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Abstract 
 
The induction problems facing language learners have played a central role in debates about the 
types of learning biases that exist in the human brain. Many linguists have argued that some of 
the learning biases necessary to solve these language induction problems must be both innate and 
language-specific (i.e., the Universal Grammar (UG) hypothesis). Though there have been 
several recent high-profile investigations of the necessary learning bias types for different 
linguistic phenomena, the UG hypothesis is still the dominant assumption for a large segment of 
linguists due to the lack of studies addressing central phenomena in generative linguistics. To 
address this, we focus on how to learn constraints on long-distance dependencies, also known as 
syntactic island constraints. We use formal acceptability judgment data to identify the target state 
of learning for syntactic island constraints, and conduct a corpus analysis of child-directed data 
to affirm that there does appear to be an induction problem when learning these constraints. We 
then create a computational learning model that implements a learning strategy capable of 
successfully learning the pattern of acceptability judgments observed in formal experiments, 
based on realistic input. Importantly, this model does not explicitly encode syntactic constraints. 
We discuss learning biases required by this model in detail as they highlight the potential 
problems posed by syntactic island effects for any theory of syntactic acquisition. We find that, 
although the proposed learning strategy requires fewer complex and domain-specific components 
than previous theories of syntactic island learning, it still raises difficult questions about how the 
specific biases required by syntactic islands arise in the learner. We discuss the consequences of 
these results for theories of acquisition and theories of syntax. 
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1. Introduction 
 
Human learning cannot happen without one or more learning biases. As such, debates in the 
human learning literature tend to focus on (i) the nature of the evidence available to the learner, 
and (ii) the nature of those learning biases. Language learning has played a particularly central 
role in these debates, as the phenomena of language tend to be relatively complex, suggesting 
that either the evidence available to children must be relatively rich, or that the learning biases 
available to children must themselves be relatively complex (e.g., Chomsky 1965, 1980). The 
problem posed by language learning is that neither of these conclusions is particularly appealing. 
The first conclusion appears to be empirically false: The input available to children appears to be 
impoverished relative to the complexity of syntactic phenomena, and thus compatible with 
multiple hypotheses about the adult target state. The second conclusion appears to be 
theoretically unappealing: The complex learning biases necessary to overcome this induction 
problem appear to be an order (or orders) of magnitude more complex than learning biases in any 
other domain of cognition. Our goal in this article is to investigate this tension between the 
empirical evidence available to children and the complexity of the learning biases necessary to 
learn from that evidence.  

To make this study as relevant as possible to the learning debates, we focus on a syntactic 
phenomenon that is simultaneously central to modern syntactic theories, and central to proposals 
for complex learning biases: syntactic island effects. Our methodology is straightforward. First, 
we will present experimental evidence from formal acceptability judgments that provides a 
quantitative description of the target state for acquisition, which is adult knowledge of syntactic 
islands. Then, we will present a quantitative assessment of the evidence available to children 
based on both automated and manual structural annotation of 148,784 utterances of realistic 
child-directed speech from the CHILDES corpus (MacWhinney 2000). We will subsequently 
present a computational model of a statistical learning strategy that can accurately learn the 
behavior of adult speakers with respect to syntactic island effects using the simplest set of 
learning biases that we could uncover. We will then discuss each of the biases required by the 
learning strategy to determine both the type of biases required (e.g., innate versus derived, 
domain-specific versus domain-general), and the nature of those biases. The results suggest a 
complicated picture: On the one hand, it is possible in principle to learn syntactic island effects 
with few, if any, innate, domain-specific biases, and crucially without any biases that specifically 
instantiate syntactic theories (e.g., the Subjacency Condition); on the other hand, the biases that 
still appear to be necessary (e.g., tracking trigrams of phrase structure nodes that are part of the 
syntactic dependency) raise difficult questions about why these particular biases (as opposed to 
other logically possible biases) are the ones that are part of the successful language learning 
strategy. Nonetheless, computational models developed using realistic child-directed input allow 
us to make progress on two fronts. First, they provide a formal mechanism for exploring biases 
that do not specifically instantiate syntactic theories. Second, they highlight the difficult 
questions that remain for future research even when a successful learning strategy is found, such 
as how the remaining biases arise in the learner. 
 
1.1 Categorizing learning biases 
 
Debates about language learning are often framed as a comparison of the Universal Grammar 
Hypothesis (UG) versus non-UG hypotheses. The UG hypothesis takes as its starting point the 
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assumption that the data available to young children during the language learning process are 
compatible with multiple hypotheses about linguistic knowledge, resulting in an induction 
problem known variously as the “Poverty of the Stimulus” (e.g., Chomsky 1980, Lightfoot 1989, 
Crain 1991), the “Logical Problem of Language Acquisition” (e.g., Baker 1981, Hornstein & 
Lightfoot 1981), and “Plato’s Problem” (e.g., Chomsky 1988, Dresher 2003). The UG hypothesis 
argues that at least some of the learning biases necessary to solve this induction problem take the 
form of innately specified, language-specific constraints (Chomsky 1965), which often 
correspond to specific linguistic phenomena (e.g., anaphoric one: Baker 1978, Lidz, Waxman, & 
Freedman 2003; interpretation of disjunctives: Crain & Pietroski 2002; structure dependence: 
Chomsky 1965). Non-UG hypotheses, in contrast, attempt to solve the induction problem 
without postulating any innate, domain-specific constraints. Even a cursory review of the 
language learning literature reveals that the hypothesis space of non-UG learning biases is 
potentially very large (some examples are below): 
 
(i) a sensitivity to the distributional data in the available input  

[Sakas & Fodor 2001, Pullum & Scholz 2002, Scholz & Pullum 2002, Yang 
2002, Regier & Gahl 2004, Yang 2004, Legate & Yang 2007, Pearl & Weinberg 
2007, Foraker, Regier, Kheterpal, Perfors, & Tenenbaum 2009, McMurray & 
Hollich 2009, Pearl & Lidz 2009, Mitchener & Becker 2011, Pearl 2011, Pearl & 
Mis 2011, Perfors, Tenenbaum, & Regier 2011] 
 

(ii) a preference for simpler/smaller/narrower hypotheses  
[Regier & Gahl 2004, Foraker et al. 2009, Pearl & Lidz 2009,  Mitchener & 
Becker 2011, Pearl & Mis 2011, Perfors et al. 2011] 
 

(iii) a preference for highly informative data  
[Fodor 1998b, Pearl & Weinberg 2007, Pearl 2008] 
 

(iv) a preference for learning in cases of local uncertainty  
[Pearl & Lidz 2009] 
 

(v) a preference for data with multiple correlated cues  
[Soderstrom, Conwell, Feldman, & Morgan 2009] 

 
The size and diversity of this hypothesis space of learning biases suggests that a finer-grained 
framework may be more informative than the traditional binary framework (UG versus non-UG). 
For the present study, we suggest that learning biases may be categorized along (at least) three 
dimensions: 
 
a) Are they domain-specific or domain-general? 
b) Are they innate or derived from prior experience? 
c) Are they a constraint on the hypothesis space, or a constraint on the learning mechanism? 
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Under this system, the UG hypothesis simply holds that there is at least one innate, domain-
specific learning bias (either on the hypothesis space or on the learning mechanism).1 Similarly a 
non-UG approach would be one that contains no innate, domain-specific biases: Only innate, 
domain-general biases, derived, domain-general biases, and derived, domain-specific biases are 
allowed. For example, all of the learning biases listed in (i-v) above are likely either innate and 
domain-general (i-iv), or derived and domain-general (v), and therefore would not qualify as 
UG-biases. However, a sensitivity to linguistic representations that are innately specified (and 
their distributions in the input) would be an innate and domain-specific bias, and therefore 
qualify as a UG-bias (e.g., Sakas & Fodor 2001, Yang 2002, Yang 2004, Legate & Yang 2007, 
Pearl & Lidz 2009, Mitchener & Becker 2011, Pearl 2011, Pearl & Mis 2011, Pearl & Mis 
2012). 
 
