originally h2 data points  
 u2 = u2d1’ + a2d1 
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 u2 = u2d1’ + ad1’ – a1d1  (from (26)) 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 u1d0 u2d0 ad0 
Degree-1 u1d1’  

= u1d1*(d0/d1) 
u2d1’  

= u2d1*(d0/d1) 
ad1’ = 

ad1*(d0/d1) 
Underlying 
Distribution 

u1d1’ + a1d1 u2d1’ + (ad1’ – a1d1) 0 

Table 4.5. Derived quantities rewritten. 
 
 Now, we look at the relation between the degree-1 and the degree-0 
distribution.  I make an assumption similar to the one we did about the relation 
between the underlying distribution and the degree-1 distribution: specifically, I 
assume that the degree-0 distribution originally had the same number of  h1 or h2 
data points as the degree-1 distribution, but that some of these data points became 
ambiguous (due to various grammatical operations).  I can describe these quantities in 
terms of values we have already observed or calculated. 
 I assume that the quantity of  h1 data points in the degree-0 distribution was 
originally the same as the quantity of h1 data points in the normalized degree-0 
distribution, u1d1’.  However, some became ambiguous and only u1d0 remain.  So, 
the quantity of data points that became ambiguous going from the degree-1 
distribution to the degree-0 distribution can be described as u1d1’ – u1d0.  The same 
reasoning can be used for the h2 data points. 
 
(28) Quantities of  data points that became ambiguous going from the degree-1 
distribution to the degree-0 distribution 
 
Let the quantity of h1 data points that became ambiguous going from the degree-1 to 
the degree-0 distribution = a1d1to0. 

a1d1to0 = u1d1’ – u1d0 
 
Let the quantity of h2 data points that became ambiguous going from the degree-1 to 
the degree-0 distribution = a2d1to0 

a2d1to0 = u2d1’ – u2d0 
 
 We can now define an ambiguity loss ratio Ld1to0, which represents the ratio 
of h1 data points that became ambiguous compared to the h2 data points that became 
unambiguous going from the degree-1 to the degree-0 distribution. 
 
 
(29) Ambiguity Loss Ratio Ld1to0  
(h1 data point loss over h2 data point loss going from degree-1 to degree-0 
distribution) 

 Ld1to0 = 

! 

u1d1' -  u1d0

u2d1' -  u2d0
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 We can then describe the quantities of h1 and h2 data points that become 
ambiguous going from the underlying distribution to the degree-1 distribution.  Let 
a1utod1 be the quantity of h1 data points that became ambiguous going from the 
underlying distribution to the degree-1 distribution.  Let a2utod1 be the quantity of h2 
data points that become ambiguous going from the underlying distribution to the 
degree-1 distribution. 

 
(30) Describing the quantities of h1 and h2 data points that become ambiguous going 
from the underlying to the degree-1 distribution 

(a) a1utod1 (h1 data points that become ambiguous) 
 a1utod1 = u1 – u1d1’ 
 a1utod1 = (u1d1’ + a1d1) – u1d1’   (from (24)) 
 a1utod1 = a1d1 
(b) a2utod1 (h2 data points that become ambiguous) 
 a2utod1 = u2 – u2d1’ 
 a2utod1 = (u2d1’ + (ad1’ – a1d1)) – u2d1’   (from (27)) 
 a2utod1 = ad1’ – a1d1 

 
 We can now define an ambiguity loss ratio Lutod1, which represents the ratio 
of h1 to h2 data points that become “lost” to ambiguity going from the underlying 
distribution to the degree-1 distribution.  I make an assumption that Ld1to0 is the 
same as Lutod1, that is that the rate at which h1 data points become ambiguous 
compared to h2 data points does not change depending on which distributions are 
being compared.  For example, if h1 data points are twice as likely as h2 data points 
to become ambiguous going from the degree-1 to the degree-0 distribution , then I 
assume h1 data points are twice as likely as h2 data points to become ambiguous 
going from the underlying distribution to the degree-1 distribution. 
 
(31)  Ambiguity Loss Ratio Assumption 

 Lutod1 = Ld1tod0 = 

! 

u1d1' -  u1d0

u2d1' -  u2d0
 

 
 Now, we have all the pieces in place to write an equation that relates the 
ambiguity loss of h1 data points to the ambiguity loss of h2 data points going from 
the underlying distribution to the degree-1 distribution.  The intuition is laid out in 
(32). 
 
 
 
 
(32) Intuition to relate ambiguity loss from underlying to degree-1 distribution 
 
 % of h1 data points “lost”  = Lutod1* % of h2 data points “lost” 
 

 

! 

#  of h1 data points lost

total #  of h1 data points
= Lutod1*

#  of h2 data points lost

total #  of h2 data points
 



 

 92 
 

 
 This intuition can be instantiated as in (33).  We can then use the equations we 
have already derived to solve for γ, the probability of accessing h1 in the underlying 
distribution.  
 
(33) Solving for γ 
 

! 

(from (32)) 
a1utod1

u1
= Lutod1*

a2utod1

u2
 

 

! 

(from (31))  
a1utod1

u1
= Ld1tod0 *

a2utod1

u2
   

 

! 

(from (25))  
a1utod1

" * d0
= Ld1tod0 *

a2utod1

u2
   

 

! 

(from (27))  
a1utod1

" * d0
= Ld1tod0 *

a2utod1

u2d1' +  ad1' -  a1d1
   

 

! 

(from (30))  
a1d1

" * d0
= Ld1tod0 *

ad1' -  a1d1

u2d1' +  ad1' -  a1d1
   

 
 

! 

(from (25))  
" * d0 -  u1d1' 

" * d0
= Ld1tod0 *

ad1' -  (" * d0 -  u1d1' )

u2d1' +  ad1' -  (" * d0 -  u1d1' )
   

 

! 

" 2
(Ld1tod0 +1)(d0

2
) 

     +  "(d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1')) 

     +  (-1)(d0 * u1d1') =  0  

  

 
 Now, we can use the quadratic formula to solve for  γ. 
 

! 

a =  (Ld1tod0 +1)(d0
2
)

b =  (d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1')) 

c =  (-1)(d0 * u1d1') 

 

 
 

! 

" =
-(d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1'))

2(Ld1tod0 +1)(d0
2
)

+ /#
((d0)(d0 +  u1d1' -  Ld1tod0 * (ad1' +  u1d1')))

2 # 4(Ld1tod0 +1)(d0
2
)((-1)(d0 * u1d1'))

2(Ld1tod0 +1)(d0
2
)

 

 
 This formula can be easily resolved once we insert the observable quantities 
from the historical corpus, as we will see in the next section.  Once we have solved 
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for γ, we have the probability with which h1 is accessed in the underlying 
distribution.  We can calculate the probability with which h2 is accessed in the 
underlying distribution by using 1 - γ.  

4.4.2.2.2 A Concrete Example of Deriving pVO from Historical Data 
 
 For our Old English corpus, let h1 be the OV word order hypothesis and h2 be 
the VO word order hypothesis.  I will step through the derivation of the underlying 
pVO value at 1000 A.D.  First, we observe the various quantities available from the 
historical corpus at 1000 A.D. 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 1389 936 7480 
Degree-1 3844 1583 2132 
Underlying Distribution u1 u2 0 
Table 4.6. Quantities available from historical corpora and quantities to derive. 
Quantities in bold are gathered from historical corpora.  Quantities in italics must be 
derived and are used to calculate the average  pVO in the population. 
 
 Then, we normalize the degree-1 quantities to the degree-0 quantities.  The 
total quantity of degree-0 data d0 is 1389 + 936 + 7480 = 9805.  The total quantity of 
degree-1 data d1 is 3844 + 1583 + 2132 = 7559.  To normalize the degree-1 
quantities, we therefore multiply each quantity by (d0/d1) = (9805/7559). 
 
 Unamb OV (h1) Unamb VO (h2) Amb 
Degree-0 1389 936 7480 
Degree-1 4986 2053 2766 
Underlying 
Distribution 

u1 u2 0 

Table 4.7. Data quantities after normalization. 
 
 We then calculate the ambiguity loss ratio between the degree-1 and degree-0 
distribution, Ld1tod0. 
 

 (34) Ld1tod0 = 

! 

u1d1' -  u1d0

u2d1' -  u2d0
=  

4986 -  1389

2053 -  936
"  3.22  

 
 So, we see that the OV data points are over three times as likely to become 
ambiguous as the VO data points at 1000 A.D.   I assume that this loss ratio is the 
same going from the underlying distribution to the degree-1 distribution (Lutod1), 
that is that OV data points are three times as likely as VO data points to become 
ambiguous going from the underlying to the degree-1 distribution.   
 We now have all the quantities we need to calculate γ (from (33)).  
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! 

" =
-(9805)(9805 +  4986 -  3.22 * (2766 +  4986))

2(3.22 +1)(9805
2
)

+ /#
((9805)(9805 +  4986 -  3.22 * (2766 +  4986)))

2 # 4(3.22 +1)(9805
2
)((-1)(d0 * 4986'))

2(3.22 +1)(9805
2
)

 

 
 Solving for γ, we obtain 0.766 and -.299.  Since we know γ is a probability 
and must be between 0.0 and 1.0, the correct solution for γ is 0.766.  So, given these 
historical data distributions, I estimate that the OV word order option was accessed 
with probability 0.766 at 1000 A.D.  The VO word order option was thus accessed 
with probability 1-0.766 = 0.234.  Since we are tracking the probability with which 
the VO word order option is accessed, pVO is 0.234 at 1000 A.D.   The average pVO 
values in the population at the other two periods of time we consider (1000-1150 
A.D. and 1200 A.D.) can be calculated in the same fashion by using the quantities in 
table 4.1.  Table 4.8 below displays the three pVO values I will be using in my 
simulations. 
 

Degree-0 Clauses Degree-1 Clauses Underlying  
Total OV 

Unamb 
VO 

Unamb 
Total OV 

Unamb 
VO 

Unamb 
pVO 

1000 A.D. 9805 1389 936 7559 3844 1583 .234 
1000 – 1150 A.D. 6214 624 590 3636 1759 975 .310 

1200 A.D. 1282 180 190 2236 551 1460 .747 
Table 4.8. Data from historical corpora and calculated pVO. 
 

To model the data from the historical corpus, a population must start with an 
average pVO of 0.234 at 1000 A.D., reach an average pVO of 0.310 between 1000 and 
1150 A.D.30, and reach an average pVO of 0.747 by 1200 A.D. 

 
 
 
4.4.2.3 Answering Questions About Learning Filters 
 
 Armed with these models of individual-level learning and population-level 
change, we can now answer two questions about filters on the learner’s intake.  First, 
I address the question of descriptive sufficiency: can an Old English population whose 
learners filter their intake down to the degree-0 unambiguous data shift from a 
strongly OV biased distribution to a strongly VO biased distribution at the appropriate 
time?  Recall that the data intake set is significantly smaller than the data input set, 
and so there is a potential data sparseness problem.  Moreover, recall that exactly the 
right amount of misconvergence on the pVO value must happen for each set of new 
population members in order for the population as a whole to change at the correct 

                                                
30 This is what is meant by calibration.  If the population is unable to reach this checkpoint, it is unfair 
to compare its pVO at 1200 A.D. against other populations’ pVO values at 1200 A.D.  The value which 
must be calibrated is the learner’s confidence value c in the current piece of data,  which determines 
how much the current pVO is updated for a given data point.   
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rate.  We can ask if input filtering in the specified manner can cause this precise 
amount of misconvergence. 

Second, we address the question of necessity.  If the proposed intake filtering 
is sufficient to cause an Old English population to change at the correct rate, is it in 
fact necessary?  One might wonder if an Old English population that does not use 
either filter, or only uses one (either unambiguous data or degree-0),  would achieve 
the same results.  With the model described here, we can find out. 

4.5 Modeling Results 

4.5.1 Sufficient Filtering  
 
 We first examine the descriptive sufficiency of the data intake filters.  Does 
our simulated Old English population, whose learners filter their intake down to the 
degree-0 unambiguous data, undergo change at the historically attested rate?  Figure 
29 shows the average population pVO over time.  Based on these simulation data, an 
Old English population using these filters can indeed shift from a strongly OV-biased 
distribution to a strongly VO-biased distribution at the historically correct time.  
Specifically, these filters yield a data set with the right bias at each point in time.  
This then allows individual learners in the population to misconverge exactly the right 
amount, which then leads to population-level change at the correct rate.   
 Moreover, we can see that the concern over data sparseness can be put aside. 
Despite the significantly smaller quantity of data that comprises the intake for these 
learners, the trajectory of the population is still in line with the known historical 
trajectory. We also note that the S-shaped curve so often observed in language change 
(Bailey, 1973; Weinreich, Labov, & Herzog, 1968; Osgood & Sebeok, 1954; among 
others) emerges here from the learners filtering their input and the subsequent small 
changes spreading through an exponentially growing population.31   
 

                                                
31 As mentioned previously, this demonstrates that external factors are not necessary to cause swift 
population-level change.  Here, the population-level change results from internal factors: the language-
learning mechanism at the individual-learning level. 
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Figure 29.  The trajectory of a population learning only from degree-0 unambiguous 
data, compared against estimates from historical corpora. 

4.5.2 Necessary Filtering 
 
 We have just seen that these data intake filters are sufficient to cause the right 
rate of population-level change to occur.  But are they necessary?  Specifically, we 
wish to know if language change can occur at the historically attested rate without 
these filters.  I examine the effects of removing each filter in turn, and then the effects 
of removing both. 
 
4.5.2.1 Removing the Unambiguous Data Filter 
 
 I examine the unambiguous data filter first.  A model could reasonably choose 
to drop this filter and assume that a learner attempts to activate the update algorithm 
for data that are ambiguous.  In particular, the learner then requires some strategy to 
extract information from a given ambiguous data point.  One simple strategy is for the 
learner to have a preference for analyzing strings as base-generated.  This strategy 
would cause the learner to discard any analyses involving movement (for example, 
V2 movement) until forced to do so (Fodor, 1998b). 
 The effect of this strategy for the OV/VO word order cases we consider in Old 
English is that many more data points are used by the learner.  Primary among these 
new data points are those of the form Subject TensedVerb Object. When V2 
movement was considered in the analysis, this was ambiguous between OV order 
(OV, +V2) and VO order (VO, +/-V2), as we saw in example (13).   However, if non-
movement analyses are given preference, then the learner would take this ambiguous 
data point as evidence in favor of the VO word order hypothesis.  Table 4.9 displays 
the data intake distribution for a learner who does not use an unambiguous data filter, 
as well as the OV word order bias at different points in time. 
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D0 Total 
# Clauses 

OV Data 
Intake 

VO Data 
Intake 

D0 OV Bias 
w.r.t. the inputa 

D0 OV Bias 
w.r.t. the intakeb 

1000 A.D. 9805 2537 3889 -13.8% -21.0%c  
1000 – 1150 A.D 6214 1221 2118 -14.4%  -26.9%        
1200 A.D. 1282 389 606 -16.9%  -21.8%  
Table 4.9. OV order bias in the degree-0 (D0) clauses. a We derive the bias for the OV 
order with respect to the input by subtracting the quantity of VO data from the 
quantity of OV data, and then dividing by the total number of data points in the input.  
For instance, the D0 OV bias at 1000 A.D. is calculated as (2537-3889)/9805 = 
13.8%.  b We derive the bias for the OV order with respect to the intake by 
subtracting the quantity of VO data from the quantity of OV data, and then dividing 
by the total number of data points in the intake.  For instance, the D0 OV bias at 1000 
A.D. is calculated as (2537-3889)/(2537+3889) = 21.0%. c Note that a negative OV 
bias means that the distribution is VO-biased.  
 
 A very serious problem becomes apparent: even at the earliest time period 
when the population is supposed to be strongly OV-biased, the data intake 
distribution strongly favors the VO order.  The VO word order has a 21.0% bias in 
the data intake at 1000 A.D (and a 13.8% bias in the input).  Thus, about 21 out of 
every 100 data points encountered in the intake are biasing the learner towards the 
VO hypothesis.  A population of learners using this data intake distribution could not 
remain strongly OV-biased for very long, and certainly not until 1150 A.D.   
 Therefore, I conclude that dropping the unambiguous data filter in this way 
will not allow the model to simulate what is actually observed in the Old English 
population.  So, these results suggest that the unambiguous data filter is necessary.32   
 

   
Figure 30. The trajectory of a population learning only from degree-0 data 
(ambiguous and unambiguous), compared against estimates from historical corpora. 
 

                                                
32 Unless we can find a strategy to deal with ambiguous data which includes a different set of data as 
intake, or values the ambiguous data in a manner that gives the OV hypothesis the advantage early on.  
The strategy explored here was the simplest (and most justifiable) one I could devise, but there may be 
more complex strategies that yield the desired results.  If so, then we would need an explanation for the 
learner’s knowledge and adoption of these more complex strategies. 
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4.5.2.2 Removing the Degree-0 Filter 
 
 I turn now to the degree-0 data filter.  Suppose we drop this filter and allow 
the modeled learner to activate the update algorithm for both matrix (degree-0) and 
embedded (degree-1) clauses. Note that this learner still has the unambiguous data 
filter, and so will only activate the update procedure if the learner perceives the data 
point as unambiguous.  Recall from table 4.1 that the degree-1 data intake distribution 
has a much higher OV bias before 1150 A.D. (28.7 – 41.7%).  Given how high this 
OV bias is, it is possible that if there were enough degree-1 data in the input set, the 
learner would converge on a final pVO that is too OV-biased.  This slows the rate of 
change from OV-biased to VO-biased, and so a population made up of such learners 
would proceed much more slowly towards becoming VO-biased. I have estimated 
from the historical record that the Old English population should have an average pVO 
value of 0.747 at 1200 A.D.  This is the mark a simulated population must then reach. 
 With the model presented here, we can test the population-level effects of 
different compositions of data in the input set of the individual learner.  Specifically, 
we can see how much (strongly OV-biased) degree-1 data can be in the input (and 
thus in this learner’s intake) and still have the population as a whole be VO-biased 
enough by 1200 A.D.  We can then compare this threshold against the estimated 
amount of degree-1 data available to learners and see if the degree-0 data filter is 
necessary.  If the estimated amount of degree-1 data available to learners is less than 
the permissible threshold that allows correct population-level behavior, then the 
degree-0 filter is not necessary.  The same population-level results can be obtained 
with or without the filter.  In contrast, if the estimated amount of degree-1 data 
available to learners is greater than the permissible threshold, then we have support 
for the necessity of the degree-0 filter.  This is because only by ignoring the degree-1 
data available in the input can correct population-level behavior be obtained. 
 Figure 31 displays the average pVO in the population at 1200 A.D. for 6 Old 
English populations whose learners had their input composed of different percentages 
of degree-1 data.  For these populations, all the degree-1 data was in the intake set.  
Thus, a population with 16% degree-1 data in the input set activated the updating 
procedure for the 84% of the unambiguous data points that were degree-0 and the 
16% of the unambiguous data points that were degree-1.  Data points that were 
ambiguous were ignored. 
 The modeling results suggest that having even 4% degree-1 data available in 
the input (and thus in the learner’s intake) is enough to prevent the simulated Old 
English population from reaching an average pVO of 0.747 by 1200 A.D.  We must 
now compare this threshold to the estimated amount of degree-1 data in the input to 
Old English learners. 
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Figure 31. Average probability of using VO order at 1200 A.D. for populations with 
differing amounts of degree-1 data available during learning, as compared to the 
estimated average from historical corpora.  Confidence intervals of 95% are shown.  
 