1.2 Previous investigations of learning biases in syntax 
 
There have been several recent high-profile investigations of the types of learning biases 
required to learn various aspects of the syntax of human languages. For example, Perfors et al. 
(2011) have shown that an ideal learner using Bayesian inference will choose hierarchical 
representations over other kinds of possible representations, given child-directed speech data. 
This then shows that children do not necessarily need to know beforehand that language uses 
hierarchical representations; instead, this knowledge can be derived from a domain-general 
sensitivity to the distributional properties of the data. Importantly, children must still know that 
hierarchical representations are one possible hypothesis – but they do not need to have 
competing representations ruled out a priori.2  
 As another example, a number of researchers have recently conducted computational 
investigations of the acquisition of English anaphoric one (e.g., “Look, a red bottle!  Oh look, 
another one.”). Regier & Gahl (2004) demonstrated that a learner using online Bayesian 
inference can learn the correct syntactic representation and semantic interpretation of one from 
child-directed speech, provided that the child expands the range of informative data beyond the 
traditional data set of unambiguous data. Their model highlights the utility of a bias to use 
statistical distribution information in the data and a bias to prefer simpler/smaller/narrower 
hypotheses when encountering ambiguous data. Pearl & Lidz (2009) discovered this was an 
effective strategy only as long as the child knew to ignore certain kinds of ambiguous data; 

                                                 
1  Since the distinction between hypothesis space and learning mechanism does not impact a 
bias’s status as UG or not, we will not discuss it further here. However, it is worth noting this 
distinction because many UG proposals tend to involve explicit constraints on the hypothesis 
space (e.g., certain hypotheses are not available to the child a priori), while many non-UG 
proposals tend to involve implicit constraints on the learning mechanism (e.g., use statistical 
learning). This is not a logical necessity, as one could easily imagine a UG bias about the 
learning mechanism (e.g., use a language-specific learning strategy) as well as a non-UG bias 
about the hypothesis space (e.g., certain hypotheses are a priori less probable in a particular 
hypothesis space, as is the case in Bayesian inference over a subset-superset hypothesis space). 
2 Notably, however, this does not address the induction problem traditionally associated with 
structure dependence, which concerns hypothesizing structure-dependent rules that utilize these 
hierarchical representations (Berwick et al. 2011). Just because structured representations are 
available does not necessarily mean children know to use them when forming rules. 



 6 

therefore, they proposed a learning preference for learning in cases of local uncertainty, which 
would rule out the troublesome ambiguous data. Pearl & Mis (2011, 2012) discovered that 
expanding the range of informative data even further negated the need for the local uncertainty 
bias; instead, a modeled learner could reproduce the observed behavior of children as long as it 
recognized the distributional similarities between one and other referential pronouns like it. 
Notably, however, this learner did not achieve the adult knowledge state, even though it 
reproduced child behavior. Pearl & Mis (2011) suggest that an additional strategy is still needed 
to reach the adult knowledge state. One possibility is the learning strategy investigated by 
Foraker at el. (2009), in which an ideal Bayesian learner with detailed linguistic knowledge 
about the link between semantic interpretation and certain syntactic structures (syntactic 
complements and syntactic modifiers) was able to use the difference in distribution for one with 
these structures to converge on the correct knowledge for one. In the Foraker et al. (2009) model, 
the learning mechanism is domain-general; however, it is still unclear whether the detailed 
linguistic knowledge that is assumed can be derived through domain-general means or would 
instead be innate and domain-specific.     
 These previous studies have made at least two contributions to the language learning 
debates. First, they have demonstrated a concrete set of methodologies for investigating the types 
of learning biases that are required by language learning. Specifically, by combining child-
directed speech corpora with explicitly defined computational learning models, it is possible to 
systematically test the necessity of different types of learning biases. Second, they have 
demonstrated that at least some basic syntactic phenomena (e.g., hierarchical representations and 
anaphoric one) could in principle be learned without innate, domain-specific biases. Notably, 
however, there are some lingering questions, such as whether the fundamental assumptions of 
these models could also be learned without innate, domain-specific biases, and whether the end-
states of the models are identical to the end-states hypothesized for adult speakers. We take these 
results as the starting point for our investigation of learning biases for syntactic island effects. 
 
1.3 The acquisition of syntactic island effects 
 
Although these findings have substantially advanced our understanding of the acquisition of 
some aspects of syntax, there are at least three ways that the computational approach to the 
investigation of language learning (and the nature of learning biases) can be further advanced. 
First, the phenomena that have been investigated so far are generally not considered central to 
the syntactic theories of UG proponents. This likely means that the theoretical consequences of 
the previous studies have been limited due to the (relatively) peripheral nature of the phenomena 
in current syntactic research. In order to truly test the UG hypothesis, and in order for the 
resulting acquisition models to have a real impact on existing syntactic theories (Chomsky 1965), 
we need to choose a set of syntactic phenomena that are central to (UG-based) syntactic theories. 
Second, while the methodology for testing learning biases is relatively clear, the data required to 
actually perform those tests are still relatively scarce. Realistic syntactic learning models require 
child-directed speech corpora annotated with specific syntactic structural information, such as 
phrase structure trees. Unfortunately, many of the freely available corpora do not yet have this 
kind of syntactic annotation (though there are other types of syntactic annotation available for 
some corpora, such as dependency tree annotations in CHILDES (Sagae et al. 2010)). Finally, 
discussions of all of the assumptions underlying successful computational models can help 
highlight both the progress that they represent (i.e., moving away from explicitly encoding 
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syntactic theories) and the challenges that they reveal (i.e., lingering questions about how those 
assumptions are met). Our goal in this paper is to address these three issues by (i) constructing a 
corpus of child-directed speech with the syntactic annotations that we need to test syntactic 
learning models, (ii) investigating the learning biases required to learn a set of phenomena that is 
undeniably central to (UG-based) syntactic theories – namely, syntactic island constraints, and 
(iii) explicitly discussing all of the components of the simplest successful model, as well as the 
consequences of that model for both acquisition and syntactic theories.  

With these goals in place, our investigation and the rest of this article are both organized 
as follows. Section 2 introduces syntactic island effects, and presents the formal acceptability 
judgment experiments (from Sprouse et al. 2012a) that were used to quantitatively define the 
target state of learning. Section 3 introduces the syntactic annotation process and the results of 
the structural search of the child-directed speech corpora that were used as realistic child-
directed input for the learning model. This step is particularly important, as it identifies the data 
from which syntactic islands must be learned, and also serves to formalize the apparent induction 
problem that has been claimed by linguists, but not universally assumed by all researchers (e.g., 
Sampson 1989, Sampson 1999, Pullum & Scholz 2002, MacWhinney 2004, and Tomasello 2004 
among others). Section 4 describes the simplest statistical learner that successfully learns the 
pattern of island effects. Section 5 reports the results of that learning strategy when it is trained 
on realistic input, and discusses its behavior in detail. Section 6 presents a detailed discussion of 
the biases built into this learner, focusing on (i) the empirical motivation (if any) of the bias, (ii) 
the classification of the bias according to the schema in section 1.1, and (iii) the questions raised 
by the bias for the learning debates. Section 7 continues the discussion by highlighting potential 
empirical problems for this learner raised by current empirical claims in syntactic theory (or 
conversely, predictions that the learner makes concerning related phenomena in syntactic 
theory). Section 8 concludes. 
 
2. A brief introduction to syntactic island effects 
 
One of the most interesting aspects of the syntax of human languages is the fact that 
dependencies can exist between two non-adjacent items in a sentence. For example, in English, 
Noun Phrases (NPs) typically appear adjacent (or nearly adjacent) to the verbs that select them as 
semantic arguments (e.g., “Jack likes Lily.”). However, in English wh-questions, wh-words do 
not appear near the verb that selects them as semantic arguments. Instead, wh-words appear at 
the front of the sentence (1a), resulting in a long-distance dependency between the wh-word and 
the verb that selects it (we will mark the canonical position of the wh-word, which is often called 
the gap position, with an underscore). One of the defining characteristics of these long-distance 
wh-dependencies is that they appear to be unconstrained by length (Chomsky 1965, Ross 1967): 
The distance between the wh-word and the verb that selects it can be increased by any number of 
words and/or clauses (1b-d). Though there is clearly an upper bound on the number of words 
and/or clauses that an English speaker can keep track of during sentence processing, this 
restriction appears to be based on the limited nature of human working memory capacity rather 
than an explicit grammatical restriction on the length of wh-dependencies in English. Because of 
this, syntacticians often describe wh-dependencies as unbounded or long-distance dependencies. 
 
(1) a. What does Jack think __? 
 b.  What does Jack think that Lily said __?  
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 c. What does Jack think that Lily said that Sarah heard __? 
 d. What does Jack think that Lily said that Sarah heard that David stole __? 
 
 Though it is true that wh-dependencies are unconstrained by length, they are not entirely 
unconstrained. Linguists have observed that if the gap position of a wh-dependency appears 
within certain syntactic structures, the resulting sentence will be unacceptable (Chomsky 1965, 
Ross 1967, Chomsky 1973, Huang 1982, and many others): 
 
(2) a. *What did you make [the claim that Jack bought __]?  
 b.  *What do you think [the joke about __] offended Jack?  
 c. *What do you wonder [whether Jack bought __]?    
 d. *What do you worry [if Jack buys __]?    
 e.  *What did you meet [the scientist who invented __]?  
 f. *What did [that Jack wrote __] offend the editor?   
 g. *What did Jack buy [a book and __]?     
 h. *Which did Jack borrow [__ book]?     
 
Drawing on the metaphor that the relevant syntactic structures are islands that prevent the wh-
word from moving to the front of the sentence, Ross (1967) called the unacceptability that arises 
in these constructions island effects, and the syntactic constraints that he proposed to capture 
them island constraints. Though island effects are typically exemplified by wh-dependencies, it 
should be noted that island effects arise with several different types of long-distance 
dependencies in human languages, such as relative-clause formation (3), topicalization (4), and 
adjective-though constructions (5): 
  
(3) a. *I like the car that you think [that Jack bought __]. 
 b. *I like the car that you wonder [whether Jack bought __]. 
 
(4) a. *I don’t know who bought most of these cars, but that car, I think [that Jack  

  bought __]. 
 b. *I know who bought most of these cars, but that car, I wonder [whether Jack  
    bought __]? 
 
(5) a. *Smart though I think [that Jack is __], I don’t trust him to do simple math. 
 c. *Smart though I wonder [whether Jack is __], I trust him to do simple math. 
 

In the 45 years since island effects were first investigated (Chomsky 1965, Ross 1967), 
there have been literally hundreds of articles in dozens of languages devoted to the investigation 
of island effects, resulting in various proposals regarding the nature of island constraints (e.g., 
Erteschik-Shir 1973, Nishigauchi 1990, Deane 1991, Kluender & Kutas 1993, Szabolcsi & 
Zwarts 1993, Tsai 1994, Reinhart 1997, Hagstrom 1998, Chomsky 2001, Goldberg 2007, 
Truswell 2007, Abrusan 2011, and many others), the cross-linguistic variability of island effects 
(e.g., Engdahl 1980, Huang 1982, Rizzi 1982, Lasnik & Saito 1984, Torrego 1984, Hagstrom 
1998), and even the real-time processing of dependencies that contain island effects (e.g., Stowe 
1986, Kluender & Kutas 1993, McKinnon & Osterhout 1996, Traxler & Pickering 1996, Phillips 
2006, and many others). Though most of this literature is beyond the scope of the present article, 
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it does serve to underscore the central role that syntactic island effects have played in the 
development of (generative) syntactic theory. Furthermore, the predominant analysis of syntactic 
island effects in generative syntactic theory is well known to rely on innate, domain-specific 
learning biases. For example, in the Government and Binding framework of the 1980s, 
syntacticians proposed a syntactic constraint called the Subjacency Condition, which basically 
holds that the dependency between a displaced element (e.g., a wh-word) and the gap position 
cannot cross two or more bounding nodes (Chomsky 1973, Huang 1982, Lasnik & Saito 1984, 
and many others). The definition of bounding nodes can vary from language to language in order 
to account for the various patterns of island effects that have been observed cross-linguistically. 
For example, the bounding nodes in English are argued to be NP (Noun Phrase) and IP 
(Inflection Phrase) (Chomsky 1973), while the bounding nodes in Italian and Spanish are argued 
to be NP and CP (Complementizer Phrase) (Rizzi 1980, Torrego 1984). Crucially, this 
framework assumes that the Subjacency Condition itself is part of UG, as are the possible 
options for bounding nodes (NP, IP, or CP). The language learner then simply needs to 
determine which bounding nodes are relevant for her specific language in order to learn syntactic 
island constraints. Although recent evolutions of syntactic theory have terminologically 
abandoned Subjacency and bounding nodes, it has been argued that modern incarnations of 
syntactic constraints (such as phase impenetrability) are essentially formal variants of the 
original Subjacency analysis (Boeckx & Grohmann 2007). 

Between the centrality of syntactic island effects as a topic of research in (generative) 
syntactic theory, and the reliance on a UG-based mechanism for their acquisition, it seems clear 
that syntactic island effects are an ideal case study in the role of innate, domain-specific learning 
biases in language acquisition. However, investigating the learning of syntactic island effects 
requires a formally explicit definition of the target state beyond the diacritics that are typically 
used to delineate unacceptable sentences in syntactic articles. To that end, we decided to 
explicitly construct the target state from data from Sprouse et al. (2012a), who collected formal 
acceptability judgments for four island types using the magnitude estimation task: Complex NP 
islands (2a), (simple) Subject islands (2b), Whether islands (2c), and (conditional) Adjunct 
islands (2d). These four islands were selected by Sprouse et al. (2012a) for several reasons. First, 
they have been argued to be captured by syntactic constraints (e.g., Subjacency or the Condition 
on Extraction Domains), as opposed to the island types that have historically been captured with 
semantic constraints (e.g., factive islands, negative islands). Second, dependencies spanning 
these islands are still somewhat intelligible, and so can provide a more nuanced assessment of 
unacceptability, rather than being complete “word salad”. This is because these islands are the 
more acceptable incarnations of their particular types: Complex NP islands are more acceptable 
than Relative Clause islands, simple Subject islands are more acceptable than sentential Subject 
islands, Whether islands are more acceptable than Wh-islands with full wh-words in embedded 
spec-CP, and conditional Adjunct islands are more acceptable than causal Adjunct islands. Thus, 
a successful learner must accomplish a harder task than if these islands were the less acceptable 
varieties: The learner must realize that dependencies spanning these more acceptable islands are 
still ungrammatical when compared to grammatical dependencies, even though these island-
spanning dependencies are still relatively intelligible.   

The Sprouse et al. (2012a) results are particularly useful for two reasons. First, the 
magnitude estimation task employs a continuous scale (the positive number line) for 
acceptability judgments, which results in gradient responses that are comparable to the 
probabilistic outputs of statistical learning models. Second, Sprouse et al. used a (2x2) factorial 
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definition of each island effect (shown in 6-9), which controls for the two salient syntactic 
properties of island-violating sentences: (i) they contain a long-distance dependency, and (ii) 
they contain an island structure. By translating each of these properties into separate factors, each 
with two levels (dependency GAP POSITION: matrix, embedded; STRUCTURE present in question: 
non-island, island), Sprouse et al. were able to define island effects as a superadditive interaction 
of the two factors - in other words, an island effect is the additional unacceptability that arises 
when the two factors are combined, above and beyond the independent contribution of each 
factor. Specifically, a syntactic island occurs when there is more unacceptability than what the 
EMBEDDED dependency and the presence of an ISLAND structure in the question contribute by 
themselves. 
 