 I assume that amount of degree-1 child-directed data is approximately the 
same no matter what the time period (and I am currently unaware of studies that 
suggest otherwise).  Given this, we can examine samples of modern English child-
directed data to see what its composition is.  The two samples I chose were a portion 
of the CHILDES database (MacWhinney, 2000) and some young children’s stories 
(some of which can be found at  http://www.magickeys.com/books/index.html). I 
used CHILDES since it is recorded speech to children and young children’s stories 
because it is (storytelling) language designed to be directed at children.  As we can 
see from Table 4.10, the CHILDES sample has approximately 8.8% degree-1 data 
points while the young children’s stories sample has approximately 23.9% degree-1 
data points.  I take the average of these two sources to get an estimate of about 16% 
degree-1 data available in children’s input.   This is very similar to the 15% degree-1 
data estimate from Sakas (2003), who examined several thousand sentences from the 
CHILDES database. 
 The modeling results (see figure 31) show that input comprised of 16% 
degree-1 data causes the simulated Old English population to be far too slow in 
shifting to a strongly VO-biased distribution.  This is much higher than the 
permissible threshold of approximately 2%.  Unless there is a way for the learner to 
allow in only an eighth of the degree-1 data available in the input, these results 
suggest that the degree-0 data intake filter is also necessary.33 
 
 
 
 
 
 

                                                
33 Another option is for the learner to weight the degree-1 data’s influence so it is only an eighth as 
strong as the degree-0’s influence.  This particular weighting would then have to be justified. 
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A subsection of CHILDES 
Total Utterances Total Data Pointsa Total D0 Total D1 % D1 
4068 2760 2516 244 8.8 
Sample D0 Utterances Sample D1 Utterances 
“What’s that?”, “I don’t know.”, “There’s a 
table.”, “Can you climb the ladder?”, “Shall 
we stack these?”, “That’s right.” 

“I think it’s time…”, “Look what happened!”, “I think 
there may be one missing.”, “Show me how you play 
with that.”, “See if you can get it.”, “That’s what he 
says.” 

 

Young Children’s Stories 
Total Utterances Total Data Pointsa Total D0 Total D1 % D1 
4031 3778 2955 927 23.9 
Sample D0 Utterances Sample D1 Utterances 
“Ollie is an eel.”, “She giggled.”, “…but he 
climbs the tree!”, “This box is too wide.”, 
“…to gather their nectar.”b, “This is the 
number six.” 

“…that even though he wishes hard,…”, “…that only 
special birds can do.”, “…that can repeat words people 
say.”, “…when the sun shines.”, “…that goes 
NEIGH…NEIGH…”, “…know what it is?” 

Table 4.10. Data gathered from speech directed to young children. a The number of 
data points is much less than the number of utterances since many of these utterances 
include “Huh?” and exclamations like “A ladder!” in the case of the spoken 
CHILDES corpus.  For the young children’s stories, there are often “sentences” like 
“Phew!” and “Red and yellow and green” which were excluded under Total Data 
Points.  b I note that clauses with infinitives such as “…to gather their nectar” are 
included under degree-0 data, based on Lightfoot’s (1991) definition of clause-union 
structures as degree-0.  If this were not the case, the percentage of degree-1 clauses 
would only be higher than what I have calculated here – thus, this is a lower bound on 
the amount of degree-1 data available in the input. 
 
4.5.2.3 Removing Both Filters  

 
We have just observed that the loss of each of the data intake filters has a different 

effect on the rate of change at the population-level.  Without the unambiguous data 
filter, the intake distribution is too heavily VO-biased.  The population becomes 
strongly VO-biased too soon, and so changes too quickly.  Without the degree-0 data 
filter, the intake distribution is too heavily OV-biased.  The population becomes 
strongly VO-biased too late, and so changes too slowly.  Given these opposite effects, 
one might wonder if dropping both filters would allow the simulated population to 
change at the correct rate.  We must again examine the data intake distributions that 
learners would be using to see the effects of removing both filters. 

 
 
 

Total # 
Clauses 

OV Data 
Intake 

VO Data 
Intake 

D0 OV Bias 
w.r.t. the inputa 

D0 OV Bias 
w.r.t. the intakeb 

Degree-0 Data 9805 2537 3889 -13.8% -21.0%c  
Degree-1 Data 7559 4650 2610 26.9%  28.1%      
Table 4.11. OV order bias at 1000 A.D. with no filters. a We derive the bias for the 
OV order with respect to the input by subtracting the quantity of VO data from the 
quantity of OV data, and then dividing by the total number of data points in the input.  
For instance, the D0 OV bias at 1000 A.D. is calculated as (2537-3889)/9805 = 
13.8%.  b We derive the bias for the OV order with respect to the intake by 
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subtracting the quantity of VO data from the quantity of OV data, and then dividing 
by the total number of data points in the intake.  For instance, the D0 OV bias at 1000 
A.D. is calculated as (2537-3889)/(2537+3889) = 21.0%. c Note that a negative OV 
bias means that the distribution is VO-biased. 
 

In order for the Old English population to remain strongly OV-biased before 
1150 A.D., the data intake distribution must at least be OV-biased at 1000 A.D.  As 
we can see from table 4.11, the degree-0 data intake is heavily VO-biased (21.0% VO 
data bias).  In order to drop the VO bias in the intake down to zero (so the OV order 
has at least a fighting chance with learners at 1000 A.D.), about 43% of the intake 
would need to consist of degree-1 data.  

My estimate of the available amount of degree-1 data in child-directed data 
suggests that less than half of this amount of degree-1 data is available, at best 
(16%).34  So, I conclude that we cannot drop both the unambiguous data filter and the 
degree-0 data filter, lest the population be driven to become strongly VO-biased too 
soon.  The claim that both data intake filters are necessary is thus strengthened. 

4.6 General Discussion 

4.6.1 Necessary Filters 
 

The results presented here serve as an existence proof that a population model 
whose individual learners employ data intake filtering can handle the specific case of 
word order change in Old English.  The two critical filters are (a) use only data 
perceived as unambiguous and (b) use only degree-0 data.  This means that the update 
procedure is only activated when data points obeying these constraints are 
encountered.  Otherwise, the update procedure is not activated and the data points are 
effectively ignored for the purposes of learning. 

I now examine what effects input filtering in general could have on language 
change, as well as the feasibility of input filtering. 

4.6.2 Intake Filtering and Language Change 
 
 The nature of the input filter may be what differentiates situations of language 
change from situations of stable variation. If the intake becomes too mixed for the 
child to converge on the same probability weighting as the adult, then language 
change will occur.  In cases where only one structural option is used in the adult 
population (as is often the case), the adult probability distribution will be 0.0 or 1.0. 
Given children’s tendency to generalize to an extreme value from noisy data (Hudson 
Kam & Newport, 2005), the intake would have to be quite mixed in order to force 
children away from the adult distribution. 
 In this way, we see that learning can tolerate some variation in the input 
without causing the  language to change. In this, our model’s behavior differs notably 
                                                
34  Moreover, since not all the data in the input becomes intake, even more than 43% of the input 
would need to consist of degree-1 data.  Give that, the available quantity of degree-1 data is certainly 
insufficient. 
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from Briscoe’s (2000), who observed constant oscillation in the population due to 
slight variation in the input to learners.  The model here differs from his by using only 
unambiguous data to update the learner’s hypothesis. I also allow the learner’s final 
probability to be a value other than 0.0 or 1.0.  I hypothesize that this is what yields 
the historically correct behavior.  In addition, the model here has more realistic 
estimates for input quantity, population size, and learner lifespan. 

4.6.3 The Feasibility of Filters 
 
One might well be skeptical of the generality of the proposed filters.  The 

unambiguous data filter in particular raises the question of how abundant such data 
points are for any given learning problem and the complexity of determining if a 
given data point is unambiguous.  As a concrete example of both these issues for the 
word order case considered here, we can look to the “cartographic” approach to 
syntax (Rizzi, 2004; 1997; Cinque, 1999).  This approach suggests that there are 
several positions in front of the VP that the Verb can move to if V2 movement is 
used.  Languages are thought to differ on exactly which position it is. Given that, 
even knowing V2 movement has happened does not allow an unambiguous analysis 
of the sentence with respect to V2 movement; the learner still has more than one 
option for the Verb’s exact position.  If the initial intake is to contain any data points 
at all, it may be necessary to allow data points that are actually ambiguous to be 
perceived as unambiguous at the initial stages of learning.   

If the learner is using cues to identify unambiguous data, then the level of 
specificity for a cue may be abstract enough to perceive ambiguous data as 
unambiguous.  For instance, a cue may only specify one general position in front of 
the VP to identify V2 movement, rather than the multiple positions that the 
cartographic approach advocates.  Only later would the learner then elaborate cues to 
include multiple positions in front of the VP.  If the learner is using parsing to 
identify unambiguous data, then the learner could initially use a subset of the set of 
parameters an adult would use when parsing.35 Later on, when more parameter values 
are known, the learner would expand the set of parameters used for parsing.  

Another approach for both cues and parsing is that the learner has default 
values or assumptions (Fodor, 1998b) that are in place until the learner is forced to 
the marked values or assumptions.  For example, in the word order case discussed 
here, the learner might assume as a default that there is no movement (thus perceiving 
simple SVO structures as unambiguous for VO word order).  This assumption would 
then need to be revised at a later stage.  The cost of reanalysis may not trivial, 
however, particularly when parameters and assumptions interact with each other. 

Suppose, for instance, that default assumption A1 (e.g. no movement) allows 
the learner to perceive “unambiguous” data for a given value of P1 (e.g. OV/VO 
order),  say, P1a (e.g. VO order).  Later on, the learner is forced to remove default 
assumption A1.  Suppose the lack of assumption A1 causes the learner to observe that 
(a) the “unambiguous” data for P1a are now ambiguous (e.g. SVO data) and (b) there 
now exist “unambiguous” data for P1b (e.g. more OV data).  The learner must now 
                                                
35  A candidate set for the initial pool of parameters might be derived from a hierarchy of parameters, 
along the lines of the one based on cross-linguistic comparison that is described in Baker (2005, 2001). 
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re-evaluate the correct value for parameter P1 (OV/VO order), and so is delayed in 
attaining the adult target state.  This same situation occurs when there are multiple 
parameters interacting (say, +/- V2 movement and OV/VO order).  The issue of 
identifying unambiguous data in a system with multiple interacting parameters will be 
discussed in the next chapter. 

The identification of unambiguous data is significantly aided by the 
assumption that parameters are independent structural pieces.  Suppose we assume n 
parameters with 2 options each.  If all parameters are independent, then every data 
point has at most 2n possible structural pieces that can be used to analyze it (Fodor, 
1998a; 1998b; Sakas & Fodor, 1998).  In contrast, if parameters are not independent, 
every data point can be analyzed with 2n possible structures (since each “structure” is 
a combination of the smaller 2n structural pieces).  It is thus enormously more 
efficient for ambiguity analysis to have independent parameters.  

Moreover, if parameters are independent, data are unambiguous relative to a 
particular parameter.  A given data point may be unambiguous for parameter P1 (e.g. 
OV ordering) while being ambiguous for many other parameters (e.g. wh-fronting).  
In contrast, if parameters are not independent, only data points that are unambiguous 
for all parameters are perceived as unambiguous – for otherwise, more than one 
structure of the available 2n structural pieces leads to a successful analysis.  Such data 
points are likely to be extremely sparse, if they exist at all. 

4.6.4 Future Directions 
 Despite the ground covered in this chapter, there are of course a number of 
avenues that remain to be explored.  The first concerns the relaxation of the 
unambiguous data filter, the second concerns the implementation of population 
models, and the third concerns experimental extensions. 
 In section 4.5.2.1, I explored one principled way a learner might use 
ambiguous data, which was to ignore possible movement rules in the system and 
assume that surface word order matched the underlying word order of the system.  So, 
the hypothesis consistent with the surface order was fully credited for those data 
points, i.e. a data point with Verb Object anywhere in it would be credited to the Verb 
Object hypothesis.  But there are other strategies that a learner might employ when 
encountering ambiguous data. 
 One method is to weight ambiguous data points such that they’re not as 
influential as unambiguous data.  In fact, I instantiated a method to do precisely this 
in the case study of anaphoric one in chapter 3, and the actual instantiation appears in 
the update procedure.  The same concept of weighting could be applied to the syntax 
case examined in this chapter.  If learners weight ambiguous data less than 
unambiguous data, it may be possible for them to achieve successful acquisition.  If 
so, it behooves us to know what the successful weightings are for ambiguous and 
unambiguous data – and if we can find any experimental evidence to support such 
weightings. 
 Continuing the idea of weighting data, models of populations (such as the one 
examined here) can include additional sociolinguistic complexity in the relationships 
of the speakers that impact how learners view the data.  Learners might, for instance, 
be more influenced by speakers who are in close spatial proximity, have a kinship 
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relationship, or are from the same or higher social class.  This weighting again would 
be instantiated in the update procedure.  In addition, the frequency of various data 
types in the data intake distribution could depend on what speakers are nearby and/or 
are prominent in the learner’s life.  Family members will be a more frequent source of 
data than random, spatially distant population members. 
 Finally, the existence of data intake filtering for learning syntax – and 
specifically, using data perceived as unambiguous – can be explored in experimental 
regimes such as artificial language experiments for both adults (Thompson & 
Newport, 2007; Bonatti et al., 2005; Newport & Aslin, 2004) and children (Saffran, 
Aslin, & Newport, 1996; Saffran, Newport, & Aslin, 1996; among others).  
Specifically, learners could be exposed to data that would favor one word order if 
ambiguous data is used, but favor the other order if only unambiguous data is used.  
The generalization learners extract from such a dataset would implicate what data 
they use for learning. 

4.6.5 Conclusion 
 
 In this chapter,  I have investigated the effect of data intake filters in a system 
where the target adult state is a probability distribution between two opposing options 
for a single parameter.  This was accomplished by employing language change 
modeling and using the assumption that a given case of language change was driven 
by language learning.  Specifically, I adopted Lightfoot’s (1991) assumption that Old 
English language change was driven by imperfect learning.  The goal of the modeling 
was to see if I could replicate the precise amount of imperfect learning that causes the 
Old English population to change at a certain rate.  As we have seen, this imperfect 
learning can result when the two data intake filters of unambiguous data and degree-0 
data are used.  Moreover, the historically correct population-level behavior does not 
result when either or both of the two filters is discarded, primarily because the data 
intake then does not have the proper bias in its distribution.  Thus, through the 
language change model, I have provided empirical support for data intake filtering in 
language learning. 
 Now that we have seen evidence for the necessity of data intake filtering, we 
can now explore the feasibility of data intake filtering.  This is particularly important 
for the unambiguous data filter, since identifying unambiguous data is a nontrivial 
task.  In fact, it is quite reasonable to wonder how to identify unambiguous data in a 
system more complex than the one I have considered in this chapter (which 
considered 2 interacting parameters: OV/VO word order and +/- V2 movement).  In 
the next chapter, I will examine the feasibility of the unambiguous data filter in a 
more complex system with 9 interacting parameters: English metrical phonology 
(Dresher, 1999).   
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Chapter 5:  The Case of English Metrical Phonology 

5.1 The Unambiguous Data Filter 
 
 We have just seen an argument for the necessity of an unambiguous data 
filter, using evidence from syntactic language change modeling. The motivation for 
the unambiguous data filter is that unambiguous data are the most informative data in 
a noisy data set; learning from informative data leads to convergence on the correct 
target state, given standard statistical learning techniques.  So, unambiguous data are 
highly desirable since, once identified, they completely determine the choice in the 
hypothesis space for the learner. 
 Yet, I have also outlined why identifying unambiguous data is not a simple 
task.  In particular, the identification of unambiguous data becomes considerably 
harder in a system with multiple interacting parameters.  One might then wonder if 
it’s even possible for an unambiguous data filter to be successful in a more complex 
domain, since this situation makes unambiguous data much sparser. In short, even if 
unambiguous data are desirable for learning, is it feasible to use an unambiguous data 
filter for a system with multiple interacting parameters?  
 For this reason, I turn now to the domain of metrical phonology, which has 
several interacting parameters, some of which have one or more sub-parameters, for a 
total of 9 interacting parameters.36 Interacting parameters provide an additional 
challenge for language learners because the order in which these parameters are set 
by the learner (sometimes called the learning path (Dresher, 1999)) determines 
whether the learner will converge on the correct adult parameter values.  If the 
choices are not made in the correct order, the child can misconverge.  A reasonable 
question is whether we can discover principled metrics that allow the child to both 
find unambiguous data in the input and converge on an appropriate order of 
parameter-setting, given the noisy situation of multiple parameter interaction. 

5.1.1 Two Methods For Identifying Unambiguous Data 
 
 First, we must ensure learner convergence on the adult system by uncovering 
the space of possible methods there are to discover sufficient unambiguous data in the 
correct distributions so that the learner converges on the adult system.  Two methods 
have been proposed to implement an unambiguous data filter: a method that uses the 
domain-specific representation of cues (Dresher, 1999; Lightfoot, 1999 (see previous 
chapter)) and a method that uses the domain-specific learning procedure of parsing 
(Fodor, 1998b, 1998c; Sakas & Fodor, 2001). 
 A cue, according to Dresher (1999), is a “specific configuration in the input” 
that reflects a “fundamental property” of the particular parameter value it is a cue for.  
Moreover, a cue is local in the sense that a learner uses the cue “without regard to the 

                                                
36 This is much closer to the complexity that is purported to exist in the syntactic domain. A recent 
implementation by Sakas (2003) has 13 interacting parameters, though this is only a fraction of the 
parameters posited for the adult syntactic system. 
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final result”, so that the learner is “not trying to match the input”. The presence of a 
cue unambiguously favors one hypothesis (i.e., parameter value) in the hypothesis 
space over another.  
 The parsing method relies on the learner using the parsing strategies already 
available for language comprehension (Fodor, 1998b, 1998c; Sakas & Fodor, 2001).  
The learner tries to analyze a data point with “all possible parameter value 
combinations” in the hypothesis space given by universal grammar.  The learner is, in 
effect, conducting an “exhaustive search of all parametric possibilities” (Fodor, 
1998). If only a single parameter value for a given parameter is ever present in the 
successful parses for a particular data point, that data point is considered 
unambiguous for the parameter value.  Data points that can be parsed with multiple 
parameter values are considered ambiguous.  These ambiguous data points would 
then be filtered out of the learner’s intake so that the update procedure is not activated 
when encountering them. 
 We will see that both these methods are successful at identifying sufficient 
unambiguous data to converge on the correct adult metrical phonology parameter 
values for English, a non-trivial task given the interactive nature of the parameters 
and the noise in the English data set.  However, each method requires the learner to 
have different constraints on the order of parameter-setting. 
 
5.1.2 Stipulation vs. Principled Derivation 
 
 Another relevant question is what pieces of each of these methods must be 
stipulated and what pieces can be derived in a principled fashion. As we will see, 
the cues method requires that we stipulate pre-specified knowledge in the form of the 
cues the learner uses to identify the unambiguous data.  However, the constraints on 
the order of parameter-setting for the cues method result from properties of the 
learning system. In comparison, the parsing method does not need to stipulate extra 
information to identify unambiguous data – the process of assigning structure to input 
is already used for language comprehension.  Yet, we will see that most of the 
constraints on the order of parameter-setting, in contrast to the cues method, must be 
stipulated. 