(6) Complex NP islands 
  
 a. *Who __ claimed that Lily forgot the necklace?  MATRIX | NON-ISLAND 
 b. *What did the teacher claim that Lily forgot __?        EMBEDDED | NON-ISLAND 
 c. *Who __ made the claim that Lily forgot the necklace? MATRIX | ISLAND  
 d. *What did the teacher make the claim that Lily forgot __? EMBEDDED | ISLAND 
 
(7) Subject islands 
  
 a. *Who __ thinks the necklace is expensive?   MATRIX | NON-ISLAND 
 b. *What does Jack think __ is expensive?         EMBEDDED | NON-ISLAND 
 c. *Who __ thinks the necklace for Lily is expensive?  MATRIX | ISLAND  
 d. *Who does Jack think the necklace for __ is expensive? EMBEDDED | ISLAND 
 
(8) Whether islands 
  
 a. *Who __ thinks that Jack stole the necklace?   MATRIX | NON-ISLAND 
 b. *What does the teacher think that Jack stole __ ?        EMBEDDED | NON-ISLAND 
 c. *Who __ wonders whether Jack stole the necklace?  MATRIX | ISLAND  
 d. *What does the teacher wonder whether Jack stole __ ?  EMBEDDED | ISLAND 
 
(9) Adjunct islands 
  
 a. *Who __ thinks that Lily forgot the necklace?  MATRIX | NON-ISLAND 
 b. *What does the teacher think that Lily forgot __ ?        EMBEDDED | NON-ISLAND 
 c. *Who __ worries if Lily forgot the necklace?  MATRIX | ISLAND  
 d. *What does the teacher worry if Lily forgot __ ?        EMBEDDED | ISLAND  
 
 Because the factorial definition treats island effects as a superadditive interaction of two 
factors, the presence of a syntactic island is also visually salient: If the acceptability of the four 
question types (as indicated by their z-scores) is plotted in an interaction plot, the presence of a 
syntactic island appears as two non-parallel lines (the left panel of Figure 1), and results in a 
significant statistical interaction; the absence of a syntactic island appears as two parallel lines 
(the right panel of Figure 1), and results in no significant statistical interaction. 
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Figure 1. Example graphs showing the presence (left panel) and absence (right panel) of a 
syntactic island using the factorial definition from Sprouse et al. (2012a). 
 

 
 

Figure 2 plots the experimentally obtained judgments for the island types investigated in Sprouse 
et al. (2012a), which shows that adult speakers appear to have implicit knowledge of these four 
syntactic islands. We can thus use the superadditive interactions for the four island types in 
Figure 2 as an explicit target state for our statistical learner. 3 
 
Figure 2. Experimentally derived acceptability judgments for the four island types from Sprouse 
et al. (2012a) (N=173).  
     

 
 

                                                 
3 We follow the field of syntax in assuming that well-controlled acceptability judgments can be 
used to infer grammaticality (see Chomsky 1965, Schütze 1996, Schütze & Sprouse in press, 
Sprouse & Almeida in press). We also follow the conclusion in Sprouse et al. (2012a, 2012b) 
that the acceptability judgment pattern observed for syntactic islands is due to grammatical 
constraints, and likely cannot be explained as an epiphenomenon of sentence processing. 
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3. Identifying the induction problem using syntactically annotated corpora 
 
To identify an induction problem, we must determine the data available to children, since this is 
the input they would use to reach the target state knowledge. To assess a child’s input for 
constraints on wh-dependencies (and, specifically, the data in the input directly relevant for 
generating the judgments in Sprouse et al. 2012a), we examined child-directed speech samples to 
determine the frequency of the structures used as experimental stimuli in Sprouse et al. (2012a). 
While the CHILDES database has many corpora that are annotated with syntactic dependency 
information (Sagae et al. 2010), it is difficult to automatically extract the kind of wh-dependency 
information we needed to identify. For this reason, we selected five well-known corpora of child-
directed speech from the CHILDES database (MacWhinney 2000) to annotate with phrase 
structure tree information: the Adam, Eve, and Sarah corpora from the Brown data set (Brown 
1973), the Valian dataset (Valian 1991), and the Suppes dataset (Suppes 1974). We first 
automatically parsed the child-directed speech utterances using a freely available syntactic parser 
(the Charniak parser4), yielding the basic phrase structure trees. However, due to the 
conversational nature of the data, there were many errors. We subsequently had the parser’s 
output hand-checked by two separate annotators from a group of UC Irvine undergraduates who 
had syntax training, with the idea that errors that slipped past the first annotator would be caught 
by the second.5 We additionally hand-checked the output of our automatic extraction scripts 
when identifying the frequency of wh-dependencies used as experimental stimuli in Sprouse et 
al. (2012a) in order to provide a third level of error detection. 
 The data from these five corpora comprise child-directed speech to 25 children between 
the ages of one and five years old, with 813,036 word tokens total. Of all the utterances, 31,247 
contained wh-words and verbs, and so were likely to contain syntactic dependencies. Table 1 
shows the number of utterances found containing the structures and dependencies examined in 
Sprouse et al. (2012a). 
 

                                                 
4 Available at ftp://ftp.cs.brown.edu/pub/nlparser/. 
5 This work was conducted as part of NSF grant BCS-0843896, and the parsed corpora are 
available at http://www.socsci.uci.edu/~lpearl/CoLaLab/TestingUG/index.html. 
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Table 1. The corpus analysis of the child-directed speech samples from CHILDES, given the 
experimental stimuli used in Sprouse et al. (2012a) for the four island types examined.  The 
syntactic island condition (which is ungrammatical) is italicized.6 
 
 MATRIX |  

NON-ISLAND 
EMBEDDED |  
NON-ISLAND 

MATRIX | 
ISLAND 

EMBEDDED | 
ISLAND 

Complex NP 7 295 0 0 
Subject 7 29 0 0 
Whether 7 295 0 0 
Adjunct 7 295 15 0 
 

From Table 1, we can see that these utterance types are fairly rare in general, with the 
most frequent type (EMBEDDED | NON-ISLAND) appearing in only 0.9% of all wh-utterances (295 
of 31,247). Secondly, we see that being grammatical doesn’t necessarily mean an utterance type 
will occur in the input. Specifically, while both the MATRIX | NON-ISLAND and MATRIX | ISLAND 
utterance types are grammatical, they rarely occur in the input (7 for MATRIX | NON-ISLAND, 
either 0 or 15 for MATRIX | ISLAND). This is problematic from a learning standpoint if a learner is 
keying grammaticality directly to input frequency. Unless the child is very sensitive to small 
frequency differences (even 15 out of 31,247 is less than 0.05% of the relevant input), the 
difference between the frequency of grammatical MATRIX | ISLAND or MATRIX | NON-ISLAND 
utterances and that of ungrammatical EMBEDDED | ISLAND utterances is very small for Adjunct 
island effects. It’s even worse for Complex NP, Subject, and Whether island effects, since the 
difference between grammatical MATRIX | ISLAND utterances and ungrammatical EMBEDDED | 
ISLAND structures is nonexistent. Thus, it appears that child-directed speech input presents an 
induction problem to a learner attempting to acquire an adult grammar for dependencies crossing 
syntactic islands.   

The existence of an induction problem then requires some sort of learning bias in order 
for children to end up with the correct adult grammar. We note that this induction problem arises 
when we assume that children are limiting their attention to direct evidence of the language 
knowledge of interest (something Pearl & Mis (2012) call the direct evidence assumption) – in 
this case, utterances containing wh-dependencies and certain linguistic structures. One useful 
bias may involve children expanding their view of which data are relevant (Foraker et al. 2009, 
Pearl & Mis 2011, Perfors, Tenenbaum, & Regier 2011), and thus including indirect positive 
evidence (Pearl & Mis 2012) for syntactic islands in their input.7 We explore this option in the 
learning strategy we describe in the next section.   

                                                 

6 Note that the number of MATRIX | NON-ISLAND data are identical for all four island types since 
that control structure was identical for each island type (a wh-dependency linked to the subject 
position in the main clause, with the main clause verb (e.g., thinks) taking a tensed subordinate 
clause (e.g., Lily forgot the necklace)). Similarly, the number of EMBEDDED | NON-ISLAND data 
are identical for Complex NP, Whether, and Adjunct islands since that control structure was 
identical for those island types (a wh-dependency linked to the object position in the embedded 
clause, with the main clause verb taking a tensed subordinate clause). 
7 Interestingly, the idea of indirect positive evidence is similar in spirit to what linguistic 
parameters are meant to do in generative linguistic theory - if multiple linguistic phenomena are 
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4. A statistical learning algorithm for syntactic islands 
 
Though there appears to be an induction problem for syntactic islands, children clearly must 
utilize some learning procedure in order for them to become adults who have the acceptability 
judgments observed in Sprouse et al. (2012a).  The essence of the acquisition process involves 
applying learning procedures to the available input in order to produce knowledge about 
language (Niyogi & Berwick 1996, Yang 2002, among many others). Pearl & Lidz (2009) 
suggest that the process can be further specified by considering the following components: 
 

(i) children’s representations of the hypothesis space 
(ii) the set of input children learn from (the data intake (Fodor 1998b)), and how that 

input set is identified and represented 
(iii) the updating procedure, and how it uses the intake 

  
In this section, we will use these three components to organize the presentation of our learning 
algorithm, albeit in a slightly different order: the representation of the input, the representation of 
the hypothesis space given the input, and the updating procedure given the input. We describe 
the performance of this learning strategy based on realistic input in section 5. We postpone 
discussion of the nature of the components of the learning strategy until section 6. 
 
4.1 The representation of the input 
 
Syntactic island effects are constraints on long-distance dependencies; therefore it is clear that 
the algorithm must operate over sentences that have been parsed into a phrase structure 
representation, and must also have the ability to track the structural information of the 
dependency itself (see Fodor 1998a, Fodor 1998b, Sakas & Fodor 2001, and Fodor 2009 for 
discussions of the utility of parsing during acquisition). Specifically, we propose that the 
algorithm extracts all of the phrasal nodes that dominate (or “contain”) the gap location but not 
the wh-element, resulting in what we call the container node sequence. For example, given the 
sentence (and associated phrase structure representation) in (10a), the container nodes would be 
the unclosed left brackets that dominate the gap but not the wh-element as in (10b), resulting in 
the container node sequence in (10c). Another example is shown in (11a-c). Here, the gap 
position associated with the wh-element who is dominated by several nodes (11b), which can be 
represented by the container node sequence in (11c). 
 
(10) a.  [CP Who did [IP she [VP like __]]]? 

b.                IP       VP 
c.  IP-VP 

 
(11) a.  [CP Who did [IP she [VP think [CP [IP [NP the gift]  [VP was [PP from __]]]]]]]]? 

b.            IP       VP CP  IP         VP        PP  
c.  IP-VP-CP-IP-VP-PP 

                                                                                                                                                             
controlled by the same parameter, data for any of these phenomena can be treated as an 
equivalence class, where learning about some linguistic phenomena yields information about 
others (Chomsky 1981, Viau & Lidz 2011, Pearl & Lidz in press).	
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 Although container nodes appear to be a relatively complex piece of information to 
extract from the input, they are not unmotivated, as they play an integral role in all syntactic 
formulations of island constraints (Ross 1967, Chomsky 1973, among others). Furthermore, the 
sentence-processing literature has repeatedly established that the search for the gap location is an 
active process (Crain & Fodor 1985, Stowe 1986, Frazier & Flores d’Arcais 1989) that tracks the 
container nodes of the gap location (see Phillips 2006 for a review of real-time studies that have 
demonstrated the parser’s sensitivity to island boundaries). In this way, the assumption that the 
learner could in principle have access to this information from the phrase structure is a well-
established fact of the behavior of the human sentence parser (though there is a difference 
between having access to information and actually using that information, which we will discuss 
in detail in section 6).  
 In order to track container node sequences, the learning algorithm must also specify the 
set of possible container nodes. For the current algorithm, we assume phrase structure nodes that 
are relatively universal across syntactic theories (e.g., NP, VP, IP, CP). However, the definition 
of island effects in section 2 and the corpus study in section 3 make it clear that CP nodes must 
be subcategorized in order to successfully learn syntactic islands. For example, without 
subcategorizing the CP node, the container node sequence for the grammatical EMBEDDED | NON-
ISLAND sentence in the Whether island design would be identical to the ungrammatical 
EMBEDDED | ISLAND condition: IP-VP-CP-IP-VP. In order to separate these two conditions, the 
algorithm must track the lexical item that introduces the CP (that versus whether): IP-VP-CPthat-
IP-VP versus IP-VP-CPwhether-IP-VP. This is an empirical necessity; however, we discuss 
potential empirical motivation for this assumption, as well as the questions it raises, in section 6. 
 
4.2 The representation of the hypothesis space  
 
Given an input representation based on container node sequences, the hypothesis space consists 
of container node sequences, only some of which are grammatical. This can be formalized 
through a learning algorithm that assigns some probability to each possible container node 
sequence, either explicitly or implicitly. However, we already know from the corpus search in 
section 3 that a learning algorithm that assigns a probability to the full container node sequence 
based solely on the frequency of that sequence will be unsuccessful, because there are container 
node sequences that are rated acceptable by adults that nonetheless have a frequency of 0 (or 
near 0) in child-directed speech. This suggests that the learning algorithm must decompose the 
container node sequences in some way, prior to assigning probabilities based on the child-
directed input.   
 To solve this problem, the proposed algorithm tracks the frequency of trigrams of 
container nodes (i.e., a continually updated sequence of three container nodes) in the input 
utterances.8 For example, the container node sequences from (10c) would be represented as a 

                                                 
8 Note that this means the learner is learning from data containing dependencies besides the one 
of interest, treating the other dependencies as indirect positive evidence (Pearl & Mis 2012).  For 
example, a learner deciding about the sequence IP-VP-CPthat-IP-VP would learn from IP-VP 
dependencies that the trigram start-IP-VP appears. This is a learning bias that expands the 
relevant intake set of the learner – all dependencies are informative, not just the ones being 
judged as grammatical or ungrammatical. 
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sequence of trigrams as in (12c), and the container node sequences from (11c) would be 
represented as a sequence of trigrams as in (13c): 
 
(12) a.  [CP Who did [IP she [VP like __]]]? 

b.                IP        VP 
c. start-IP-VP-end = 

  start-IP-VP-end  
start-IP-VP-end  

 
(13) a.  [CP Who did [IP she [VP think [CP       [IP [NP the gift]  [VP was [PP from __]]]]]]]]? 

b.            IP       VP CPnull  IP   VP       PP  
c. start-IP-VP-CPnull-IP-VP-PP-end = 

  start-IP-VP-CP-IP-VP-PP-end 
     start-IP-VP-CPnull-IP-VP-PP-end 

start-IP-VP-CPnull-IP-VP-PP-end 
start-IP-VP-CPnull-IP-VP-PP-end 
start-IP-VP-CPnull-IP-VP-PP-end 
start-IP-VP-CPnull-IP-VP-PP-end 

 
The ability to track trigrams of container nodes is also an empirical necessity: Neither tracking 
only unigrams or only bigrams will succeed, as there are grammatical dependencies that contain 
each of the unigrams and bigrams that exist in the container node sequences in the 
ungrammatical island violations (see section 6.5). Conversely, 4-grams (and above) will require 
special treatment for wh-dependencies where the gap is in the subject of the matrix clause, as the 
container node sequence consists of only 3 units (start-IP-end) (again, see section 6.5).  
 