5.1.3 Summary 
 
 In this chapter, I first explicitly compare the strengths and weaknesses of both 
the cues and parsing methods.  Following that, I test both methods in the complex 
domain of metrical phonology, which has a set of 9 interacting parameters yielding 29 
possible languages, and examine the potential of each method to identify sufficient 
unambiguous data to converge on the adult English parameter values.  English is a 
particularly difficult case since there are actually unambiguous data in the input for 
the incorrect parameter values.  Thus, the ability to converge on the correct parameter 
values in this exacerbated situation is a testament to the power of using either of these 
methods to identify unambiguous data.  We will then see that both these methods can 
succeed and allow the learner to converge on the adult set of parameter values, 
providing support for the feasibility of an unambiguous data filter even in a more 
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complex domain.  I will then observe that the constraints on the order of parameter-
setting that result from using each of these methods differ, and that the cues method 
allows us to derive the constraints in a principled manner while the parsing method 
requires that we stipulate the constraints.  Finally, I will argue that both methods have 
strengths that can be combined and speculate that a more advantageous method of 
identifying unambiguous data comes from using a limited form of parsing to derive 
cues for unambiguous data. 

5.2 The Cues Method and the Parsing Method 

5.2.1 Cues: Strengths and Weaknesses 
  
 The cues method of finding unambiguous data has both strengths and 
weaknesses.  Cues are attractive because they make identification of unambiguous 
data very simple: the data point either matches the cue, or it doesn’t (though this, of 
course, assumes the learner can recognize the cue in the data point).  In addition, a 
cue is designed to match a subpart of the data point, rather than the entire data point.  
This means the learner can glean information without understanding the structure for 
the entire data point.  For instance, the learner can match a VO word order cue 
(example (1) taken from (8b) in the previous chapter) to a data point without 
understanding the structure for all the words in the sentence – the only words that are 
vital are the ones that correspond to the cue (Object, Verb, and some phrases that 
function as XP1 and XP2).   
 
(1) VO word order cue: [  ]XP1  [  ]XP2 … Verb Object … 
 
 Because learners can extract information from only partial comprehension, 
cues offer a way to “get off the ground” when they don’t know very much about the 
adult language. 
 Nonetheless, the cues method also has its weaknesses. Cues for each 
parameter are, by definition, a representation of domain-specific knowledge and must 
already be available for the learner or somehow derivable from previously available 
knowledge.  In addition, the specificity of cues must be determined: are cues linear 
strings, underspecified structural pieces, or something else?  Whatever the specificity 
of the cue, it must also be previously available for the learner or somehow derived.  
Thus, the cues method requires the learner to be equipped with additional knowledge 
(cues) to solve the language learning task. 
 Beyond this, some cues may require the learner to store data over time 
(perhaps in a summarized form) for comparison (Dresher, 1999).  This is usually 
agreed to be an undesirable requirement in domains such as syntax because the 
potentially infinite number of sentences yield the possibility of unbounded storage 
requirements.  However, the data storage requirement may fare better in domains 
such as metrical phonology where there are a finite number of morphemes and stress 
contours (even if in principle words can have infinitely many syllables).37   
                                                
37 Note, however, that the generative procedure for assigning stress can assign infinitely many stress 
contours in the same way that generative syntax can assign infinitely many structures.  That is, 
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 Another potential weakness is that cues are heuristic by nature, and so may 
lead to false positives or false negatives that could have a detrimental effect on 
learning over time.38  For example, if we examine the cues for the OV/VO word order 
parameter ((1) and (2), taken from the previous chapter), we will notice that they only 
take V2 movement into account.   
 
(2) OV word order cue: [  ]XP … Object Verb … 
 
 However, other grammatical rules in the adult language may also impact the 
observable data that these cues would match.  Heavy Noun Phrase Shift is one such 
rule: it is a movement rule that shifts an Object that precedes a Verb to a position 
after the Verb, provided the Object is phonologically “heavy” enough. 
 As an abstract example, suppose the learner encounters a data point of the 
form “Adverb Subject Verb Object”.  This data point matches the VO cue “XP1 XP2 
… Verb Object”.  Nonetheless, it could have been generated by starting with the 
order “Adverb Subject Object Verb” (which would have matched the Object Verb cue 
“XP …Object Verb”) if the Object moved to a position after the Verb via Heavy 
Noun Phrase Shift.  Since the observable data matches the learner’s VO cue, the 
learner receives a false positive for VO order by using the heuristic cue.39  If this kind 
of interference happens sufficiently, the learner may not converge on the correct adult 
value. 
 As a more concrete example of false positives from cues, consider the case of 
Kannada word order (data from Tirumalesh, 1996).  The basic word order for 
Kannada is Object Verb (OV). A learner would encounter many examples of this 
order, as in (3a): 
 
(3a) OV order in Kannada 
 raamu  dubai-ninda   kumbaLakaayi  tand-id-d-aane 
 RaamSubj     Dubai-abl    pumpkinObj bring-be-npst-3smVerb 
 'Raam has brought a pumpkin from Dubai.' 
 
 However, there is a rule in Kannada that will cause the observable order to 
have the Verb precede the Object (VO order), as in (3b).  This rule applies when the 
meaning of the Object is surprising, and so the Object is moved after the Verb to put 
focus on its surprising nature. 
 
 
 

                                                                                                                                      
generative procedures have no trouble coping with data of unbounded length (whether the data are 
words or sentences). 
38 Though this might help explain metrical stress change over time. 
39 This case also demonstrates how cues within the same language can conflict.  If Heavy Noun Phrase 
Shift had not occurred because the Object was not “heavy” enough, the observed order would have 
been “Adverb Subject Object Verb.”  This order matches the OV cue.  So, the very same language 
could have cues for both OV and VO word order.  The learner presumably must then decide which is 
more likely to be the base order for the language, given the frequency of the different cues. 
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(3b) VO order in Kannada, due to surprise at ‘pumpkin’ 
 raamu  dubai-ninda   tandiddaane          kumbaLakaayi 
 RaamSubj   Dubai-abl  bring-be-pst-3smVerb  pumpkinObj 
 "Raam has brought a pumpkin from Dubai.' 
 
 Since it is unusual to bring something as inexpensive as a pumpkin from 
Dubai, the Object ‘pumpkin’ would cause surprise in answer to a question like (3c).   
 
(3c) Question in Kannada that would produce VO order 
 raamu  dubai-ninda  eenu   tandiddaane 
 Raam     Dubai-abl      what   bring-be-pst-3sm 
 'What has Raam brought from Dubai?' 
  
 Because the Object causes surprise, it is moved after the Verb to put focus on 
it.  However, if a Kannada learner using cues is unaware of the rule that moves a 
surprising Object after the Verb, this learner might consider the data in (3b) as an 
example of VO order since it matches the cue “XP1 XP2 … Verb Object”.   In this 
way, the learner receives a false positive for VO order in a language whose basic 
word order is OV.  And again, if enough false positives (or false negatives) are 
encountered, the learner could fail to converge on the correct adult value of the given 
parameter. 
  Finally, some cues may require the learner to have default values among the 
options for a given parameter.40  This means that the learner assumes that a given 
value holds unless there is evidence to the contrary.  Note that the learner can still 
collect evidence to the contrary if data matches the cue for the non-default value, 
which is quite important if in fact the adult language uses the non-default value.  
Nonetheless, if default values are required for successful learning, these values are 
again an example of additional knowledge the learner requires specifically for solving 
the language learning task.   After all, default values are representations of domain-
specific knowledge that must be previously available or somehow derivable from 
previously available knowledge.   
 As an example of how the learner might derive a default value from previously 
available knowledge, suppose the candidate hypotheses are in a subset-superset 
relation, i.e. the set of data points that can be generated by one hypothesis are a subset 
of the set of data points that can be generated by the other hypothesis (as we saw in 
chapter 3 with anaphoric one).  Under this viewpoint, the hypotheses are the opposing 
parameter values for the given parameter, which is knowledge the learner is assumed 
to already have available.  The Subset Principle (Berwick,1985; Berwick & 
Weinberg, 1984) then provides the learner with a principled way to derive the default 
value: use the subset value. 

                                                
40 This could be instantiated as a hypothesis space with non-uniform prior probabilities.  The initial 
probability distribution would be biased towards the default value. 
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5.2.2 Parsing: Strengths and Weaknesses 
 
 The parsing method for finding unambiguous data has its own strengths and 
weaknesses.  One attractive feature is that parsing is a (domain-specific) procedure 
the learner already has available, assuming that the learner must come equipped with 
a procedure that tries to assign structure to the input given the available options 
(Fodor, 1998b, 1998c).  In addition, the parsing method only requires one data point 
at a time, since it extracts as much information as possible and then proceeds to the 
next data point.  No storage of data over time is required. Third, the parsing method, 
as discussed, is implemented as a find-all-parses analysis; it is therefore not heuristic. 
It will only find true unambiguous data, given the relevant parameter set.  Finally, 
since all values are used during the find-all-parses analysis of the data point, no 
default values are required. 
 While this may seem like an impressive array of strengths, the parsing method 
also has its pitfalls.  First, identification of unambiguous data is a non-trivial task 
requiring more resources from the learner, either in terms of multiple simultaneous 
parses stored in memory or in terms of using a sensible guessing strategy (Sakas & 
Fodor (2001) addresses the question of a sensible guessing strategy the learner might 
adopt for parsing). If the learner does a full find-all-parses analysis, we must explain 
how the learner can feasibly do this given finite resources;  if a less resource-intensive 
guessing strategy is used, we must explain why the learner uses this strategy.   
 Second, if the entire data point cannot be parsed, no information can be 
extracted for any parameter.  This makes “getting off the ground” during the initial 
stages of learning quite difficult, when the learner may not know enough to 
comprehend the entire data point (see Sakas & Fodor (2001), who acknowledge these 
problems and propose ways to solve them in scenarios where the adult language data 
does not contain numerous exceptions that lead to conflicting data points). 
 Beyond this, if exceptions exist in the input set that violate certain adult 
parameter values but obey others, those data points cannot be used by the learner 
since the learner cannot generate a successful parse of the data point.41 In short, the 
parsing method does not allow information to be retrieved from subparts of a data 
point.  One way to circumvent this problem would be for the learner to divide the data 
point into subparts using some sensible strategy (for instance, in syntax, the learner 
might divide a sentence into matrix and embedded clauses).  Nonetheless, we would 
still need to provide a principled explanation for how the learner knows to divide up 
the data point in an appropriately helpful way.  
 Lastly, a learner using the parsing method may have difficulty finding 
unambiguous data if the relevant parameter set isn’t sufficiently restricted (too many 
possible parameters value sets could fit any given data point).  This is perhaps best 
viewed as a problem of being too exacting about classifying data as unambiguous, 
                                                
41 If the learner can’t parse the data point, the learner presumably throws the entire data point out for 
the purposes of learning, classifying it as an exception that will have to be memorized in its entirety.  
Cues tolerate exceptions much more easily, allowing for anomalous sub-parts to be memorized instead 
of requiring the entire data point be memorized. 
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since the consideration of too many options would prohibit any data from being 
classified as unambiguous. 

5.2.3 Summary: Cues vs. Parsing Overview 
 
 Both the cues and parsing methods have a large set of strengths and 
weaknesses, summarized in table 5.1 below.  In this chapter, I explore an additional 
property for comparison: the effect each of these methods has on the learning path 
within the given domain of metrical phonology.  Specifically, I examine the potential 
set of order constraints for parameter-setting that are generated by using each method 
to identify unambiguous data. 
 
Property Cues Parsing 
Easy identification of unambiguous data True False 
Can get information from sub-part of data point True False 
Can easily tolerate numerous exceptions in the 
data 

True False 

Is heuristic True False 
Requires additional prior knowledge for learner True False 
Requires storage of data over time for comparison True False 
Requires default values True False 
Can work even in an unrestricted large set of 
initial parameters  

True False 

Table 5.1. A comparison summary of the properties of the cues and parsing methods.  
Desirable properties are in bold, while potentially undesirable properties are in 
italics. 

5.3 The Domain of Metrical Phonology 

5.3.1 Why English Metrical Phonology? 
 
 The domain of metrical phonology has several merits for an investigation 
about the feasibility of unambiguous data (identified with either cues or parsing).  
First, although the parameter set consists of several parameters that interact in a 
complex fashion (Dresher, 1999), the set is small enough to make a find-all-parses 
approach more feasible and also provides a natural restriction on the relevant 
parameter set for the parsing method. In addition, though the parameter set is not as 
large as some implementations of syntax (Sakas (2003) implemented a version 
containing 13 interactive parameters42), it is still significantly more complex than the 
simplified case where the learner has only 1 or 2 interacting parameters to set.  
 Second, the cues method was originally proposed for this domain (Dresher, 
1999), so there is some belief that it could be successful as an approach in general.  It 
has also been used to study the acquisition of stress in English as a second language 

                                                
42 Note that 13 parameters is likely still a very small subset of the actual available syntactic 
parameters. 
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(Archibald, 1992). Third, the English system is not a toy example, and in fact is 
extremely messy. There are significant quantities of unambiguous data for both 
values of any given parameter.  This makes the system non-trivial to learn because of 
the conflicting unambiguous data; the learner is required to extract systematicity from 
a very noisy environment.43  The noisiness of the English data forces the learner to 
adopt order constraints on parameter-setting so that the correct systematicity is 
posited for the system.  Because the parameters interact, it is easy for the learner to 
converge on the incorrect parameter value for a given parameter if the learner does 
not use order constraints. 
 The difficulty of this task makes the ability of either the cues method or the 
parsing method to learn the English system a major accomplishment already.  The 
success of each of these methods lends support to the feasibility of an unambiguous 
data filter on the learner’s intake, however such unambiguous data may be discovered 
by the learner. 

5.3.2 Metrical Phonology Parameters 
 
 Metrical phonology is the system that determines which syllables in a word 
are stressed and how much stress each syllable receives compared to all the other 
syllables in the word.  Here, I will be concerned with only the parameters that 
determine which syllables get stressed, and not with those which determine how 
much stress. 
 
5.3.2.1 Parameters vs. Probabilistic Association 
 
 Given that there are a finite number of stress contours for words of n syllables, 
one might reasonably wonder why a parametric system is required instead of having 
the learner simply associate entire stress contours probabilistically with particular 
words (e.g. see Skinner (1957) for an associationist view of language learning, among 
many others). We can also translate this question to the realm of syntax: given that 
there aren’t infinitely many parses for a given sentence, why don’t we simply 
probabilistically associate structures with sentences, rather than having a procedure to 
generate these structures?  Much ink has been spilled on this subject, with primary 
arguments coming from the finite syntactic variations across languages and the finite 
range of syntactic mistakes children make during learning.  
 One of the main arguments for a system of metrical phonology comes from 
stress change over time.  Suppose learners simply associated stress contours 
probabilistically to individual words.  Then, we would expect that stress change over 
time would proceed in a piece-meal fashion, with individual words changing at 
different times.  Instead, we find cases where some historical linguists posit a swift 
change to an underlying system for analyzing stress contours that are assigned to 
words in order to best characterize the observed language change.  This is because a 
number of words change at the same time, which would be quite coincidental if they 
were not somehow related.  A very direct way to relate them is to say a common 
                                                
43 In fact, the English data are so messy that many linguists didn’t believe English had any 
systematicity until Chomsky & Halle (1968). 
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system is used to generate their stress contours, and the change occurs to this system.  
Dresher & Lahiri (2003), for instance, note a particular shift in stress contours in 
Middle English between 1400 and 1530 (a relatively short time from a language 
change perspective) and posit a change to one parameter in the Middle English 
system in order to explain it. 
 Second, if there were no underlying system for generating the observed stress 
contours, we might also expect that when change occurs, the start and end states 
should be close to each other from a stress contour perspective.  For instance, we 
might expect main stress to move from the final to the penultimate syllable.  
However, again we find examples where the start and end states do not seem closely 
linked with respect to the observable stress contours;  instead, they are only close 
together when viewed in terms of a parametric system for generating the observed 
contours (again see Dresher & Lahiri (2003) for Middle English). 
 Because change can be sudden on a large scale and more easily explicable 
when viewed through the lens of a systematic representation for stress, it is believed 
that speakers represent stress contours in a systematic way that is richer than 
probabilistic association for individual lexical forms.  Specifically for this chapter, I 
will assume speakers use the parameter system I outline below. 
 
5.3.2.2  Parameters for Stress 
 
 I present a sketch of the metrical phonology parameters that are described 
more fully in Dresher (1999).44 The parameter space is schematized in figure 31.  
Some parameters have only one level (e.g. Feet Headedness), while other parameters 
contain sub-parameters that become available if one option is chosen at the first level 
(e.g. Quantity Sensitivity). 
 

   
Figure 32.  A schematic representation of the relevant parameters in metrical 
phonology, 5 main parameters and 4 subparameters for a total of 9 interacting 
parameters. 
 

                                                
44 Note that this parametric system differs from the instantiations in Halle & Idsardi (1995), Dresher 
(1994), and Idsardi (1992), though there are fairly straightforward mappings between the instantiation 
considered here and the ones considered in those studies. 
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A sample representation of metrical phonology structure is in figure 33. 
  

   
 
Figure 33.  A sample representation of metrical phonology structure for ‘emphasis’, 
including terms to be described in more detail below: syllable type, metrical foot, 
extrametrical syllable, and stress within a metrical foot.  In ‘emphasis’, the first and 
last syllables (‘em’, ‘sis’) are classified as Heavy, while the middle syllable (‘pha’) is 
classified as Light.  The last syllable (‘sis’) is considered extrametrical, and not 
included in the metrical foot grouping.  The first two syllables (‘em’, ‘pha’) are 
grouped into a single metrical foot, and the leftmost syllable in the foot (‘em’) is 
stressed. 

5.3.2.2.1 Quantity Sensitivity 
 
 The first level of the quantity sensitivity parameter is whether the system is 
quantity-insensitive (QI) or quantity-sensitive (QS) (Halle & Idsardi, 1995; Hayes, 
1980; among many others). An example language of this kind is Maranungku 
(Dresher, 1999).  A quantity-insensitive system treats all syllables the same 
(represented as ‘S’ in (4)), whether they contain a long vowel as the nucleus (VV), a 
short vowel with a coda (VC), or a short vowel only (V). A long vowel syllable is 
“lu” in ludicrous, a short vowel with coda syllable is “crous” in ludicrous (the s is the 
consonant following the nucleus), and a short vowel only syllable is “di” in ludicrous.  
Note that the onset is irrelevant to syllable classification: VC, CVC, and CCVC are 
all classified as short vowels with codas and V, CV, and CCV are all classified as 
short vowels without codas.   For syllables with a long vowel, the coda is also 
irrelevant – VV, VVC, and VVCC are all classified as long vowel syllables.  In the 
examples below, all stressed syllables are underlined. 
 
(4) ‘ludicrous’ analyzed in a QI system 
              
 syllable classification     S  S   S 
 nucleus & coda  only          VV V VC 
 translation into V/C  CVV CV CCVC 
 syllables     lu di crous 
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 A quantity-sensitive system divides syllables into (L)ight and (H)eavy45.  
Examples of this kind of language include Koya, Selkup, and Khalka Mongolian 
(Dresher, 1999; Halle & Idsardi, 1995; Hayes, 1980; among others). Long vowels 
(VV) are always Heavy while short vowels (V) are always Light.  A subparameter 
then becomes available for how to classify short vowel syllables with codas 
(consonants following the vocalic nucleus (VC)), since some languages classify these 
as Light (VC-Light), e.g. Selkup (Dresher, 1999), while others classify them as 
Heavy (VC-Heavy), e.g. Koya (Dresher, 1999). 
 
(5) ‘ludicrous’ analyzed in a QS system 
 (a) VC-Light     
 syllable classification  H  L   L       
 nucleus & coda only  VV  V  VC      
 translation into V/C  CVV CV CCVC    
 syllables   lu  di crous    
 
 (b) VC-Heavy 
 syllable classification   H   L   H 
 nucleus & coda only  VV  V  VC 
 translation into V/C  CVV CV CCVC 
 syllables   lu  di crous 
 
 Note that a syllable classified as H should have stress unless some other 
parameter interferes, such as extrametricality. 

5.3.2.2.2 Extrametricality 
 
 Syllables in a word are grouped into larger units called metrical feet. Only 
syllables that are included in a metrical foot can be stressed.  A syllable classified as 
extrametrical cannot be included in a metrical foot and therefore cannot receive 
stress.  Only the syllable at the left or right edge of a word may be extrametrical, and 
only one syllable in the word may be extrametrical (both edge syllables cannot be 
extrametrical).46   
 A system can have no extrametricality (Em-None), so that all peripheral 
syllables are included in metrical feet.  An example of this type of language is 
Maranungku (Dresher, 1999). Note that metrical feet are signified by parentheses (…) 
in the remaining examples. 
 
 

                                                
45 Though occasionally more complex weight systems have been proposed. 
46 There are additional proposed sub-classes of extrametricality that I will not consider here, such as 
(1) only Light edge syllables may be extrametrical (Hayes, 1980), (2) only the final syllable of nouns 
may be extrametrical (Hayes, 1980), (3) only the final consonant may be extrametrical (Archibald, 
1998), and (4) only the final segment of the derivational stem (as indicated in the lexicon) can be 
extrametrical (Harris, 1983).  Excluding these subparameters is an example of restricting the relevant 
parameter set for parsing.   
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(6) An Em-None analysis of ‘afternoon’, assuming QS-VC-Light; two metrical feet 
 
 syllable classification  
 & metrical foot grouping ( L  L ) ( H ) 
 translation into V/C  VC VC VV 
 syllables   af ter noon 
 
 A system can also have extrametricality (Em-Some), e.g. English (Dresher, 
1999),  and then a subparameter becomes available to decide whether the leftmost 
syllable (Em-Left) or rightmost syllable (Em-Right) is the extrametrical one.  
Extrametrical syllables are signified by angle brackets <…> in the remaining 
examples. 
 
(7) Em-Some analyses 
 (a) An Em-Left analysis of ‘agenda’, assuming QS-VC-Heavy; 1 metrical foot 
 
 syllable classification 
 & metrical foot grouping  < L > ( H  L ) 
 translation into V/C    V VC  V 
 syllables      a gen da 
 
 (b) An Em-Right analysis of ‘ludicrous’, assuming QS-VC-Heavy; 1 metrical   
 foot 
 
 syllable classification 
 & metrical foot grouping ( H  L ) < H > 
 translation into V/C  VV  V   VC 
 syllables    lu di  crous 
 
 As we can see in (7) above, the syllables that are classified as extrametrical do 
not receive stress.  This is particularly striking in ‘ludicrous’, since the extrametrical 
syllable ‘crous’ is classified as Heavy under QS-VC-Heavy.  Under normal 
circumstances, a Heavy syllable is usually stressed.  Nonetheless, the extrametricality 
of the syllable interferes here, and allows the syllable to be without stress (and 
conform to the observed stress contour of ‘ludicrous’).  This is one example of how 
different parameters can interact with each other. 
 
5.3.2.2.3 Feet Directionality 
 
 Sequences of stressed syllables can be joined together as feet (Halle & 
Vergnaud, 1978; Hayes, 1995; Hayes, 1980; among many others).  Metrical feet can 
be constructed beginning from the left side of the word (Ft Dir Left) or from the right 
side of the word (Ft Dir Right).  An example of a language constructing feet from the 
left is Maranungku (Halle & Idsardi, 1995).  Examples of languages constructing feet 
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from the right are Warao and Weri (Halle & Idsardi, 1995).47 
 
(8a) Metrical feet from the left (in a QS-VC-Light, Em-None system): L L H; 2 
metrical feet 
 (i)   L L   H 
 (ii) ( L L   H 
 (iii) ( L L )   H 
 (iv) ( L L ) ( H 
 (v) ( L L ) ( H ) 
 Example stress contour:   L    L     H 
 Matching word:   pe   rox   ide  ‘peroxide’ 
 
 
(8b) Metrical feet from the right (in a QS, Em-None system): L L H; 2 metrical feet 
 (i)   L   L   H  
 (ii)   L   L   H ) 
 (iii)   L ( L    H ) 
 (iv)   L )  ( L    H ) 
 (v) ( L ) ( L    H ) 
 Example stress contour:  L    L   H 
 Matching word:   ho   li   day  ‘holiday’ 
  
 
 As (8) shows, the syllables are divided differently into metrical feet, 
depending on the feet directionality.  Since exactly one syllable in a metrical foot can 
receive stress, the differing metrical foot divisions can result in differing stress 
contours. 
  
5.3.2.2.4 Boundedness 
 
 Boundedness refers to how large a metrical foot can be (Hayes, 1980; among 
many others).  In an unbounded system (Unb), metrical feet can be arbitrarily large.  
The only reason a new metrical foot is started is if a Heavy syllable is encountered 
when grouping syllables into metrical feet.  If, as in (9c) below, there are no Heavy 
syllables, then there will only be 1 metrical foot. Examples of this kind of language 
are Selkup and Koya (Dresher, 1999). 
 
(9)  Examples of unbounded analyses 
 (a) QS, Em-None, Ft Dir Left system: L L L H L; 2 metrical feet 
  (i)   L L L   H   L 
  (ii) ( L L L   H   L 
  (iii) ( L L L ) ( H    L 
  (iv) ( L L L ) ( H    L ) 
   
                                                
47 Note that the examples below contain hypothetical analyses of the English words given as examples.  
In other words, those analyses are compatible with the stress contours observed. 
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 (b) QS, Em-None, Ft Dir Right system: L L L H L; 2 metrical feet 
  (i)   L L L   H   L 
  (ii)   L L L   H   L ) 
  (iii)   L L L   H ) ( L ) 
  (iv) ( L L L    H ) ( L ) 
  
 (c) QS, Em-None, Ft Dir Left system: L L L L L; 1 metrical foot 
  (i)   L L L L L 
  (ii) ( L L L L L 
  (iii) ( L L L L L ) 
 
 In contrast, a bounded system places a limit on the size of the metrical foot, 
such that only a certain number of units are included.  After that limit is reached, a 
new metrical foot is started.  Examples of these kind of languages include Cayuvava, 
Warao, Weri, and Maranungku (Halle & Idsardi, 1995). Once the learner determines 
that the system is bounded, two subparameters become available: the size limit - 2 or 
3 units (B-2 or B-3) -  and what the counting units are - syllables or moras (B-Syl or 
B-Mor).  Moras are units of syllable weight used in some languages (such as 
Japanese).  If moras are the counting units, a Heavy syllable counts as two moras 
while a Light syllable counts as only one. Analyses using the various bounded options 
are in (10) and (11). 
 
(10) Examples of bounded analyses: B-2 vs. B-3 
 (a) B-2, Em-None, Ft Dir Left: x x x x; 2 metrical feet 
  (i)   x x   x x  
  (ii) ( x x   x x  
  (iii) ( x x )   x x  
  (iv) ( x x ) ( x x 
  (v) ( x x ) ( x x ) 
 (b) B-3, Em-None, Ft Dir Left: x x x x; 2 metrical feet  
  (i)   x x x   x  
  (ii) ( x x x   x 
  (iii) ( x x x )   x 
  (iv) ( x x x)  ( x 
  (v) ( x x x) ( x ) 
 
(11) Examples of bounded analyses: B-Syl vs. B-Mor 
 (a1) QI, Em-None, Ft Dir Left, B-2, B-Syl: S S S S; 2 metrical feet  
  (i)   S S   S S  
  (ii) ( S S   S S 
  (iii) ( S S )   S S 
  (iv) ( S S )  ( S S 
  (v) ( S  S ) ( S S ) 
 
 (a2) QS, Em-None, Ft Dir Left, B-2, B-Syl: L H L L; 2 metrical feet 
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  (i)   L H   L L 
  (ii) ( L H    L L 
  (iii) ( L H )   L L 
  (iv) ( L H ) ( L L 
  (v) ( L H ) ( L L ) 
 (a3) QS, Em-None, Ft Dir Left, B-2, B-Syl: H H L L; 2 metrical feet 
  (i)   H H   L L 
  (ii) ( H H    L L 
  (iii) ( H  H )    L L 
  (iv) ( H  H ) ( L L 
  (v) ( H H ) ( L L ) 
 (b)  QS, Em-None, Ft Dir Left, B-2, B-Mor: H H L L; 3 metrical feet 
  (i)   H     H    L L 
     x x     x x    x x 
  (ii)   H     H    L L 
   ( x x     x x    x  x 
  (iii)   H     H    L L 
   ( x x )     x x    x  x 
  (iv)   H     H    L L 
   ( x x )  ( x x    x  x 
  (v)   H     H    L L 
   ( x x )  ( x x )    x  x 
  (vi)   H     H    L L 
   ( x x )  ( x x )  ( x  x 
  (vii)   H     H    L L 
   ( x x )  ( x x )   ( x  x ) 
  (viii)   H     H    L L 
   ( x x )  ( x x )   ( x  x ) 
  (ix) ( H )   ( H )   ( L L ) 
 
 As (11a3) and (11b) demonstrate, using syllables instead of moras as the 
counting units can create a markedly different  metrical foot structure, which then 
affects the observed stress contour. 

5.3.2.2.5 Feet Headedness 
 
 Feet headedness refers to which syllable in a metrical foot receives stress – the 
leftmost (Ft Hd Left) or the rightmost (Ft Hd Right) (Hayes, 1980; among many 
others).   
 
 
 
 
 
 
(12) Examples of analyses with Ft Hd Left and Ft Hd Right – stressed syllables 
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underlined 
 (a) QI, Em-None, Ft Dir Left, B-2, B-Syl, Ft Hd Left: S S S 
  ( S S ) ( S )  S S S 
 (b) QI, Em-None, Ft Dir Left, B-2, B-Syl, Ft Hd Right: S S S 
  ( S S ) ( S )  S S S 
 
5.3.2.3 Interacting Parameters 
 
 As we can see, all the metrical phonology parameters interact in their effect on 
the final stress contour assigned to a given word; a change to any one of them could 
change the stress contour in a non-trivial fashion.  An example is illustrated in (13): 
the change of one parameter value (Em-None to Em-Left) causes the entire stress 
contour to become its inverse. 
 
(13) A change to one parameter can drastically affect the stress contour assigned 
 (a) QI, Em-None, Ft Dir Left, B-2, B-Syl, Ft Hd Left: S S S S S  
 3 metrical feet 
  ( S   S )  ( S   S ) ( S )  S S S S S  
  Example: Maranungku ‘langkaratati’  lang  ka  ra  ta  ti 
 
 (b) QI, Em-Left, Ft Dir Left, B-2, B-Syl, Ft Hd Left: S S S S S  
 2 metrical feet 
  < S > ( S    S ) ( S     S )  S S S S S 
  Example: Maranungku ‘langkaratati’ – incorrect stress pattern 
        lang ka ra ta ti 
  Example: English ‘communication’ – correct stress pattern 
        co mmu  ni  ca  tion 
 
 Moreover, ambiguity can also easily arise – a single stress contour could be 
covered by multiple combinations of different parameter values, as shown in (14).  
Note that these combinations yield identical stress contours for ‘communication’, but 
these combinations may well yield differing stress contours for other words. Thus, the 
collection of combinations that produce the observable stress contour for any given 
word will vary from word to word. 
 
(14) Multiple analyses of a single stress contour:  
 some analyses of ‘communication’ = co mmu ni ca tion 
 (a) QI, Em-Left, Ft Dir Left, B-2, B-Syl, Ft Hd Left  
 2 metrical feet 
  < S > ( S    S ) ( S     S )  S S S S S 
 (b) QI, Em-Right, Ft Dir Left, B-2, B-Syl, Ft Hd Right 
 2 metrical feet 
  ( S    S )  ( S    S  )  < S >  S S S S S 
 
 
 (c) QS, QSVCH, Em-Right, Ft Dir Right, B-2, B-Syl, Ft Hd Right  
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 2 metrical feet 
  ( L    H )  ( L   H )  < H >  L H L H L 
 (d) QS, QSVCH, Em-Right, Ft Dir Left, B-3, B-Mor, Ft Hd Right  
 2 metrical feet 
  ( x  x x )  ( x x x )    x x 
  ( L    H )  ( L   H )  < H >  L H L H L 
 
 Converging on the correct values for the adult system with its interacting 
parameters is thus not a simple task. Because the parameters all combine to produce 
the observable stress contour, identifying unambiguous data for a single parameter 
value is not easy.  Nonetheless, this is precisely what the cues and parsing methods 
are proposed to do. I will now describe how both methods would identify 
unambiguous data for each of the values of each of these parameters, thereby 
instantiating the unambiguous data filter on the learner’s intake. 

5.4  The Cues Method for Finding Unambiguous Data 
 
 The cues method makes identification of unambiguous data simple, provided 
the learner knows the relevant cues and can match them to the data encountered.  
Recall that the cues method was originally proposed by Dresher (1999) for the 
metrical phonology domain, and he described a set of potential cues for each of the 
parameters.  One property of his cue set is that it assumes some parameters values are 
the default, and cues are only for the marked values.  As I noted previously, this could 
be perceived as a pitfall since it requires the learner to have pre-specified domain-
specific knowledge (perhaps as a non-uniform prior probability distribution biased 
towards the default value).  Dresher (1999) suggests a way to derive this knowledge: 
learners begin with simple representations and must be driven to more complex 
representations (in the spirit of Chomsky & Halle (1968)).  He proposes that his 
default values are simpler representations than their marked counterparts.   
 Nonetheless, since default values are an additional stipulation about the 
learner’s knowledge, I provide an alternate set of cues that does not require defaults; 
each opposing parameter value has its own cue.   I will compare the performance of 
these two cue implementations on the metrical phonology data. 

5.4.1 Quantity Sensitivity 
 
 In the cue set proposed by Dresher (1999), the value where the syllables are 
undifferentiated (QI) is the default value.  The cue for QS (where the syllables are 
classified as either Light and Heavy) is to compare words with the same number of 
syllables.  If they have different stress contours, then the system is QS. 
 
(15) Dresher cues for quantity sensitivity 
 (a) QI: default value (no cue required) 
 (b) QS: 2 words with n syllables that have different stress contours 
  Ex: n = 2,  word 1: VV  V, word 2: VV  VV  
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 An alternate cue set has cues for both QI and QS, as well as for the 
subparameters of QS (QS-VC-Light, where a VC syllable is treated as Light, and QS-
VC-Heavy, where a VC syllable is treated as Heavy).  The cue for QI is to find an 
unstressed internal VV syllable (which would be Heavy in a QS system, and therefore 
likely to be stressed) (16a).  The cue for QS is to find a 2 syllable word with 2 stresses 
(or a 3 syllable word with 2 adjacent stresses if the system is known to be 
extrametrical already) (16b). Once the system is known to be QS, the cue for QS-VC-
Light is an unstressed internal VC syllable (16c) while the cue for QS-VC-Heavy is a 
2 syllable word with 2 stresses, where at least one syllable is VC (or the 3 syllable 
variant if extrametricality is known to apply) (16d).  
 
(16) Alternate cues for quantity sensitivity 
 (a) QI: unstressed internal VV syllable 
  Ex: VV  VV  VV 
 (b) QS: 2 syllable word with 2 stresses, or 3 syllable word with 2 adjacent 
 stresses if extrametricality is known 
  Ex: (1) VV  VV (2) Em-Right: VV  VV  VV 
 (c) QS-VC-Light: unstressed internal VC syllable 
  Ex: VV  VC  VV 
 (d) QS-VC-Heavy: 2 syllable word with 2 stresses, with at least one syllable   
 VC (or 3 syllable word with 2 adjacent stresses and at least one syllable VC if 
 extrametricality is known) 
  Ex: (1) VV  VC (2) Em-Right: VV  VC  VV 
 
 Note that if a default-marked system was preferred, the QI and QS-VC-Light 
values would function as the default values, with cues existing for QS and QS-VC-
Heavy.  I offer some speculation as to why the QI and QS-VC-Light values might be 
the default.  One could argue that a QI system, because it treats all the syllables as the 
same, is a simpler method than dividing syllables into Light and Heavy.  One could 
also argue that a QS-VC-Light system is simpler than a QS-VC-Heavy system.  In 
particular, if a division between Light and Heavy syllables must be made, and Heavy 
syllables are marked in some way, having only VV syllables be Heavy is simpler than 
having other syllables such as VC also be Heavy. 

5.4.2 Extrametricality 
 
 In the cue set proposed by Dresher, having an extrametrical syllable is the 
default state. This may be a difficult default to defend, however, since one might view 
extrametricality (i.e. ignoring certain edge syllables) as a marked feature of the 
metrical structure that the learner would need evidence for.  Nonetheless, in the 
Dresher (1999) system, cues rule out extrametricality for each side (Em-Left and Em-
Right).  To rule out extrametricality for a given side, the edge syllable (leftmost for 
Em-Left and rightmost for Em-Right) must have stress. 
 
 
(17) Dresher cues for extrametricality 
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 (a) Em-None: Both leftmost and rightmost syllables have stress 
  Ex: VV  VC 
 (b) Em-Some (Left or Right): default 
 
 An alternate cue set has cues for Em-Some (both Em-Left and Em-Right) as 
well as for Em-None.  The cue for no extrametricality (Em-None) is similar to the 
Dresher-style cue: both edge syllables are stressed (18a).  The cue for Em-Some is 
that a Heavy syllable at either edge of the word is unstressed (18b); the cue for Em-
Left is that the leftmost syllable is Heavy and unstressed (18c) while the cue for Em-
Right is the rightmost syllable is Heavy and unstressed (18d). 
  
(18) Alternate cue set for extrametricality 
 (a) Em-None: Both leftmost and rightmost syllables have stress  
  Ex: VV  VC 
 (b) Em-Some: Either edge syllable is Heavy and unstressed 
  Ex: (1) H  L  H   (2) H  L  H 
 (c) Em-Left: Leftmost syllable is Heavy and unstressed 
  Ex: H  L  H 
 (d) Em-Right: Rightmost syllable is Heavy and unstressed 
  Ex: H  L  H 
 
 Note again that the alternate cue set could also be set up as a default-marked 
system.  In the alternate cue set, having no extrametricality (Em-None) could be 
argued as the default under the assumption that all syllables should be included for 
metrical feet groupings until the learner is forced by evidence to do otherwise. 

5.4.3 Feet Directionality 
 
 The cue set proposed by Dresher requires the feet directionality cues to be 
combined with the feet headedness cues, and so I will examine these cues together in 
section 5.4.5.  An alternate cue set has cues for feet directionality separate from cues 
for feet headedness.   
 In the alternate set, the cue for Feet Directionality Left is dependent on the 
quantity sensitivity value.  If the system is quantity insensitive (QI), the cue is 2 
stressed adjacent syllables at the right edge of the word (19a1); if the system is 
quantity sensitive (QS), the cue is 2 stressed adjacent syllables with the first syllable 
Heavy and the second Light at the right edge of the word (19a2).  In addition, if the 
system is known to have extrametricality on the rightmost syllable, then the cue is 
shifted to the previous two syllables.  The cue for Feet Directionality Right is exactly 
the same, except that the 2 stressed adjacent syllables are at the left edge of the word 
(19b). 
 