4.3 The updating procedure 
 
The learner generates the probability of a given container node trigram based on the observed 
data. Then, to gauge the grammaticality of any given container node chain (such as one that 
crosses an island), the learner calculates the probability of observing that sequence of container 
node trigrams, which is simply the product of the trigram probabilities.9 For example, in (12), the 
sequence IP-VP would have a probability equal to the product of the trigram start-IP-VP and the 
                                                 
9 We note that the learner we implement in section 4.4 uses smoothed trigram probabilities 
(using Lidstone’s Law (Manning & Schütze 1999) with smoothing constant α = 0.5), so 
unobserved trigrams have a frequency slightly above 0.  Thus, the equation for a trigram t’s 
probability is    

    

€ 

total observations of t +  α
total observations of all N trigrams +  Nα

   

 
Specifically, the learner imagines that unobserved trigrams have been observed α times, rather 
than 0 times, and all other trigrams have been observed α + their actual observed occurrences.  
We note also that the overall trend of results we observe later on does not critically depend on 
the value of α, which effectively serves to distinguish trigrams that rarely occur from trigrams 
that never occur.  The smaller α is, the more these are distinguished.  
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trigram IP-VP-end. The learning algorithm and calculation of grammaticality preferences10 are 
schematized in Figure 3, and two examples of grammaticality preferences are shown in (14) and 
(15).  A more formal description of the learning algorithm and generation of grammaticality 
preferences is provided in Appendix A. 
 
Figure 3. Steps in the acquisition process and calculation of grammaticality preferences. 
 

 
 
 
(14) “Where does the reporter think Jack stole from?” 

[CP Where does [IP [NP the reporter] [VP think [CP     [IP [NP Jack] [VP stole [PP from 
__]]]]]]]?”  

          IP           VP         CPnull IP       VP        PP 
 Sequence: start-IP-VP-CPnull-IP-VP-PP-end  

Trigrams: start-IP-VP-CP-IP-VP-PP-end  
start-IP-VP-CPnull-IP-VP-PP-end        
start-IP-VP-CPnull-IP-VP-PP-end              

                                                 
10 Here and throughout we will use the term grammaticality preference to refer to the result of 
the learning algorithm (a probability), and acceptability judgments to refer to the actual observed 
behavior of adults in an experimental setting (e.g., Sprouse et al. 2012a). As discussed at the end 
of section 4, an acceptability judgment is the result of several factors, of which the 
grammaticality preferences generated by our learner are just one. Other factors affecting 
acceptability judgments include semantic plausibility, lexical properties, and parsing difficulty. 

!"#$%&%'%()*+,("-&&*

!"#$%&''"$#()"% *#$+"%&''"$#()",%
)-#$#)'"$./.(0%1"2"(1"()."+%
#+%)3('#.("$%(31"%+"4&"()"+%

5*67*68*9%

:1"('.;<%'$.0$#=+%#(1%
&21#'"%'$.0$#=%;$"4&"()."+%

!"#$"%&'%('%>%?)
*%

@-#'%
1.19%

A"2"#'%&('.B%B"#$(.(0%2"$.31%"(1+%

.,/00/'%"/1%'2*+,-3-,-)"-&*

*#$+"%+'$&)'&$",%
)-#$#)'"$./.(0%
1"2"(1"()."+%#+%)3('#.("$%
(31"%+"4&"()"+%

5*67*68*9%

:1"('.;<%'$.0$#=+%

!"#$"%&'%(')
&'%('%+')
*)

C#B)&B#'"%2$3D#D.B.'<%3;%
)3('#.("$%(31"%+"4&"()"%
;$3=%'$.0$#=+%

*$3D#D.B.'<%E%%
,F!"#$"%&'%('-).)
,/&'%('%+'-).)
*)



 18 

start-IP-VP-CPnull-IP-VP-PP-end    
start-IP-VP-CPnull-IP-VP-PP-end   
start-IP-VP-CPnull-IP-VP-PP-end    

 Probability(IP-VP-CPnull-IP-VP-PP) =  
    p(start-IP-VP)*p(IP-VP-CPnull)*p(VP-CPnull-IP)*p(CPnull-IP-VP)*p(IP-VP-PP)*p(VP-
PP-end) 
 
 
(15) *“Who does Jack think the necklace for is expensive?” 

[CP Who does [IP [NP Jack] [VP think [CP       [IP [NP the necklace [PP for __]] [VP is 
expensive]]]]]]? 

             IP       VP         CPnull IP NP              PP 
 Sequence:  start-IP-VP-CPnull-IP-NP-PP-end 

Trigrams: start-IP-VP-CP-IP-VP-PP-end  
   start-IP-VP-CPnull-IP-NP-PP-end 
   start-IP-VP-CPnull-IP-NP-PP-end 
   start-IP-VP-CPnull-IP-NP-PP-end 
   start-IP-VP-CPnull-IP-NP-PP-end 
   start-IP-VP-CPnull-IP-NP-PP-end 
 Probability(IP-VP-CPnull-IP-NP-PP) =  
    p(start-IP-VP)*p(IP-VP-CPnull)*p(VP-CPnull-IP)*p(CPnull-IP-NP)*p(IP-NP-PP)*p(NP-
PP-end) 
 
 Given this learning algorithm, a child can generate a grammaticality preference for a 
given dependency at any point during learning, based on the input previously observed, by 
calculating its probability from the frequency of the trigrams that comprise it (see Figure 3). 
Similarly, a relative grammaticality preference can be calculated by comparing the probabilities 
of two dependencies’ container node sequences. This will allow us, for example, to compare the 
inferred grammaticality of dependencies spanning island structures versus dependencies 
spanning non-island structures.  
  
5. The performance of the algorithm 
 
In this section, we evaluate the performance of the proposed algorithm for both child-directed 
speech and adult-directed input (both speech and text, which is likely more similar to an adult’s 
linguistic input). We include both types of input in order to assess the performance of the model 
under slightly different input environments, and to quantify the differences between child- and 
adult-directed corpora (especially given the scarcity of the former and the relative abundance of 
the latter). After presenting the results of the algorithm for both input types, we then discuss the 
detailed behavior of the algorithm to uncover exactly how it is that the set of biases described in 
section 4 combine to learn the superadditive pattern of island effects. 
 
5.1 Empirically grounding the learner 
 
The two datasets used as input were comprised of six corpora across three corpus types: child-
directed speech from the Adam and Eve corpora from Brown (1973), the Valian corpus (Valian 
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1991), and the Suppes corpus (Suppes 1974) of CHILDES (MacWhinney 2000), adult-directed 
speech from the Switchboard section of the Treebank-3 corpus (Marcus et al. 1999) and adult-
directed text from the Brown section of the Treebank-3 corpus (Marcus et al. 1999). Table 3 
presents the basic composition of the three corpus types. Figure 4 provides a compact 
representation of the distribution of the types of wh-dependencies in each corpus, while 
Appendix B provides a detailed description of the composition of each corpus that can be used 
by readers to construct additional algorithms (or to replicate the performance of the current 
algorithm).   
 
Table 3: Basic composition of the child-directed and adult-directed input corpora. 
 
 Child-directed: 

speech 
Adult-directed: 

speech 
Adult-directed: 

text 
    

total utterances 101838 74576 24243 
total wh-dependencies 20923 08508 04230 
    

 
Figure 4. The 15 most frequent wh-dependency types in the three corpora types. The left panel 
displays the 10 most frequent wh-dependency types for each of the three corpora types, with IP-
VP and IP dominating all three corpora types (IP-VP: rank 1, IP: rank 2). The right panel 
displays the 6th-15th most frequent wh-dependency types on a smaller y-axis scale (0-.01) in order 
to highlight the small amount of variation between corpora types for these dependency types. 
 