 
 
 
(19) Alternate cue set for feet directionality 
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 (a) Feet Directionality Left 
  (1) If QI: 2 stressed adjacent syllables at the right edge of the word (if   
  extrametricality exists for the rightmost syllable, the 2 stressed    
  adjacent syllables are shifted over one position) 
  Ex: (1) S  S  S  S (2) S  S  S  S  <S> 
   
  (2) If QS: 2 stressed adjacent syllables at the right edge of the word,   
  with the first as H and the second as L (if extrametricality exists for the 
  rightmost syllable, the 2 stressed adjacent syllables are shifted over  
  one position) 
  Ex: (1) L  L  H  L (2) L  L  H  L  <L> 
  
 (b) Feet Directionality Right 
  (1) If QI: 2 stressed adjacent syllables at the left edge of the word (if   
  extrametricality exists for the leftmost syllable, the 2 stressed adjacent  
  syllables are shifted over one position) 
  Ex: (1) S  S  S  S (2) <S>  S  S  S  S 
  
  (2) If QS: 2 stressed adjacent syllables at the left edge of the word,  
  with the first as L and the second as H (if extrametricality exists for the 
  leftmost syllable, the 2 stressed adjacent syllables are shifted over one  
  position) 
  Ex: (1) L  H  L  L (2) <L>  L  H  L  L 

5.4.4 Boundedness 
 
 In the cue set proposed by Dresher, the Unbounded value is the default and 
cues signal that the system is bounded.  The cue for boundedness is the presence of  
an internal stressed Light syllable. 
 
(20) Dresher cues for boundedness 
 (a) Unbounded: default 
 (b) Bounded: an internal stressed Light syllable 
  Ex: L  L  L  L  
 
 An alternate cue set has cues for both Unbounded and Bounded, as well as for 
the subparameters of Bounded (B-2 vs. B-3, B-Syl vs. B-Mor).  The cue for an 
unbounded system depends on the system’s quantity sensitivity. If the system is QI, 
the cue is three or more unstressed syllables in a row (21a1); if the system is QS, the 
cue is three or more unstressed Light syllables in a row (21a2).48   
 The cue for a bounded system is really the union of the cues for B-2 and B-3, 
which are again dependent on the quantity sensitivity of the system.  If the system is 
QI, the B-2 cue is three or more syllables in a row with every other syllable stressed 
                                                
48 Note that this cue can interact with extrametricality.  If the learner knows the system is extrametrical 
(either left or right), that syllable would be excluded from the three (or more) unstressed syllables 
necessary to be an Unbounded cue. 
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(21c1); if the system is QS, the cue is three or more Light syllables in a row with 
every other syllable stressed (21c2).  The B-3 cue is nearly identical, except that there 
must be four or more (Light) syllables in a row with every third one stressed (21d).   
 This leaves the cues for a system that counts syllables (B-Syl) vs. a system 
that counts moras (B-Mor).  The B-Syl cue also depends on the quantity sensitivity of 
the system.  If the system is QI, then the cue is identical to the B-2 and B-3 cues (3+ 
syllables in a row with every other one stressed or 4+ syllables in a row with every 
third one stressed) (21e1).  If the system is QS and B-2, the cue is 2 adjacent syllables 
with the pattern ‘H  L’ or ‘L  H’ (21e2); if the system is QS and Bounded-3, the cue is 
3 adjacent syllables with the pattern ‘H  L  L’ or ‘L  L  H’ (21e3).   
 The B-Mor cue is far simpler: a 2 syllable word with both syllables stressed, 
and both syllables are Heavy (21f).  If extrametricality is known to apply, then the 
cue is the same except that it applies to the 2 adjacent syllables that aren’t 
extrametrical. 
  
(21) Alternate cue set for boundedness 
 (a) Unbounded: 3+ unstressed (Light) syllables in a row  
  Ex: (1) QI: S  S  S  S    (2) QS: L  L  L  L 
 (b) Bounded: union of B-2 and B-3 cues 
 (c) B-2: 3+ (Light) syllables in a row, every other one stressed 
  Ex: (1) QI: S  S  S  S   (2) QS: L  L  L  L 
 (d) B-3: 4+ (Light) syllables in a row, every third one stressed 
  Ex: (1) QI: S  S  S  S   (2) QS: L  L  L  L 
 (e) B-Syl:  
  (1) QI: is union of B-2 and B-3 cues for QI 
  (2) QS, B-2: 2 adjacent syllables with pattern ‘H  L’ or ‘L  H’ 
   Ex: (1) L  L  H  L  (2) L  H  L  L 
  (3) QS, B-3: 3 adjacent syllables with pattern ‘H  L  L’ or ‘L  L  H’ 
   Ex: (1) H  L  L  L  L  (2) L  L  L  L  H   
 (f) B-Mor: 2 syllable word with both syllables stressed and Heavy 
  Ex:  (1) H  H    (2) (Em-Left)  < L >  H  H 
 
 The complexity of some of the cues for boundedness suggests that a default-
marked system might be quite attractive here.  In this case, I speculate that 
Unbounded would be the default, since it is an assumption that there is no arbitrary 
metrical foot size.49  Also, counting by syllables (B-Syl) as opposed to moras (B-
Mor) could be argued as the default, since words are already divided into syllables for 
many of the other parameters. 

5.4.5 Feet Headedness 
 
 The set of cues proposed by Dresher has a single “cue” for feet directionality 
and feet headedness.  In fact, this cue is really very much like a find-all-parses 
analysis using the restricted parameter set  F = {Feet Directionality, Feet 
                                                
49 Also, the Unbounded value as default falls out from the metrical phonology system implemented by 
Idsardi (1992). 
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Headedness}. The learner parses the known set of words with all combinations of feet 
headedness and feet directionality ((1) Ft Dir Left/Ft Hd Left, (2) Ft Dir Left/Ft Hd 
Right, (3) Ft Dir Right/Ft Hd Left, (4) Ft Dir Right/Ft Hd Right).  For a given 
combination, if all the known words can be parsed such that all Light syllables that 
aren’t the head of a metrical foot are unstressed, then this situation is the “cue” for 
this combination of feet directionality and feet headedness. 
 However, as I proposed an alternate set of cues for feet directionality by itself, 
I propose an alternate set for feet headedness by itself.  The cue for Feet Headedness 
Left is that the leftmost syllable of the leftmost foot is stressed (22a); the cue for Feet 
Headedness Right is that the rightmost syllable of the rightmost foot is stressed (22b). 
  
(22) Alternate cue set for feet headedness50 
 (a) Feet Hd Left: the leftmost syllable of the leftmost foot is stressed 
  (1) VV  VC  V   (2) (Em-Left) < VV >  VC  V  V 
 (b) Feet Hd Right: the rightmost syllable of the rightmost foot is stressed 
  (1) VV  VC  V   (2) (Em-Right) VC  V  VC  < VV > 

5.4.6 Summary: Cues 
 
 I have now stepped through cues for each of the relevant parameters in the 
metrical phonology domain.  Recall that one of the strengths of cues is that the learner 
can easily identify unambiguous data, since it will match the cue the learner knows.  
However, the cues proposed here are heuristic in nature and may cause the learner to 
perceive false positives and false negatives, which could in turn lead the learner 
astray.  

5.5 The Parsing Method for Finding Unambiguous Data 

5.5.1 The find-all-parses analysis 
 
 The parsing method differs from the cues method in that it is more resource-
intensive to identify unambiguous data, but far less likely to identify false positives 
and false negatives.  A learner using the parsing method will parse the given data 
point with all available values of all the parameters in the relevant parameter set.  
Note that a parameter value ceases to be available when the learner decides the other 
value is correct for the language.  For instance, if the learner has decided that the 
system is QS, no parses will be generated that use the value QI.   
 I have termed this procedure the find-all-parses analysis.  While there are 
other implementations of the parsing method that are not as resource-taxing as the 
find-all-parses analysis, the find-all-parses analysis is the most inclusive version.   I 
want to give the parsing method the best chance for successful identification of 

                                                
50 The feet headedness cues can actually apply to the same word if it has stress on both the initial and 
final syllable. However, the learner effectively learns nothing from such a word since neither 
parameter value gets the advantage over the other from this word.  Alternatively, the learner might 
choose to explicitly ignore such a word as inconsistent, since it displays cues for mutually exclusive 
parameter values. 
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unambiguous data to see how it compares to the cues method.  If this version of the 
parsing method is superior to the cues method, then we can see if weaker versions 
using less resources are also superior.  First, however, I investigate whether the find-
all-parses implementation can get the job done. 
 After the learner has conducted a find-all-parses analysis on the data point, the 
learner then sees if only one parameter value of a parameter leads to a successful 
parse of the data point.  If so, the data point is considered unambiguous for that value.  
The results of an example find-all-parses analysis for a data point are shown in (23). 
 
(23) The results of a find-all-parses analysis of ‘af  ter  noon’: sets of parameter 
values that yield a matching stress contour 
 (a) (QI, Em-None, Ft Dir Left, B, B-2, B-Syl, Ft Hd Left) 
 (b) (QI, Em-None, Ft Dir Rt, B, B-2, B-Syl, Ft Hd Rt) 
 (c) (QS, QS-VCL, Em-None, Ft Dir Left, Unb, Ft Hd Left) 
 (d) (QS, QS-VCL, Em-None, Ft Dir Left, B, B-2, B-Syl, Ft Hd Left) 
 (e) (QS, QS-VCL, Em-None, Ft Dir Rt, B, B-2, B-Syl, Ft Hd Rt) 
 
 Since all successful parses share the parameter value Em-None, this data point 
would be considered unambiguous for Em-None.   
 Note that if the relevant parameter set is restricted, the find-all-parses analysis 
returns fewer parameter value sets and the same data point may then be considered 
unambiguous for other parameter values.  Thus, a data point may be viewed as 
unambiguous for different parameter values at different points in time.  This 
emphasizes how the definition of “unambiguous” is relative to the learner’s current 
knowledge state.  This shift in perceived “unambiguity” is demonstrated in (24).  In 
this example, suppose the learner has determined that the system is QI.  The find-all-
parses analysis will disregard any parses that include QS values. 
 
(24) The results of a find-all-parses analysis of ‘af  ter  noon’, with the restriction that 
the system is QI: sets of parameter values that yield a matching stress contour 
 (a) (QI, Em-None, Ft Dir Left, B, B-2, B-Syl, Ft Hd Left) 
 (b) (QI, Em-None, Ft Dir Rt, B, B-2, B-Syl, Ft Hd Rt) 
 
 Given these results from the find-all-parses analysis, the learner using the 
parsing method would view this data point as unambiguous for Em-None, Bounded, 
Bounded-2, and Bounded-Syl. 

5.5.2 Summary: Parsing 
 
 I have now described how the parsing method identifies unambiguous data in 
the input.  Recall that one of the strengths of parsing is that it is not heuristic in nature 
and therefore will not perceive false positives or false negatives.  The simplicity of 
the method is also appealing, since the learner needs only to use a procedure already 
available for language comprehension. 
 However, the find-all-parses method proposed here has its own pitfalls.  I 
reiterate that it may be quite resource-intensive for a learner to implement.  Moreover, 
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a fundamental problem with the parsing method is that it cannot use data it cannot 
parse.  In a language learning situation in which there aren’t many exceptions to the 
adult parameter values, this is not too damaging.  But the English data set, as I have 
mentioned before, is fraught with such exceptions.  Once the learner has set some of 
the parameter values correctly, it will be unable to parse the non-trivial portion of the 
data that are exceptions.  In this sense, the parsing method may not be “flexible” 
enough to cope with noisy data.  We will see how this inflexibility impacts the 
learning path the learner must take to converge on the correct set of parameter values 
for English.  First, however, we will verify the performance of these two methods on 
an easier language learning case where the available data set is not exception-filled. 

5.6 Cues and Parsing in a Clean Language Environment: An Easy Case 
 
 A “clean” language environment is one in which there are no conflicting 
unambiguous data in the learner’s input.  A clean language environment makes 
convergence on the adult parameter values very straightforward. Given sufficient 
time, the learner will be exposed to enough unambiguous data points to converge on 
the adult parameter values.  There are no “garden paths” provided by unambiguous 
data for the incorrect parameter values (in contrast to noisy data sets such as English).  
As long as these methods allow the learner to perceive some data as unambiguous, the 
learner will eventually converge on the correct parameter values.  I sketch how these 
methods would work for a language like Maranungku, which has stress on every odd 
syllable counting from the left (examples in (25) from Dresher (1999) and Kager 
(1995)).   
 
(25) Maranungku Stress Contour Examples (stressed syllables underlined) 
 (a)  lang ka ra ta ti     - ‘prawn’ 
 (b) we    le pe le man ta  - ‘kind of duck’ 
 (c) ya ngar ma ta   - ‘the Pleiades’ 
 (d) me re pet    - ‘beard’ 
 (e) ti  ralk     - ‘saliva’ 
 
 The parameter values for Maranungku are in (26). 
 
(26) Maranungku metrical phonology parameter values 
 (QI, Em-None, Ft Dir Left, B, B-2, B-Syl, Feet Hd Left) 
 
 Each of the words in (25) can be analyzed with either the cues or parsing 
method to identify if any are unambiguous for any of the parameter values (see table 
5.2).  As we can see, the two methods do not always agree on how many values a 
given data point is unambiguous for.  Nonetheless, all the data are always 
unambiguous for the correct adult system parameter values, due to the clean language 
environment. 
 
 
 Unambiguous for Cues Unambiguous for Parsing 
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lang  ka  ra  te  ti Bounded-2, Em-None Bounded-2, Em-None 
we  le  pe  le  man  ta Bounded-2, Ft Hd Left Bounded-2 
ya  ngar  ma  ta Ft Hd Left Bounded-2 
me  re  pet Em-None Em-None 
ti  ralk Ft Hd Left Nothing 
Table 5.2. The results of using the cues and parsing methods to classify five 
Maranungku words as unambiguous for available parameter values. 
 
 Because there are no conflicting unambiguous data, neither the cues nor 
parsing method would classify the data as unambiguous for the incorrect parameter 
value.  The learner should thus converge on the adult Maranungku system no matter 
which method is used, given exposure to sufficient data.  Moreover, there are no 
order constraints on the learning path: the learner should converge on the correct 
adult values, no matter what order the learner sets the parameters in. 

5.7  Learning English: A Harder Case 
 
 English, however, poses a more difficult challenge since it does have 
conflicting unambiguous data points, as perceived by the learner.  I turn now to how I 
tested each of these methods for learning the English metrical phonology system. 

5.7.1 Estimating the Composition of the Input to the Learner 
 
 I compiled caretaker speech to children between the ages of 6 months and 2 
years from the CHILDES database (MacWhinney, 2000), for a total of 540505 words.  
Each of these words were then divided into syllables and marked with stress, using 
the CALLHOME database of telephone conversation (Canavan et al., 1997) and the 
MRC psycholinguistics database (Wilson, 1988) as references for likely syllabic 
divisions and stress contours.  I assumed that this was a reasonable estimation of the 
composition of the data English learners would be exposed to. 

5.7.2 The Logical Problem of Learning English Metrical Phonology 
 
 The correct parameter values for English are listed in (27). 
 
(27) English metrical phonology parameter values 
 (QS, QS-VC-Heavy, Em-Right, Ft Dir Right, Ft Hd Left, B, B-2, B-Syl) 
 
 Converging on the correct parameter values for English adults is non-trivial, 
given realistic distributions of input to English children.  We must ask what 
parameter-setting orders (if any) will lead the learner to converge on the adult 
parameter values.  Importantly, every time learners set one parameter, they may then 
view all subsequent data differently.  So, the setting of one parameter in one way 
could bias the learner to set another parameter in another way later on.  Thus, the 
order of parameter-setting can have a significant effect on the final set of parameter 
values the learner converges on.  A viable parameter-setting order will lead the 
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learner to converge on the correct set of parameter values for the language. 
 The viable orders are derived via an exhaustive walk through all possible 
parameter-setting orders; hence, this is exploring the logical problem of learning, in 
that we are interested in whether the target state is achievable at all using these 
learning methods.  To conduct the exhaustive walk for a given learning method (cues 
or parsing), we must try out every single parameter-setting order with the input.   
 In the worst case, no order will suffice – the target set of parameter values is 
unreachable, given the input and this learning method.  Learning with an 
unambiguous data filter produces insufficient behavior. 
 A better scenario is that learning with an unambiguous data filter does 
produce sufficient behavior.  A slightly better case is that there is a set of orders that 
will allow the learner to reach the target set, but these orders are completely unrelated 
to each other.  There is no way to make the knowledge necessary for acquisition 
success concise; the learner must somehow be aware of the viable orders explicitly. In 
an even better case, there is a set of orders that will work, and they can be captured by 
a small  number of order constraints, though these order constraints may need to be 
stipulated.  A still better case is that a set of viable orders exists that can be captured 
by principled order constraints that are independently derivable.  In the best case, all 
parameter-setting orders will be viable so there is no need to worry about the order of 
parameter-setting at all.51  In this last case, since there are no constraints on the order 
of parameter-setting, there is no need to explain how the learner knows them or why 
the learner follows them. 
 
5.3 Conducting an Exhaustive Walk Through All Possible Orders  

5.3.1 The Algorithm for Identifying All Viable Parameter-Setting Orders 
 
 Here, I describe the method for conducting an exhaustive walk through all 
possible parameter-setting orders to determine which, if any, will lead the learner to 
converge on the adult set of parameter values.   
 
(28) Algorithm for identifying all viable orders of parameter-setting for a given 
learning method 

(a) For all currently unset parameters, determine the unambiguous data 
distribution in the corpus (i.e. how much unambiguous data there is for each 
value of each unset parameter). 
(b) Choose a currently unset parameter to set.  The value chosen for this  
parameter is the value that has a higher probability in the data the learner 
perceives as unambiguous.  This logic behind this is that, given enough data 
points (i.e. a sufficiently long learning period), this parameter value will 
eventually accrue enough probability to become the winning parameter value. 
(c) Repeat steps (a-b) until all parameters are set. 
(d) Compare final set of values to target set of values.  If they match, this is a  
viable parameter-setting order. 

                                                
51 This is the case of the clean language environment described in the previous section. 
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(e) Repeat (a-d) for all parameter-setting orders. 
 
 The process of determining the distribution of unambiguous data in this 
corpus after each parameter is set (28a) is meant to reflect how the learner perceives 
the incoming data at different points in the parameter-setting process.  I want to use 
all the data available in the sample corpus to estimate what the input distributions are 
for the learner at any given point in time.  Thus, after each parameter is set, this 
algorithm gauges how the learner would then view the available input in the linguistic 
environment by recalculating the unambiguous data distributions in the corpus. 
 In (28b), the learner chooses the parameter value with a higher probability in 
the unambiguous data.  There are two ways to measure unambiguous data probability, 
depending on what the learner is relativizing the probability against. One way, which 
I will refer to as the relativize-against-all approach, relativizes the unambiguous data 
for that parameter value against the entire input set. The second way, which I will 
refer to as the relativize-against-potential approach, is for the learner to relativize the 
unambiguous data for that parameter value against the set of potential unambiguous 
data points.  The set of potential unambiguous data points is smaller than the entire 
input set and may vary across parameters, since not every data point satisfies the 
preconditions necessary to be an unambiguous data point.  Moreover, the 
preconditions will vary depending on whether the learner uses cues or parsing to 
identify unambiguous data. I will describe in detail below why this occurs.  
Meanwhile, it is unclear a priori which relativization approach should be preferred by 
the learner, so I will examine the effects of both separately.   
 
5.7.3.2 Relativization of Unambiguous Data Probability 
 
 The relativize-against-all approach can intuitively be characterized by the 
question, “How likely is it that a random data point chosen from the entire input set 
will be an unambiguous data point for the parameter value of interest?”  It does not 
matter for this approach whether unambiguous data are identified via cues or via 
parsing because the relativizing set (the input set size) is constant across both cues 
and parsing.   
 As a concrete example, suppose the data set provides 11213 data points 
perceived by the learner as unambiguous for Quantity Sensitive (QS) and 2140 
perceived as unambiguous for Quantity Insensitive (QI) .  The total data set size is 
540505 words, so the relativized probability for an unambiguous QS data point is 
11213/540505 = 0.0207 and the relativized probability for an unambiguous QI data 
point is 2140/540505 = .00396.  The learner will choose QS (.0207) over QI (.00396). 
 
 QI QS 
Unambiguous Data Points 2140 11213 
Relativizing Set 540505 540505 
Relativized Probability 0.00396 0.0207 
Table 5.3.  Relativize-against-all approach, for both the cues and parsing method.  
The learner will choose QS. 
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 The relativize-against-potential approach can intuitively be characterized by 
the question, “How likely is it that a random data point chosen from the set of data 
points satisfying the preconditions to be unambiguous will actually be an 
unambiguous data point for the parameter value of interest?”  The relativizing set (the 
set of potential unambiguous data points) will vary in size, depending on whether 
cues or parsing is used to identify unambiguous data points.  Specifically, if the 
learner uses cues, the relativizing set will vary across parameter values.  In contrast, 
if the learner uses parsing, the relativizing set will remain constant across parameter 
values.   
 If the learner uses cues to identify unambiguous data, the learner is looking for 
a combination of structure and stress within a word (e.g. words of 2 syllables that are 
both stressed for QS).  Words that do not match the structural requirement of the cue 
(e.g. word of 4 syllables for the QS cue) cannot possibly have the correct structure 
and stress combination to be a cue, since they already lack the correct structure.  
Thus, these data points are excluded from the set of potential unambiguous data 
points since they do not obey the necessary structural preconditions.  Because of the 
different structural requirements of the cues for different parameter values, the 
relativizing set size will vary from cue to cue.  
 As a concrete example, suppose the data set provides 11213 data points 
perceived by the learner as unambiguous for QS and 2140 data points perceived by 
the learner as unambiguous for QI.  Suppose also that the potential set of QS cues 
(words having 2 syllables, etc.) is 85268 while the set of potential QI cues (words of 
at least 3 syllables, etc.) is 2755.  The relativized probability for an unambiguous QS 
data point is 11213/85268 = 0.132 and the relativized probability for an unambiguous 
QI data point is 2140/2755 = .777.  The learner using the cues method will choose QI 
(.277) over QS (.132). 
 
 QI QS 
Unambiguous Data Points 2140 11213 
Relativizing Set 2755 85268 
Relativized Probability 0.777 0.132 
Table 5.4.  Relativize-against-potential approach, for the cues method.  The learner 
will choose QI. 
 
 If the learner uses parsing to identify unambiguous data, the set of potential 
cues consists of all parseable words.  The number of parseable words will depend on 
the currently set parameter values, since some words may not be able to be parsed 
once certain parameter values are set (e.g. words with syllable-final stress will not be 
parseable if Em-Right (extrametricality on the rightmost syllable) is set).  However, 
in contrast with the cues method, the size of the relativizing set (the parseable words) 
will not vary from parameter value to parameter value. Thus, all unambiguous data 
point counts are normalized against the same value, just as in the relativize-against-all 
approach (though the actual value is less than the entire input set).   
 As a concrete example, suppose the data set provides 11213 data points 
perceived by the learner as unambiguous for QS and 2140 data points perceived by 
the learner as unambiguous for QI.  Suppose also that there are p parseable words, 
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given the current parameter settings. The relativized probability for an unambiguous 
QS data point is 11213/p, which will be larger than the relativized probability for an 
unambiguous QI data point, 2140/p.  The learner using the parsing method will 
choose QS (11213/p) over QI (2140/p). 
 
 QI QS 
Unambiguous Data Points 2140 11213 
Relativizing Set p p 
Relativized Probability 2140/p 11213/p 
Table 5.5.  Relativize-against-potential approach, for the parsing method.  The learner 
will choose QS. 
 
5.7.3.3 An Example of Testing a Parameter-Setting Order 
 
 In (29), I demonstrate steps (28a-b) for a learner using the parsing method and 
the relativize-against-all approach, testing a parameter-setting order that begins by 
setting the quantity sensitivity parameter to QS. Note how the distribution of 
unambiguous data for a given parameter (such as Extrametricality below) can shift 
drastically, depending on what parameters are currently set. 
 
(29) Testing an order for the parsing method with the relativize-against-all approach 
that begins by setting quantity sensitivity  
 (a) Currently unset parameters: Quantity Sensitivity, Extrametricality, Feet  
 Directionality, Boundedness, Feet Headedness 
  

Quantity Sensitivity Extrametricality 
QI: 
0.00398 

QS:  
0.0205 

Em-None:  
0.0284 

Em-Some:  
0.0000259 

Feet Directionality Boundedness 
Ft Dir Left:  
0.000 

Ft Dir Rt:  
0.00000925 

Unb:  
0.00000370 

Bounded:  
0.00435 

Feet Headedness  
Ft Hd Left:  
0.00148 

Ft Hd Rt:  
0.000 

 

Table 5.6. Unambiguous data distribution from corpus: probability of finding 
unambiguous  data point in input data set, using parsing method and 
relativize-against-all (probabilities calculated out of 540505 words) 

 
(b) Choose quantity sensitivity to set.  QS has a higher probability of finding 
an unambiguous data point (QS probability is 0.0205, which is greater than 
QI’s probability of 0.00398).  Set Quantity Sensitivity to QS. 

  
(c) Currently unset parameters: QS-VC-Light/QS-VC-Heavy, 
Extrametricality, Feet Directionality, Boundedness, Feet Headedness 

 
QS-VC-Light/QS-VC-Heavy Extrametricality 
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VC-Light:  
0.00265 

VC-Heavy:  
0.00309 

Em-None:  
0.0240 

Em-Some:  
0.0485 

Feet Directionality Boundedness 
Ft Dir Left:  
0.000 

Ft Dir Rt:  
0.00000555 

Unb:  
0.00000370 

Bounded:  
0.00125 

Feet Headedness  
Ft Hd Left:  
0.000588 

Ft Hd Rt:  
0.0000204 

 

Table 5.7. Unambiguous data distribution from corpus: probability of finding 
unambiguous  data point in input data set, using parsing method and 
relativize-against-all (probabilities calculated out of 540505 words)  
 
This process then continues for the remaining unset parameters in the system 

until all parameters are set. 

5.8 English Learning Results 

5.8.1 Order Constraints as a Metric 
 
 If both learning methods yield a set of parameter-setting orders that lead to the 
correct target values for English, then both solve the logical problem of language 
learning for the English metrical phonology system.  That is, both have at least one 
parameter-setting order that leads the learner to the target state.  If there is more than 
one viable order, we can then compare the two methods by how well-formed the sets 
of viable parameter-setting orders are. 
 First, we can determine if the set for each method can be captured by order 
constraints at all, whether stipulated or principled.  If so, then the set is at least well-
formed enough to be described in a more compact representation than explicitly 
listing all the viable orders in the set. After that, we can then consider the nature of 
the order constraints that capture each set.  A method with a set that can be described 
by principled constraints will be considered superior to a method with a set that can 
only be described by constraints that must be explicitly stipulated. 

5.8.2 Parameter-setting Orders that Lead to English Target Values 
 
 As it turns out, both methods yield a set of parameter-setting orders that will 
cause a learner to converge on the English values when the relativize-against-all 
approach is used to calculate the relativized probability of unambiguous data.  Both 
methods thus pass the first hurdle of solving the logical problem of language learning 
for the English metrical phonology system.  Again, this is no mean feat given the 
interactive nature of the 9 parameters that produce stress contours and the noisiness of 
the data to the learner.   
 However, only the parsing method succeeds when the relativize-against-
potential approach is used. Because the relativizing set for parsing is constant across 
parameter values for both relativization approaches, the set of viable orders for 
parsing is the same for each approach.  In contrast, the relativizing set for cues varies 
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across parameter values in the relativize-against-potential approach, and in fact leads 
to no orders being viable to reach the target state for English.  Table 5.8 summarizes 
the behavior of  the cues and parsing methods when combined with different 
approaches to relativizing the probability of the unambiguous data. 
 
 Cues Parsing 
relativize-against-all Successful Successful 
relativize-against-potential Unsuccessful Successful 
Table 5.8.  Comparison of success of different methods of identifying unambiguous 
data with different approaches to relativizing probability of unambiguous data. 
 
 Given that the parsing method always has a viable set of orders, one might 
believe that parsing is therefore the superior method for identifying unambiguous 
data.  It succeeds no matter what the probability is relativized against because the 
relativizing set is constant across all parameter values.  However, recall that the 
characterization of the viable set of orders is also important.  A set characterized by 
constraints that are principled is more desirable than a set characterized by constraints 
that must be stipulated.  I shall therefore examine the viable set of orders for both 
methods and see how they compare. 
 In (30a) below, I list a sample of the parameter-setting orders for the cues 
method that allowed the learner to converge on the English values.  In (30b), I list a 
sample of the parameter-setting orders that failed to work. For a complete listing of 
the orders that were successful, see the Appendix. 
 
(30a) Sample of Cues Method Parameter-Setting Orders that Succeeded 

(a) QS, QS-VC-Heavy, B, B-2, Feet Hd Left, Feet Dir Right, Em-Right, B-Syl 
(b) QS, B, B-2, Feet Hd Left, Feet Dir Right, QS-VC-Heavy, Em-Right, B-Syl 
(c) B, B-2, Feet Dir Right, QS, Feet Hd Left,  QS-VC-Heavy, Em-Some, Em-
Right, B-Syl 
(d) Feet Hd Left, Feet Dir Right, B, B-2, QS, QS-VC-Heavy, Em-Some, Em-
Right, B-Syl 
(e) Feet Dir Right, QS, Feet Hd Left, B, QS-VC-Heavy, B-2, Em-Some, Em-
Right, B-Syl 

 
(30b) Sample of Cues Method Parameter-Setting Orders that Failed 

(a) Em-Some, Em-Right, Feet Dir Right, QS, Feet Hd Left, B, QS-VC-Heavy, 
B-2, B-Syl 
(b) QS, B, Feet Hd Left, Feet Dir Right, QS-VC-Heavy, Em-Some, Em-Right, 
B-Syl, Bounded-2 
(c) Feet Hd Left, Feet Dir Right, B, B-Syl, B-2, QS, QS-VC-Heavy, Em-
Some, Em-Right 

  
 In addition to a viable set of parameter-setting orders existing for the cues 
method, this viable set can also be described more succinctly by the order constraints 
in (31). 
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(31) Cues Method: Order Constraints 
 (a) QS-VC-Heavy set before Em-Right 
 (b) Em-Right set before B-Syl 
 (c) B-2 set before B-Syl 
 The rest of the parameters are freely ordered with respect to each other. 
 
 In (32a) below, I list a sample of the parameter-setting orders for the parsing 
method that allowed the learner to converge on the English values.  In (32b), I list a 
sample of the parameter-setting orders that failed to work. For a complete listing of 
the orders that were successful, see the Appendix. 
 
(32a) Sample of Parsing Method Parameter-Setting Orders that Succeeded 

(a) QS, B, Feet Hd Left, QS-VC-Heavy, Feet Dir Right, B-Syl, B-2, Em-
Some, Em-Right  
(b) B, QS, Feet Hd Left, Feet Dir Right, QS-VC-Heavy, B-Syl, Em-Some, 
Em-Right, B-2 
(c) Feet Hd Left, QS, QS-VC-Heavy, B, Feet Dir Right, En-Some, Em-Right, 
B-Syl, B-2 
 

(32b) Sample of Parsing Method Parameter-Setting Orders that Failed 
(a) Feet Dir Right, QS, Feet Hd Left, B, QS-VC-Heavy, B-2, Em-Some, Em-
Right, B-Syl 
(b) Em-Some, Em-Right, QS, B, Feet Hd Left, Feet Dir Right, QS-VC-Heavy, 
B-Syl, B-2 
(c) QS, QS-VC-Heavy, Feet Hd Left, Feet Dir Right, B, B-Syl, B-2, Em-
Some, Em-Right 
(d) QS, Feet Dir Right, QS-VC-Heavy, Feet Hd Left, B, B-Syl, B-2, Em-
Some, Em-Right 
(e) B, Feet Dir Right, QS, QS-VC-Heavy, Feet Hd Left, B-Syl, B-2, Em-
Some, Em-Right 
 

 In addition to a viable set of parameter-setting orders existing for the parsing 
method, the viable set can also be described more succinctly by dividing the 
parameters into three groups.  The parameters within each group are freely ordered 
with respect to each other (33). 
 
(33) Parsing Method: Order Constraints as Freely-Ordered Groups 
 (a) Group 1: QS, Ft Hd Left, B 
 (b) Group 2: Ft Dir Right, QS-VC-Heavy 
 (c) Group 3: Em-Some, Em-Right, B-2, B-Syl 
 
 At first glance, the order set for the cues method appears to be less constrained 
than the order set for the parsing method.  However, the true criterion of merit is to 
compare how easily each of the constraints can be derived from other properties of 
the learning system. 
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5.8.3 Deriving Constraints 
 
 There are several ways I could think of to derive constraints from properties 
of the learning system: data saliency, data quantity, and default values.52  I describe 
each of these in turn.   
 I begin with the saliency of the data.  Data that are better signals might be 
noticed and used more easily by the learner than data that aren’t.  This is true no 
matter what the domain.  In the domain of metrical phonology, it has been suggested 
that the unexpected presence of stress is more informative than the unexpected 
absence of stress (Bill Idsardi, personal communication). The presence of stress is a 
stronger logical signal since there are many factors that could cause the absence of 
stress if the stress system is unknown, e.g. stress deletion under clash, conflation of 
secondary stresses, and segmental rules such as vowel devoicing (Halle & Idsardi, 
1995; among others).  The presence of stress, however can pinpoint a parametric 
cause (or a lexically pre-existing stress that has to be stored explicitly in the system 
anyway (Halle & Idsardi, 1995)). Moreover, the presence of stress may be a stronger 
acoustic signal, since a stressed syllable is more prominent than an unstressed 
syllable.  Stressed syllables might therefore be more readily attended to by the 
learner. 
 There is also morphological evidence that the presence of stress is 
psychologically more salient.  Morphological rules exist that restrict affix attachment 
to words with stress on the edge syllable (-al for final stress words: remove + al = 
removal), but I am currently unaware of any morphological rules that exist that 
restrict affix attachment to words without stress on the appropriate syllable.  This 
suggests some psychological priority for paying attention to stressed syllables over 
their unstressed counterparts.  Given the informational asymmetry between the 
presence and absence of stress, we might expect parameters that rely on the learner 
noticing the absence of stress to be deprioritized.  Extrametricality (Em-Some, Em-
Right, Em-Left) is just such a parameter; thus, we might expect it to be set later than 
other parameters. 
 Secondly, the quantity of data available to the learner could also affect 
parameter-setting order.  Again, this will be true irrespective of the domain.  
Parameters with more unambiguous data available are likely to be set before 
parameters with less, simply because there is more data for the learner to use for 
updating. 
 Thirdly, if the learner is using a default value, we can dispense with 
constraints for that value if it is the correct adult value since it is already set by 
default. Again, this will be true irrespective of the domain.  The logic behind this is 
that a constraint of the form “Parameter value A1 must be set before parameter value 
B1” results from either (a) A1 not being able to be set correctly if B1 is set first (i.e. 
the unambiguous data distribution favors A2 after B1 is set) or (b) B1 not being able 
to be set correctly until A1 is set (i.e. the unambiguous data distribution favors B2 
until A1 is set).  Depending on which it is, this problem can be side-stepped if either 

                                                
52 There may in fact be more as well.  These three come to mind as being fairly general properties of 
the learning system. 
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(a) A1 is the default  for A or (b) B1 is the default for B, respectively, since the 
correct parameter value is already set.  The constraint “Parameter value A1 must be 
set before parameter value B1” is then unnecessary.   
 I note that using defaults only applies to the cues method since the 
instantiation of the parsing method used here must use all available values to conduct 
a find-all-parses analysis. One might argue that the parsing method could in fact be 
instantiated with a default system under a different implementation.  However, this 
has an inherent problem.  Specifically, the only values available to the parser would 
be the default values.  Thus, only parses using the default values would be considered 
by the learner initially.  This is fine if the adult values for the system are the default 
values. But, suppose they are not.  How will the learner recognize unambiguous data 
for the non-default values, a problem noted by Valian (1990)? The parser, by 
definition, can only use data it can parse.  The non-default values are not in its set of 
available values, and so it will not be able to parse data that can only be parsed with 
those values.  In short, the parsing method cannot comprehend data that are 
unambiguous for the non-default values since it cannot parse such data with the 
default values.  This is in sharp contrast to the cues method, which can still recognize 
unambiguous data for the marked values even while the default values are in place. 
 I will now examine which constraints for the cues and parsing methods can be 
accounted for using these three explanations: data saliency, data quantity, and default 
values. 
 
5.8.3.1 Cues Method with Relative-Against-All: Accounting for Constraints 
 
 The first constraint (31a) was that QS-VC-Heavy must be set before Em-
Right.  We can derive this via data saliency, and argue that noticing the absence of 
stress for extrametricality is more difficult than noticing the presence of stress in the 
pattern for QS-VC-Heavy.  
 The second constraint (31b) was that Em-Right must be set before Bounded-
Syl.  (This is due to Bounded-Mor being favored until Em-Right is set.)  When we 
examine that unambiguous data distribution, it turns out that Em-Right has at least 20 
times as much data as Bounded-Syl (and so, the learner is 20 times more likely to find 
an Em-Right cue) at any given point in time.  Thus, this constraint could be derived 
from data quantity.  Also, I noted in section 5.4.4 that the cues learner could use 
Bounded-Syl as a default value once the more general Bounded value is set.  If this is 
the case, then Bounded-Syl will already be set and this constraint disappears from the 
use of default values. 
 The third constraint (31c) was that Bounded-2 must be set before Bounded-
Syl.  (Bounded-Mor is favored until Bounded-2 is set.)  Unfortunately, the 
unambiguous data distribution favors Bounded-Syl over Bounded-2 initially so we 
cannot directly derive this constraint from data quantity. However, there is a partial 
ordering with Em-Right which can be useful.  Specifically, once Em-Right is set, a 
Bounded-2 cue is at least 4 times as likely to be found as a Bounded-Syl cue at any 
given point and would then be set first.  So, once Em-Right is set, this constraint can 
be derived from data quantity.  However, this requires Em-Right to be set before 
Bounded-2. 
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 Fortunately, an Em-Right cue is about 270 times more probable than a 
Bounded-2 cue, so Em-Right could easily be set first.  Thus, this constraint could be 
derived from data quantity: set Em-Right, then Bounded-2, and then Bounded-Syl.  
Also, we could rely on default values again to cause this constraint to disappear: 
Bounded-Syl is the default value once the more general Bounded value is set. 
 What is striking here is that all of the cues method order constraints are 
derivable from other properties of the learning system (either the learner’s learning 
preferences or the available data).  They do not need to be explicitly stated or 
available to the learner as pre-specified knowledge.  This makes these constraints 
highly attractive. 
 