 
 
 These results suggest that two sequences account for a substantial portion of the input of 
all three corpora: IP-VP, which corresponds to a gap in the matrix object position, and IP, which 
corresponds to a gap in the matrix subject position. These two dependency types account for 
between 90 and 95% of the wh-dependencies in the input, depending on the corpus type. This 
analysis also suggests that child-directed speech is similar to adult-directed speech in terms of 
the proportion of wh-dependencies, with IP-VP accounting for a substantially larger proportion 
of the input than IP (child-directed speech: 76.7% versus 12.8%, adult-directed speech: 73.0% 
versus 17.2%). This suggests that, at the current level of abstraction, child-directed speech and 
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adult-directed speech are fairly equivalent, which is not necessarily the case for less abstract 
representations such as complete phrase structure trees, grammatical category sequences, or 
vocabulary items. In contrast, adult-directed written text tends to be biased slightly more towards 
main clause subject dependencies (IP), though main clause object dependencies (IP-VP) are still 
far more prevalent (IP-VP: 63.3% versus IP: 33.0%). Also, it should be noted that overt 
complementizers (such as that, indicated as CPthat in the table in Appendix B) are rare in general. 
This will be relevant when we examine the learned grammaticality preferences for dependencies 
involving the complementizer that.  
 In addition to specifying the composition of the input, computational models also require 
a specification of the amount of input that the algorithm receives in the form of a learning period. 
We based the current learning period on empirical data from Hart & Risley (1995), who found 
that children are exposed to approximately 1 million utterances between birth and 3 years of age. 
Assuming that syntactic islands are acquired within a three year period (perhaps between the 
ages of 2 and 5 years old; see Goodluck, Foley, & Sedivy 1992, De Villiers & Roeper 1995, De 
Villiers, Roeper, Bland-Stewart, & Pearson 2008, and Roeper & de Villiers 2011), we can use 
the composition of the annotated corpora to estimate the number of wh-dependencies that would 
occur in those one million utterances. Given child-directed speech samples from Adam and Eve 
(Brown 1973), Valian (Valian 1991), and Suppes (Suppes 1974), we estimate the proportion of 
wh-dependencies (20,923) to total utterances (101,823) as approximately 0.2.  We thus set the 
learning period to 200,000 wh-dependency data points. This means that the current algorithm 
will encounter 200,000 data points containing wh-dependencies, drawn randomly from a 
distribution characterized by the corpora in the table in Appendix B. 
 
5.2 Success metrics and learner implementation 
 
We can test the current algorithm by comparing the learned grammaticality preferences to 
empirical data on adult acceptability judgments from Sprouse et al. (2012a). The container node 
sequences that arise for the sentence types in (6-9) above are given in (16-19). It should be noted 
that the current algorithm will compare syntactic island violations to only three types of 
grammatical container node sequences, despite the number of superficial sentence types 
involved: IP, IP-VP-CPthat-IP-VP, and IP-VP-CPnull-IP.11 
  
(16) Complex NP islands 
  
 a. *IP            MATRIX | NON-ISLAND 
 b. *IP-VP-CPthat-IP-VP     EMBEDDED | NON-ISLAND 

                                                 
11 This shows that actual process of generating acceptability judgments is likely more nuanced 
than the basic implementation in the current algorithm. One clear difference is that the current 
algorithm does not factor in the portion of the utterance beyond the gap position, whereas the 
actual process in humans likely does. For example, Who saw it? is not judged as equivalent to 
Who thought that Jack said that Lily saw it?, even though both are IP dependencies. Similarly, 
the current algorithm does not factor lexical or semantic properties into the judgments, whereas 
the actual process in humans likely does. This is why experimental studies have to balance the 
lexical, structural, and semantic properties of the experimental materials, as Sprouse et al. 
(2012a) did. 
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c. *IP            MATRIX | ISLAND  
 d. *IP-VP-NP-CPthat-IP-VP    EMBEDDED | ISLAND 
 
(17) Subject islands 
  
 a. *IP            MATRIX | NON-ISLAND 
 b. *IP-VP-CPnull-IP     EMBEDDED | NON-ISLAND 
 c. *IP            MATRIX | ISLAND  
 d. *IP-VP-CPnull-IP-NP-PP    EMBEDDED | ISLAND 
 
(18) Whether islands 
  
 a. *IP            MATRIX | NON-ISLAND 
 b. *IP-VP-CPthat-IP-VP     EMBEDDED | NON-ISLAND 
 c. *IP            MATRIX | ISLAND  
 d. *IP-VP-CPwhether-IP-VP    EMBEDDED | ISLAND 
 
(19) Adjunct islands 
  
 a. *IP            MATRIX | NON-ISLAND 
 b. *IP-VP-CPthat-IP-VP     EMBEDDED | NON-ISLAND 
 c. *IP            MATRIX | ISLAND  
 d. *IP-VP-CPif-IP-VP     EMBEDDED | ISLAND  
 
Recall that this factorial definition of island effects makes the presence of island effects visually 
salient. If the acceptability of the four utterance types is plotted in an interaction plot, the 
presence of an island effect shows up as two non-parallel lines (e.g., the left panel of Figure 1), 
while the absence of an island effect shows up as two parallel lines (e.g., the right panel of 
Figure 1). Sprouse et al. (2012a) found an island effect pattern for all four island types; therefore, 
a successful algorithm will also reveal an island effect pattern for all four island types. 

To evaluate the success of the current algorithm, we can plot the predicted 
grammaticality preferences in a similar interaction plot: If the lines are non-parallel, then the 
learner has acquired the knowledge required to implement island constraints; if the lines are 
parallel, then the learner did not acquire the knowledge required to implement island constraints.  
The current algorithm will follow the grammaticality preference calculation process outlined in 
Figure 3 and Appendix A. In particular, it will receive data incrementally, identify the container 
node sequence and trigrams contained in that sequence, and update the corresponding trigram 
frequencies. It will then use these trigram frequencies to infer a probability for a given wh-
dependency, which can be equated to the judged acceptability of that dependency – more 
probable dependencies are more acceptable, while less probable dependencies are less 
acceptable. Though the inferred acceptability can be generated at any point during learning 
(based on the trigram frequencies at that point), we will show results only from the end of the 
learning period. 
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5.3 Modeling results 
 
Because the result of a grammaticality preference calculation is often a very small number (due 
to multiplying many probabilities together), we will instead report the log probability. This 
allows for easier comparison with acceptability judgments. All log probabilities are negative 
(this is because raw probabilities are between 0 and 1, and the logarithm of numbers less than 1 
is negative). The more positive numbers (i.e. closer to zero) represent “more acceptable” 
structures while more negative numbers (i.e., farther from zero) represent “less acceptable” 
structures.12  Figures 5 and 6 represent the results of the proposed algorithm given child-directed 
and adult-directed input, respectively. Table 4 lists the log probabilities depicted in Figures 5 and 
6.  
 
Figure 5. Log probabilities derived from a learner using child-directed speech. 
 

   

   
 

                                                 
12 This measurement is similar to surprisal, which is traditionally defined as the negative log 
probability of occurrence (Tribus 1961) and has been used recently within the sentence 
processing literature (Hale 2001, Jaeger & Snider 2008, Levy 2008, Levy 2011). Under this 
view, less acceptable dependencies are more surprising. 
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Figure 6: Log probabilities derived from a learner using adult-directed speech and text.  
 