5.8.3.2 Parsing Method with Relative-Against-All/Potential: Accounting for 
Constraints  
 
 The parsing method’s constraints, however, are not so easily derived.  Recall 
that the parsing method learner must constrain parameter-setting to three parameter 
groups that are ordered with respect to each other (33) – all the ones in the first group 
(QS, Feet Hd Left, Bounded) must be set before all the ones in the second group (Ft 
Dir Right, QS-VC-Heavy), and all the ones in the second group must be set before all 
the ones in the third group (Em-Some, Em-Right, Bounded-2, Bounded-Syl).  Since 
the parsing method learner in this model cannot use default values, the constraints can 
be derived only from the properties of data saliency and data quantity. 
 I note that even supposing the parsing method could somehow use default 
values, these constraints still cannot all be derived.  The only constraint that default 
values could account for is Bounded-Syl in the third grouping: Bounded-Syl is the 
default value, and so would already be set.  There is no need for it to be set after other 
parameters.  No other constraints could be accounted for by default values since the 
adult values are the non-default values (QS, QS-VC-Heavy, Bounded, Em-Some). 
 Still we can ask how much can be accounted for by the remaining two 
properties.  Data saliency will explain why Em-Some and Em-Right are in the last 
group: noticing the absence of stress puts these parameters later in the learning path 
(group 3).  This leaves data quantity to account for all the rest.  Unfortunately, data 
quantity will not separate the remaining parameters into the three necessary groups.  
A parsing method learner would need to have these groups explicitly built in as prior 
knowledge, which makes these constraints less attractive than their cues method 
counterparts.  The ability to derive all of the relevant order constraints thus seems to 
favor the cues method, when used with the relativize-against-all approach. 
 The success of the cues and parsing methods are compared below in Table 
5.9.  As we saw previously, the parsing method seems more flexible because it 
succeeds no matter what relativization approach is used.  The cues method, however, 
has a set of order constraints that can be derived from properties of the learning 
system when this method does actually succeed.   
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 Reaches 
Target State 

All Order Constraints 
Derivable 

Cues + Relative-Against-All Yes Yes 
Parsing + Relativize-Against-All Yes No 
Parsing + Relativize-Against-Potential Yes No 
Cues + Relativize-Against-Potential No N/A 
Table 5.9. Comparing the performance of the cues and parsing methods, when used 
with different relativization approaches.  The optimal combination for this case seems 
to be the cues method with the relative-against-all approach, since it both reaches the 
target state and has derivable order constraints. 

5.9 Discussion 

5.9.1 Cues: Why Better Constraints on Parameter-Setting Order? 
 
 As we saw in the previous section, the cues method results in a set of 
parameter-setting orders that can be captured by constraints that are independently 
derivable and few in number. This is not true for the order constraints that capture the 
parsing method’s set: that set is far more restricted, and requires a larger number of 
constraints, most of which must be stipulated.  I speculate that this has to do with the 
nature of the data that a cues method learner uses.   
 Cues themselves are small pieces of highly informative surface structure, such 
as 2 syllable words with 2 stresses (QS, QS-VC-Heavy, Bounded-Mor) or the 
leftmost syllables in a word with stress in a certain pattern (Ft Dir Rt, Ft Hd Left).  
Crucially, the learner doesn’t have to understand the entire data point to identify a cue 
in the data point.  In fact, the data point can be in conflict with values that are already 
set but still contain cues for currently unset values.  
 For example, a 2 syllable word with 2 stresses is in conflict with Em-Right 
since it has stress on the rightmost syllable, but is still useful as a cue for QS.  This 
gives a cues method learner more flexibility than a parsing method learner has, since 
the cues learner can make use of the non-problematic portions of data points instead 
of having to disregard these portions along with the entire data point. 
 For the parsing method learner, if a data point can’t be parsed (because the 
learner doesn’t understand the entire data point or the data point is in conflict with 
currently set values), the data point can’t be used at all.  Note that this problem 
persists even when using other less resource-intensive parsing strategies (Sakas & 
Fodor, 2001) since those strategies consider cases where multiple parses can describe 
the data point, but not cases where no parses describe the complete data point.  Unless 
the parsing method can retrieve information from only a subpart of the data point, the 
problem that plagues the parsing method here will persist.  The noisiness of the 
English metrical phonology data set greatly penalizes the parsing method learner, 
which is reflected in the greater quantity of order constraints required to capture the 
more restricted set of viable parameter-setting orders. 
 However, the flexibility of cues is not without its drawbacks – a cues-learner 
can be led irrecoverably astray in some cases as we saw previously.  When the cues 
method is combined with the relativize-against-potential approach, certain values that 
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are not in the English target state persist no matter what other values are set.  For 
instance, because the relativizing set of QI unambiguous data is significantly smaller 
than that of the QS unambiguous data (QI: 2755, QS: 85268), a cues learner using the 
relativize-against-potential approach consistently awards a higher probability to the 
QI unambiguous data.  No other parameter settings will influence the potential QI set 
because the QI cue does not interact with any other parameter value (e.g. the way QS 
cues do with Extrametricality), and so it will always be significantly smaller than the 
potential QS set.  Because no other parameter settings affect the cue for the QI value, 
the relativizing QI set can never be altered.  Unfortunately for a learner of English, 
having such a small relativizing QI set will cause the learner to favor the QI 
unambiguous data over the QS unambiguous data. Since QS is the correct value for 
English, no viable parameter-setting orders exist for cues when using the relativize-
against-potential approach.  Thus, we see that the flexibility the cues method has can 
be both a strength and a weakness, depending on what other learning strategies the 
learner adopts.  Nonetheless, it is this flexibility which yields a more concise 
representation of knowledge necessary for acquisition success (the order constraints) 
when the method does, in fact, succeed. 

5.9.2 Relativization 
 
 I examined two different approaches a learner might adopt for relativizing the 
probability of an unambiguous data point for a given parameter value: relativize-
against-all and relativize-against-potential.  While we had no a priori reason for 
assuming one approach was superior to the other, we may wish to use the results 
obtained here to support the relativize-against-all approach.  Specifically, in order to 
reach the target state and have a set of viable orders that can be described by a small 
set of principled order constraints, a learner must use the cues method coupled with 
the relative-against-all approach.  Thus, the learning procedure relativizes the 
probability of an unambiguous data point against the entire set of input seen so far.  
This is in contrast to a learning procedure that keeps track of the quantity of potential 
unambiguous data points, and relativizes the probability of an unambiguous data 
point against that set (which will vary across parameter values for cues).  Because the 
learner does not need to keep track of the set of potential unambiguous data points for 
each parameter value, the relativize-against-all approach is likely less resource-
intensive to implement as well.  This is a desirable quality for a psychologically 
plausible learning strategy. 

5.9.3 Cues and Parsing: A Viable Combination? 
 
 Cues and parsing have a complementary array of strengths and weaknesses as 
methods for identifying unambiguous data.  From the case study examined here, we 
have seen an additional strength and weakness for both cues and parsing.  Cues give 
us a principled set of order constraints, but aren’t robust across different strategies of 
relativization.  The opposite is true for parsing: we find robustness across different 
relativization approaches, but a set of order constraints that must be mostly stipulated.  
We also examined additional weaknesses in section 5.2 for both methods.  Cues are 
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knowledge the learner must have already available; parsing can only use the entire 
data point, rather than just a subpart.   
 A very interesting question is if there is a way to combine these two methods 
to capitalize on their complementary strengths and mitigate their complementary 
weaknesses.  I speculate now on how this might be accomplished.  Cues themselves 
are small pieces of highly informative surface structure that are usually smaller than 
the entire data point.  Given this, perhaps a learner might derive cues from a limited 
kind of parsing (perhaps limited by time and mental resources available).  Such a 
limited parsing method could be biased to use subparts of a data point rather than 
trying to assign full parses to the entire data point.   
 For example, suppose a learner with no values set hears a sequence of 
syllables in the speech stream and realizes that two consecutive syllables are the 
beginning of a new word.53  The learner then tries to analyze these two syllables 
alone.  Suppose the first of these two syllables is stressed and contains a long vowel  
(VV) while the second is unstressed and contains a short vowel with a coda (VC).   
 
(34) speech stream, with two syllables of new word (signaled by #): …# VV  VC… 
 
 The learner then tries to parse these two syllables with any parameter values 
that can be applied, given that only the beginning of the word is known.  (It is 
possible that these two syllable comprise the entire word, but the learner is unaware 
of this.)  The learner then tries to parse this sequence of syllables with all applicable 
parameter values – i.e., values that can apply to the front subpart of a word alone.  
The set of applicable values would be Quantity-Insensitive, Quantity-Sensitive, 
Extrametricality-Some [Left], Unbounded, Bounded, Bounded-Syllabic, Bounded-
Moraic, Feet Headed Left, Feet Headed Right, and Feet Directionality Left.  Em-
None and Em-Right are not applicable since the right edge of the word is unknown, 
so nothing can be observed about the final syllable.  Feet Dir Right is also not 
applicable for similar reasons: the learner cannot construct feet starting from the right 
edge since the right edge is unknown.  
 
 
 
 

                                                
53 Note that there may be some interleaving of learning the metrical phonology system and learning to 
segment words successfully.  Learners early on have a sense of the basic rhythmic properties of their 
language (Mehler et al. 1988, Nazzi et al., 2000) – for instance, trochaic (first syllable stressed) or 
iambic (second syllable stressed) as stereotypical (Jusczyk et al. 1993). They may then use this highly 
probable rhythmic pattern to segment syllables in the speech stream into words (Jusczyk et al, 1999; 
Houston et al., 2000; Houston et al., 2004).  Sometimes, this will result in mis-segmentation:  ba na na 
becomes segmented as simply na na in English.  This could then lead to misanalysis in the more 
complex metrical phonology domain, since the “word” being analyzed isn’t actually the word in the 
target language (analysis of “nana” instead of “banana”).  If the more elaborate metrical phonology 
system examined here is learned early enough that correct word segmentation isn’t regularly 
successful, this could be another factor that determines learners’ success.  In effect, they are applying 
an additional filter to the available input and only perceiving words that match the basic rhythmic bias 
they have acquired already.  Thanks to the CUNY Supper Club for very useful discussion of this point. 
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(35) Viable Partial Parses for the syllable sequence #VV  VC… 
 (a) (QI, Ft Dir Left, Unb, Ft Hd Left) 
 (b) (QI, Ft Dir Left, B, B-Syl, B-2, Ft Hd Left) 
 (c) (QI, Ft Dir Left, B, B-Syl, B-3, Ft Hd Left) 
 (d) (QS, QS-VC-Light, Ft Dir Left, Unb, Ft Hd Left) 
 (e) (QS, QS-VC-Light, Ft Dir Left, B, B-Syl, B-2, Ft Hd Left) 
 (f) (QS, QS-VC-Light, Ft Dir Left, B, B-Syl, B-3, Ft Hd Left) 
 (g) (QS, QS-VC-Light, Ft Dir Left, B, B-Mor, B-3, Ft Hd Left) 
   
 Of all the available values, only Feet Headed Left and Feet Directionality Left 
are used by all parses of this two syllable sequence. Because Feet Directionality Right 
was not applicable, the learner will not conclude anything about Feet Directionality.  
Similar reasons preclude the learner from using this data point to signal 
Extrametricality – the full range of values for that parameter was not applicable: even 
though the learner would perhaps be able to rule out Extrametricality-Left, there is no 
definitive distinction between Em-None, Em-Some, or Em-Right.  However, all the 
values for Feet Headedness were applicable: both Feet Headed Left and Feet Headed 
Right.  Since Feet Headed Left was required for all parses, the learner would perceive 
this two syllable sequence as unambiguous for Feet Headed Left. 
 In this way, the learner would be deriving cues from a limited form of parsing 
that operates over subparts of data points.  Note that if the learner derives cues from 
the implementation of parsing used here, the learner loses the ability to use default 
values since default values are not compatible with this instantiation of parsing. A 
learner cannot unlearn default values if the learner only ever uses default values to 
parse data; data indicating the non-default values are unparseable and therefore 
cannot be learned from (Valian, 1990).  However, it may be possible to sidestep this 
problem with a probabilistic parser that favors default values and probabilistically 
uses them for parsing.  Then, the learner would still be able to parse (a portion of) the 
unambiguous data encountered for the non-default value, if the adult system used the 
non-default value.  
 Still, we also lose the benefit from parsing that allows probability 
relativization to be constant across parameter values.  The relativize-against-potential 
approach would have a relativizing set consisting only of the data which that value 
could possibly have parsed.  The example we described above would be included in 
the relativizing set for Feet Headed Right (since Feet Headed Right was applicable), 
but not in the relativizing set for Feet Directionality Right (since Feet Directionality 
Right wasn’t applicable). 
 However, it is possible that using limited parsing to derive cues gains some of 
benefits associated with using cues in the first place.  In particular, operating over 
subparts of a data point is what I believed allowed the cues method to have fewer 
order constraints.  It’s possible that using cues derived from limited parsing would 
also produce a set of viable orders that can be characterized by fewer constraints. So, 
I posit that a learner using cues derived from limited parsing would potentially have 
the desired behavior combining the strengths of parsing and cues: less necessarily 
innate knowledge and fewer order constraints.  This prediction, of course, remains to 
be explored. 
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 Also, a limited parsing method would likely result in partial analyses that are 
more heuristic than exact, possibly at the expense of more false positives and false 
negatives.  Though this may seem to be undesirable, such behavior may be good from 
the perspective of language change since certain language changes require imperfect 
learning, as we saw in the previous chapter.  If data the learner considers 
unambiguous are keyed more to the surface form and are less well-connected to the 
abstract grammatical parameters, then it is easier for slippage to occur over time.   
 As a specific example, recall from the previous chapter that the change in Old 
English from Object-Verb order to Verb-Object order has been argued to be the result 
of imperfect learning in just this way (Lightfoot, 1991).  Learners use cues (or parsing 
over a limited set of parameters) to find data they perceive as unambiguous, though 
this data may actually be ambiguous if parsed more fully.  This allows the learners to 
converge on a slightly different probability distribution than the adults of the 
population have. Specifically for Old English, the system is a probability distribution 
between Object-Verb and Verb-Object order.  The learners end up with a final 
probability that is marginally different from the probability of the rest of the 
population.  Over time, these small “slips” lead to language change in the population.  
Importantly for communication purposes, the slips are, as mentioned, small.  Cues 
derived from limited parsing would potentially allow learning to be successful 
enough to achieve the desired target state in most cases, but not so successful that 
small changes are impossible. 
 
5.9.4 Future Directions 
 
 There are several immediate ways to build upon the findings concerning (a) 
other instantiations of the unambiguous data filter, (b) the sufficiency of the 
unambiguous data filter for other languages, (c) the necessity of the unambiguous 
data filter for learning metrical phonology, (d) experimentally testable predictions 
made by the unambiguous data filter, and (e) distinguishing systematic exceptions 
from noise in order to form irregular sub-systems given the available data. 
 The previous section described a potential combination of the methods for 
identifying unambiguous data that would retain the strengths of both the methods 
examined, cues and parsing.  This combination strategy’s ability to actually converge 
on the English system should be examined, as well as any constraints required for its 
success.  When I examined the cues and parsing methods separately, each required 
different constraints for acquisition success on the English dataset:  cues required a 
particular assumption about how the learner relativizes the probability of 
unambiguous data, while parsing required order constraints that would need to 
already be available to the learner.  The combination strategy might require 
constraints of both kinds (probability relativization and prior knowledge of 
parameter-setting order), one kind, or neither kind. 
 From the perspective of the logical problem of language learning, future work 
could also test the cues, parsing, and limited parsing methods on other languages for 
which we have sufficient corpora of child-directed speech.  These methods can also 
be investigated in other domains besides metrical phonology. 
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 The necessity of the unambiguous data filter also can be examined for this 
case study.  As in the previous chapter’s future directions, there are various ways to 
relax the unambiguous data filter and have the learner use ambiguous data.  For 
instance, the learner could weight ambiguous data points such that they’re not as 
influential as unambiguous data (again, as done in chapter 3 for learning anaphoric 
one).  For the parsing method, the learner might adopt a probabilistic weighting of 
ambiguous data based on the percentage of successful parses that share a certain 
value.  As an example, suppose 4 of 5 successful parses for a data point require 
Extrametricality-None, while 1 requires Extrametricality-Some.  The learner might 
then give 80% credit to Extrametricality-None and 20% credit to Extrametricality-
Some.   
 The learner might also adopt an ambiguous data strategy that probabilistically 
chooses one parameter value for each parameter to parse the data point. Successful 
parses reward all the parameter values used while unsuccessful parses punish all the 
parameter values used, as instantiated in the Naïve Parameter Learning model of 
Yang (2002).  As an example, suppose the learner encounters an ambiguous data 
point and only has Bounded-2 vs. Bounded-3 and Extrametricality-Right vs. 
Extrametricality-Left remaining to be set.  Suppose also that Bounded-2 is favored 
over Bounded-3, with associated probabilities of .8 (B-2) and .2 (B-3), and  
Extrametricality-Right is similarly favored over Extrametricality-Left, .8 (Em-Right) 
to .2 (Em-Left).  Then, the learner chooses one of the four combinations of parameter 
values to parse the data point with, based on their associated combined probability:  
(a) B-2, Em-Right (.8*.8 = .64), (b) B-3, Em-Right (.2*.8 = .16), (c) B-2, Em-Left 
(.8*.2 = .16), (d) B-3, Em-Left (.2*.2 = .04).  If the combination of values yields a 
successful parse of the data point, all values are rewarded; if the parse fails, all values 
are punished.  This learning strategy is implicitly driven by the unambiguous data in 
the input since unambiguous data for one parameter value (e.g. Em-Right) will be 
unparseable by the opposing value (e.g. Em-Left), and so punish the opposing value 
(e.g. Em-Left).  However, this strategy does not explicitly seek unambiguous data nor 
does it restrict the learner to use only unambiguous data, allowing it to avoid the 
sparse data problem that could potentially plague an unambiguous data learner. 
 In addition, the unambiguous data filter explored here makes testable 
predictions about which parameters should be set first in a given language, based on 
the order constraints required for acquisition success for either method of identifying 
unambiguous data.  For instance, both cues and parsing would predict that a learner 
should set Quantity Sensitivity before Extrametricality. These predictions can be 
tested with both modeling (by using realistic estimates of the quantity of data children 
are exposed to) and standard experimental techniques for infants such as head-turn 
preference (Jusczyk & Aslin (1995)).   
 For the modeling extension, we can also investigate whether the necessary 
order constraints leading to the correct English target state (e.g. a cues learner setting 
Extrametricality before Bounded-Syllable) can emerge with a high probability simply 
from the distributions of data available to children or if instead data saliency 
explanations and/or default values are required.  If default values are required, this 
suggests a prior probability distribution that strongly favors the default value. 
Moreover, the situation where the learner has a strong bias for one value over another 
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may be analogized to second-language learning: the adult has a very strong initial 
bias for the native language values.  Exploring the behaviors produced from strong 
initial biases as well as ways to recover from these strong initial biases can have 
implications for second language learning. 
 Finally, the current learning model can be extended to search for systematic 
exceptions in the data in order to form irregular sub-classes.  Exceptions (and errors) 
would be recognized once the learner has some of the system known.  For instance, if 
the learner has determined the English system is Quantity Sensitive, an exceptional 
data point would be unambiguous for Quantity Insensitive.  So, the learner can start 
recognizing exceptions even before the entire regular metrical system is learned.  The 
learner might then be able to invoke a rule competition model, similar to Yang 
(2002)’s implementation for forming irregular past tense classes, in order to group 
irregular metrical phonology data points together into sub-classes.  Systematic 
exceptions would be recognized as distinct from noise (or singular exceptions that 
should be memorized) based on the frequency of the words – and importantly, the 
different words – that are exceptional in that way.  This again draws from Yang’s 
(2002) implementation of forming irregular classes for the English past tense.  
 As an example, suppose the learner has decided the main system is Quantity 
Sensitive.  However, the learner then keeps encountering data points that are 
incompatible with that parameter value: ponytail, ladybug, jellybean, etc.  If these 
examples are frequent enough, the learner might hypothesize that there is an irregular 
class of words where the second syllable with the long vowel /i/ (‘ny’, /ni/; ‘dy’, /di/; 
‘lly’, /li/) is destressed (even though /i/ is a long vowel and should receive stress given 
the regular system).  If the learner is at a stage in learning where meaning is 
associated with words, then the irregular class might (additionally) be defined over 
something like compound words. 
 Importantly, the learner would need to recognize the exceptional data points 
as distinct from the main system being learned, but regular enough to warrant positing 
systematicity for them. To recognize the exceptional data points, the learner must 
already have some of the parameters for the main system set.  The learner would thus 
benefit from the “preset” parameters of the main system in order to recognize and 
extract systematicity in any irregular sub-systems that might exist. 

5.10 Summary 
 
 In this chapter, I have investigated the feasibility of using an unambiguous 
data filter on the learner’s intake for metrical phonology, a complex system with 
multiple interacting parameters.  I have shown that an unambiguous data filter can 
indeed allow a learner to converge on the correct set of adult values for English 
metrical phonology, which is a noisy system containing unambiguous data for the 
incorrect values as well as for the correct values.  The learner is successful whether 
the unambiguous data filter is implemented by using the domain-specific 
representation of cues (Dresher, 1999; Lightfoot, 1999) or the domain-specific 
learning procedure of parsing (Fodor, 1998b,1998c; Sakas & Fodor, 2001).  
 Nonetheless, there are differences between the two methods in terms of what 
must be explicitly stipulated and what can be derived from the learning system.  In 
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addition, the two methods differ on their flexibility across different approaches of 
relativizing probability. 
 The parsing method does not need to stipulate additional information to 
identify unambiguous data, since the domain-specific procedure of assigning structure 
to a data point is already employed for language comprehension.  Moreover, the 
parsing method succeeds no matter which probability relativization approach is used 
to analyze the data.  Yet, the inability of the parsing method to use default values and 
make use of subparts of a data point force it to have a more restricted set of viable 
parameter-setting orders.  This in turn leads to order constraints that must be 
stipulated in the case examined here.   
 The cues method, on the other hand, can use default values and glean 
information from data point subparts, which allows the set of viable parameter-setting 
orders to be far less restricted in the case examined here.  However, a cues learner can 
only succeed when the unambiguous data are relativized against the entire input, 
rendering this method less flexible than the parsing method.  Moreover, the original 
formulation of cues requires us to stipulate the domain-specific knowledge of cues in 
order to identify unambiguous data. 
 I have speculated a way of combining both methods: deriving cues from a 
limited form of parsing that allows parsing over subparts of a data point.  The limited 
parsing method would thus possess two advantageous properties: (1) minimal 
knowledge is stipulated to identify unambiguous data and (2) more heuristic 
identification of unambiguous data that could lead to fewer order constraints.  It is 
uncertain, however, if the limited parsing would succeed across different probability 
relativizations, since the set of potential unambiguous data would vary across 
parameter values, as it does for the cues implementation examined here.   This 
remains to be explored. 
 The results obtained here suggest that an unambiguous data filter can lead to 
the correct learning results in complex domains.  The crucial aspect of such a filter is 
that data are unambiguous relative to the learner’s perspective, and the learner has 
incomplete knowledge of the full adult grammar during the learning process.  Thus, 
data that appear unambiguous at an earlier time point may be viewed as ambiguous 
later when more information has been obtained, and vice versa.  Contrary to severely 
handicapping the learner, such heuristic, inexact definitions of unambiguous data 
seem to allow the learner the flexibility to triumph in a noisy system.  Given that the 
linguistic environment is often quite noisy, learners may benefit from treating data 
that conform to their semi-informed definition of unambiguous data as though they 
were truly unambiguous data – and therefore, fully informative for learning.  In this 
way, a learner can feasibly implement an unambiguous data filter while avoiding the 
sparse data problem in realistic language learning cases. 
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Chapter 6:  Learning By Filtering 
 
 In the case studies presented in this dissertation, I have explicitly investigated 
one component of the learning theory mechanism: the definition of the data intake.  In 
each case, filtering the data intake has had enormous effects on the output of learning, 
separating learning failure from learning success.  These case studies suggest that, 
perhaps contrary to intuition, using all the available data for learning isn’t what real 
human learners do.  Instead, young children can succeed by using a select subset of 
data from which they view as more informative and from which it is in some sense 
easier for them to extract the correct linguistic systematicity.  For anaphoric one, 
learners succeed by heeding only the data that is informative about which N’ to 
choose when there is more than one N’ antecedent available.  For word order 
properties such as Object-Verb or Verb-Object order, learners succeed by using 
degree-0 data that they perceive as unambiguous.  For the English metrical phonology 
system, learners again succeed by using data perceived as unambiguous.  Data intake 
restriction is key: using fewer data points that are cleaner is superior to using many 
data points that are noisy representations of the underlying linguistic system. 
 The division of the learning theory into distinct components allows us to 
combine components of different types together: domain-specific and domain-
general, discrete and probabilistic.  Moreover, this framework is a tool that can be 
applied to many learning problems with different hypothesis spaces that combine 
information across domains. In this dissertation, I have applied it to subset-superset 
hypotheses in the syntax-semantics interface, probabilistic distributions between 
hypotheses in syntax, and multiple interacting hypotheses in metrical phonology. In 
addition, the distinct components of the framework can be investigated separately, as 
I do here for data intake filtering.  For this investigation, computational modeling has 
been a very valuable tool, since it allows precise control over the learner’s data intake 
in a way that is difficult to achieve with traditional experimental techniques. 
 In sum, this dissertation represents the first steps towards a theory of the 
mechanism of language learning.  I have answered the more specific questions set out 
for each case study.  Yet, this has opened the way for still more questions.  Future 
work, especially computational modeling work, will hopefully continue to draw on 
both theoretical and experimental linguistic data to explore how language learning 
can succeed in the noisy environment that surrounds young learners.   
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Appendix 
 
This is the list the complete set of parameter-setting orders for each method and 
relativization approach that allowed the learner to converge on the English metrical 
phonology parameter values.  From these sets, the order constraints described in 
section 5.7 were derived. 
 
(A1) Viable Parameter-Setting Orders for the Cues Method, Relativize-Against-All 
 (QS, QS-VC-Heavy, B, B-2, Ft Hd Left, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, B, B-2, Ft Hd Left, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, B, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, B-2, Ft Dir Rt, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, B, B-2, Ft Dir Rt, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, B, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Hd Left, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Dir Rt, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, Ft Hd Left, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Hd Left, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Dir Rt, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Hd Left, B-2, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Hd Left, Ft Dir Rt, B-2, B-Syl) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Dir Rt, B-2, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Dir Rt, Ft Hd Left, B-2, B-Syl) 
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 (QS, QS-VC-Heavy, Ft Hd Left, B, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, B, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, B, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, Ft Hd Left, B, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, B, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, B, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, B, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, Ft Hd Left, B, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, Ft Dir Rt, B, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, Ft Dir Rt, B, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, Ft Dir Rt, Em-Some, Em-Right, B, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B, B-2, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B, B-2, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B, Ft Dir Rt, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, Ft Dir Rt, B, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, Ft Dir Rt, B, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, Ft Hd Left, B, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, Ft Hd Left, B, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, Ft Hd Left, Em-Some, Em-Right, B, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B, B-2, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B, B-2, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B, Ft Hd Left, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, Ft Hd Left, B, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl, Ft Hd Left, Ft Dir Rt) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl, Ft Dir Rt, Ft Hd Left) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Hd Left, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Hd Left, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Dir Rt, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Dir Rt, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Hd Left, B-2, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Hd Left, B-2, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Hd Left, Ft Dir Rt, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Dir Rt, B-2, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Dir Rt, B-2, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Dir Rt, Ft Hd Left, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B, B-2, Ft Dir Rt, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B, B-2, B-Syl, Ft Dir Rt) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B, Ft Dir Rt, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, Ft Dir Rt, B, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B, B-2, Ft Hd Left, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B, B-2, B-Syl, Ft Hd Left) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B, Ft Hd Left, B-2, B-Syl) 
 (QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, Ft Hd Left, B, B-2, B-Syl) 
 (QS, B, QS-VC-Heavy, B-2, Ft Hd Left, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
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 (QS, B, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, B, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, B-2, Ft Dir Rt, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, B, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, B, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, Ft Dir Rt, B-Syl) 
 (QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, Ft Hd Left, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, Ft Dir Rt, B-Syl) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, Ft Hd Left, B-Syl) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, Ft Dir Rt, B-Syl) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl, Ft Dir Rt) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, Ft Dir Rt, B-2, B-Syl) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, Ft Hd Left, B-Syl) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl, Ft Hd Left) 
 (QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, Ft Hd Left, B-2, B-Syl) 
 (QS, B, B-2, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, B, B-2, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, B, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, B, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, B, B-2, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, B, B-2, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, B, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, B, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
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 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (QS, B, Ft Hd Left, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, B, Ft Hd Left, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (QS, B, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (QS, B, Ft Dir Rt, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Dir Rt, B-2, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, B, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, B, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, B, Ft Dir Rt, Ft Hd Left, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B, B-2, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Dir Rt, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl, Ft Dir Rt) 
 (QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Dir Rt, B-2, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B, B-2, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (QS, Ft Hd Left, B, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, B, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl) 
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 (QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl) 
 (QS, Ft Hd Left, Ft Dir Rt, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, Ft Dir Rt, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, Ft Dir Rt, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (QS, Ft Dir Rt, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, B, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, B, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B, B-2, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Hd Left, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl, Ft Hd Left) 
 (QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Hd Left, B-2, B-Syl) 
 (QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B, B-2, B-Syl) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (QS, Ft Dir Rt, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (QS, Ft Dir Rt, B, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, B, B-2, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (QS, Ft Dir Rt, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (QS, Ft Dir Rt, B, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, B, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Dir Rt, B, Ft Hd Left, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl) 
 (QS, Ft Dir Rt, Ft Hd Left, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Dir Rt, Ft Hd Left, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Dir Rt, Ft Hd Left, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, QS, QS-VC-Heavy, B-2, Ft Hd Left, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (B, QS, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (B, QS, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (B, QS, QS-VC-Heavy, B-2, Ft Dir Rt, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, QS, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, QS, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left, Ft Dir Rt) 
 (B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, Ft Dir Rt, B-Syl) 
 (B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl, Ft Dir Rt) 
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 (B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, Ft Hd Left, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (B, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left, Ft Dir Rt) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, Ft Dir Rt, B-Syl) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl, Ft Dir Rt) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, Ft Hd Left, B-Syl) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, Ft Dir Rt, B-Syl) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl, Ft Dir Rt) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, Ft Dir Rt, B-2, B-Syl) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, Ft Hd Left, B-Syl) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl, Ft Hd Left) 
 (B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, Ft Hd Left, B-2, B-Syl) 
 (B, QS, B-2, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, QS, B-2, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, QS, B-2, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, QS, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, QS, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (B, QS, Ft Hd Left, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, Ft Hd Left, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Dir Rt, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, QS, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, QS, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
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 (B, QS, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (B, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (B, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (B, QS, Ft Dir Rt, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Dir Rt, B-2, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, QS, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, QS, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, Ft Dir Rt, Ft Hd Left, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, B-2, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, B-2, QS, Ft Dir Rt, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, B-2, QS, Ft Dir Rt, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, B-2, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, B-2, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, B-2, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, B-2, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (B, B-2, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (B, B-2, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (B, B-2, Ft Hd Left, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, B-2, Ft Dir Rt, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, B-2, Ft Dir Rt, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, B-2, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, B-2, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, B-2, Ft Dir Rt, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (B, Ft Hd Left, QS, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Hd Left, QS, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, B-2, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, B-2, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (B, Ft Hd Left, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (B, Ft Hd Left, B-2, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, Ft Dir Rt, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Hd Left, Ft Dir Rt, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, Ft Dir Rt, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, QS, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, Ft Dir Rt, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, Ft Dir Rt, QS, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
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 (B, Ft Dir Rt, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (B, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (B, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (B, Ft Dir Rt, QS, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, QS, B-2, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, Ft Dir Rt, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, Ft Dir Rt, QS, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Dir Rt, QS, Ft Hd Left, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, B-2, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, B-2, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (B, Ft Dir Rt, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (B, Ft Dir Rt, B-2, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, Ft Hd Left, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Dir Rt, Ft Hd Left, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (B, Ft Dir Rt, Ft Hd Left, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, B, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, B, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B, B-2, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Dir Rt, B-2, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B, B-2, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (Ft Hd Left, QS, B, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, B, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, B, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, B, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl) 
 (Ft Hd Left, QS, Ft Dir Rt, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
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 (Ft Hd Left, QS, Ft Dir Rt, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, Ft Dir Rt, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, B-2, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-2, B-Syl) 
 (Ft Hd Left, B, QS, B-2, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, QS, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, B, QS, Ft Dir Rt, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, B-2, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, B-2, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Dir Rt, B-Syl) 
 (Ft Hd Left, B, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Dir Rt) 
 (Ft Hd Left, B, B-2, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, Ft Dir Rt, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, B, Ft Dir Rt, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, B, Ft Dir Rt, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, QS, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, B, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, Ft Dir Rt, B, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, QS, QS-VC-Heavy, B, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, Ft Hd Left, B, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, Ft Hd Left, B, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B, B-2, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, B, Ft Hd Left, B-2, B-Syl) 
 (Ft Dir Rt, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B, B-2, B-Syl) 
 (Ft Dir Rt, QS, B, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
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 (Ft Dir Rt, QS, B, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, B, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, QS, B, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (Ft Dir Rt, QS, B, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, B, B-2, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, QS, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, QS, B, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, B, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, QS, B, Ft Hd Left, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, Ft Hd Left, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, Ft Hd Left, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl) 
 (Ft Dir Rt, QS, Ft Hd Left, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, QS, Ft Hd Left, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, QS, Ft Hd Left, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, B-2, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, Ft Hd Left, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, B, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-2, B-Syl) 
 (Ft Dir Rt, B, QS, B-2, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, QS, B-2, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, B, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, B, QS, Ft Hd Left, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, B, QS, Ft Hd Left, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, B-2, QS, Ft Hd Left, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, B-2, QS, QS-VC-Heavy, Ft Hd Left, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, Ft Hd Left, B-Syl) 
 (Ft Dir Rt, B, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, Ft Hd Left) 
 (Ft Dir Rt, B, B-2, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, Ft Hd Left, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, B, Ft Hd Left, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, B, Ft Hd Left, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, QS, QS-VC-Heavy, B, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, QS, QS-VC-Heavy, B, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, QS, QS-VC-Heavy, Em-Some, Em-Right, B, B-2, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, QS, B, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, QS, B, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, QS, B, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, B, QS, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, B, QS, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Dir Rt, Ft Hd Left, B, QS, B-2, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
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 (Ft Dir Rt, Ft Hd Left, B, B-2, QS, QS-VC-Heavy, Em-Some, Em-Right, B-Syl) 
 
(A2) Viable Parameter-Setting Orders for the Parsing Method, Relativize-Against-All 
  
 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-Syl, B-2, Em-Some, Em-Right) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-2, B-Syl, Em-Some, Em-Right) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-Syl, Em-Some, Em-Right, B-2) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl, B-2) 
 (QS, B, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-Syl, B-2, Em-Some, Em-Right) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-2, B-Syl, Em-Some, Em-Right) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-Syl, Em-Some, Em-Right, B-2) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, B-2) 
 (QS, B, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, B-Syl, B-2, Em-Some, Em-Right) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, B-2, B-Syl, Em-Some, Em-Right) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, B-Syl, Em-Some, Em-Right, B-2) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, B-2) 
 (QS, Ft Hd Left, B, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, B-Syl, B-2, Em-Some, Em-Right) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, B-2, B-Syl, Em-Some, Em-Right) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, B-Syl, Em-Some, Em-Right, B-2) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-Syl, B-2) 
 (QS, Ft Hd Left, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, B-Syl, B-2, Em-Some, Em-Right) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, B-2, B-Syl, Em-Some, Em-Right) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, B-Syl, Em-Some, Em-Right, B-2) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl, B-2) 
 (QS, Ft Hd Left, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-Syl, B-2, Em-Some, Em-Right) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-2, B-Syl, Em-Some, Em-Right) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, B-Syl, Em-Some, Em-Right, B-2) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl, B-2) 
 (B, QS, Ft Hd Left, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-Syl, B-2, Em-Some, Em-Right) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-2, B-Syl, Em-Some, Em-Right) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, B-Syl, Em-Some, Em-Right, B-2) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, B-2) 
 (B, QS, Ft Hd Left, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, B-Syl, B-2, Em-Some, Em-Right) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, B-2, B-Syl, Em-Some, Em-Right) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, B-Syl, Em-Some, Em-Right, B-2) 
 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl, B-2) 
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 (B, Ft Hd Left, QS, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, B-Syl, B-2, Em-Some, Em-Right) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, B-2, B-Syl, Em-Some, Em-Right) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, B-2, Em-Some, Em-Right, B-Syl) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, B-Syl, Em-Some, Em-Right, B-2) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-Syl, B-2) 
 (B, Ft Hd Left, QS, Ft Dir Rt, QS-VC-Heavy, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, B-Syl, B-2, Em-Some, Em-Right) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, B-2, B-Syl, Em-Some, Em-Right) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, B-Syl, Em-Some, Em-Right, B-2) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-Syl, B-2) 
 (Ft Hd Left, QS, QS-VC-Heavy, B, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, B-Syl, B-2, Em-Some, Em-Right) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, B-2, B-Syl, Em-Some, Em-Right) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, B-2, Em-Some, Em-Right, B-Syl) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, B-Syl, Em-Some, Em-Right, B-2) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-Syl, B-2) 
 (Ft Hd Left, QS, B, QS-VC-Heavy, Ft Dir Rt, Em-Some, Em-Right, B-2, B-Syl) 
 
(A3) Viable Parameter-Setting Orders for the Cues Method, Relativize-Against-
Potential 
 
 No viable orders. 
 
(A4) Viable Parameter-Setting Orders for the Parsing Method, Relativize-Against-
Potential 
 
 Same set as (A2): parsing method and relativize-against-all approach. 
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