   

   
 
Table 4. Inferred grammaticality of different wh-dependencies from Sprouse et al. (2012a), 
represented with log probability. 
 Child-directed 

speech 
Adult-directed 
speech & text 

 

Grammatical dependencies 
 

matrix subject IP -1.21 -0.93 
embedded subject IP-VP-CPnull-IP -7.89 -7.67 
embedded object IP-VP-CPthat-IP-VP -13.84 -11.00 

 
Island-spanning dependencies 

 

Complex NP        IP-VP-NP-CPthat-IP-VP -19.81 -18.93 
Subject IP-VP-CPnull-IP-NP-PP -20.17 -20.36 
Whether IP-VP-CPwhether-IP-VP -18.54 -18.46 
Adjunct IP-VP-CPif-IP-VP -18.54 -18.46 
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Figures 5 and 6 indicate that learners using either child-directed or adult-directed input and the 
proposed algorithm would arrive at the correct pattern of grammaticality preferences (a 
superadditive interaction) for all four islands. Furthermore, the log probabilities suggest that the 
ungrammatical island violations are substantially less acceptable than the grammatical control 
conditions in the factorial design. This can be seen by subtracting the log probabilities of the two 
conditions that one wishes to compare: Because subtraction in logarithmic space is equivalent to 
division in the raw space, the difference between two log probabilities indicates the number of 
times larger or smaller one probability is than the other. For example, the log probability of 
Subject island violations (-20.17) is 12.28 less than the log probability of an embedded subject 
dependency (-7.89). This indicates that the proposed algorithm rates Subject island violations as 
12.28 times less acceptable than embedded subject dependencies. This measure is also known as 
the log-odds of the comparison. All of the island violations are at least 4 times less acceptable 
than the grammatical control conditions, and often more than 10 times less acceptable. 
 Although these results demonstrate that our modeled learner can acquire the general 
superadditive interaction pattern observed in the actual acceptability judgment experiments, it 
should be noted that there are noticeable differences between the observed acceptability 
judgments and the inferred grammaticality preferences learned by this model. The reason for this 
is that actual acceptability judgments are based on dozens of factors that are not included in this 
model. For example, lexical items, semantic probability, and processing difficulty have all been 
demonstrated to impact acceptability judgments (Schütze 1996, Cowart 1997, Keller 2000, 
Sprouse 2009). The inferred grammaticality of this particular model would constitute only one 
(relatively large) factor among many that affect acceptability. In other words, the grammaticality 
preferences of this model are themselves limited to the dependency alone – they ignore all of the 
other properties of the sentence.  
 
5.4 Understanding the behavior of the algorithm 
 
The results of the previous section suggest that the proposed algorithm can successfully learn the 
superadditive pattern of syntactic island effects from realistic child-directed or adult-directed 
input. The question then is how tracking container node trigrams leads to such success. The 
answer requires a closer examination of the container node trigram probabilities involved in each 
island-spanning dependency, as shown in Table 5 below. Crucially, for each of the island-
spanning dependencies, there is at least one extremely low probability container node trigram in 
the container node sequence of the dependency. These trigrams are assigned low probabilities 
because these trigram sequences are never observed in the input – it is only the smoothing 
parameter that prevents these probabilities from being 0. Note that some trigrams are low 
probability due to being rarely encountered in the input (e.g., CPthat-IP-VP in child-directed 
speech) – but, crucially, this is still more than never. Even though CPthat rarely appears, it does 
appear, and so it is assigned a probability that is substantially non-zero. 
 
 
Table 5. Container node trigram probabilities for each of the island-crossing dependencies, as 
well as two grammatical dependencies, after the learning period has finished. Very low 
probability container node trigrams, which are never observed in the input, are in bold. Log 
probability for the complete dependency is also shown. 
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  Child-directed Adult-directed 
Dependency  Trigram  probabilities probabilities 
    

Complex NP island start-IP-VP .42 .41 
IP-VP-NP-CPthat-IP-VP IP-VP-NP .0015 .0011 
 VP-NP-CPthat .0000012 .0000013 
 NP-CPthat-IP .0000012 .0000013 
 CPthat-IP-VP .000044 .00004 
 IP-VP-end .4 .38 
log(probability)  -19.81 -18.46 
    
    

Subject island start-IP-VP .42 .41 
IP-VP-CPnull-IP-NP-PP-end IP-VP-CPnull .0073 .0045 
 VP-CPnull-IP .0073 .0045 
 CPnull-IP-NP .0000012 .0000013 
 IP-NP-PP .0000012 .0000013 
 NP-PP-end .00021 .0003 
log(probability)  -20.17 -20.36 
    
    

Whether island start-IP-VP .42 .41 
IP-VP-CPwhether-IP-VP IP-VP-CPwhether .0000012 .0000013 
 VP-CPwhether-IP .0000012 .0000013 
 CPwhether-IP-VP .0000012 .0000013 
 IP-VP-end .4 .38 
log(probability)  -18.54 -18.46 
    
    

Adjunct island start-IP-VP .42 .41 
IP-VP-CPif-IP-VP IP-VP-CPif .0000012 .0000013 
 VP-CPif-IP .0000012 .0000013 
 CPif-IP-VP .0000012 .0000013 
 IP-VP-end .4 .38 
log(probability)  -18.54 -18.46 
    
    

Triple object, no CPs start-IP-VP .42 .41 
IP-VP-IP-VP-IP-VP IP-VP-IP x 2 .031 .017 
 VP-IP-VP x 2 .031 .017 
 IP-VP-end .4 .38 
log(probability)  -6.81 -7.89 
    
    

Triple object, with CPs start-IP-VP .42 .41 
IP-VP-CPnull-IP-VP-CPnull-IP-VP IP-VP-CPnull x 2 .0073 .0045 
 VP-CPnull-IP x 2 .0073 .0045 
 CPnull-IP-VP x 2 .0067 .002 
 IP-VP-end .4 .38 
log(probability)  -13.67 -15.59 
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In addition to highlighting the role of low probability trigrams in determining the 
acceptability of syntactic island violations, Table 5 also highlights the tension between the length 
of the dependency and its acceptability. Given that the proposed algorithm calculates the 
probability of the dependency as the product of the probability of the trigrams that compose the 
sequence, longer dependencies will tend to be less probable than shorter dependencies because 
longer dependencies by definition involve the multiplication of more probabilities, and those 
probabilities are always less than 1. Despite this general tendency to prefer shorter dependencies 
to longer dependencies, the specific frequencies of the individual trigrams comprising those 
dependencies still have a large effect. As a concrete example, Table 5 lists two grammatical 
dependencies that are relatively long: Both are triply embedded object dependencies, one with no 
CP container nodes (IP-VP-IP-VP-IP-VP: e.g., What does Lily want to pretend to steal?), and 
one with CP container nodes (IP-VP-CPnull-IP-VP-CPnull-IP-VP : e.g., What does Lily think Jack 
heard she stole?). In both cases, these grammatical dependencies are categorized by the 
algorithm as more probable than the island violations (as shown by their log probabilities) 
despite being substantially longer than the island violations. This is because the container node 
trigrams that comprise the grammatical dependencies occur with some frequency in the input.  
 One concern with this approach is that it might be seen to equate difficulty with 
ungrammaticality (Phillips 2012b).13 In particular, one might worry that very long dependencies 
would start to resemble ungrammatical dependencies with respect to acceptability under the 
proposed algorithm, even though native speakers report a qualitative perceptual difference 
between them. This may in fact be a general problem for acceptability judgments as a measure of 
grammaticality. For example, the formal acceptability judgment experiments of Alexopoulou and 
Keller (2007) concretely demonstrate that very long dependencies (i.e., dependencies that cross 
two or more clause boundaries) are often rated identically to island violations in acceptability 
judgment experiments, suggesting that acceptability alone is not enough to capture the 
qualitative difference between sentences whose ungrammaticality leads to low acceptability and 
sentences whose length leads to low acceptability. Phillips is correct that this general problem is 
maintained in the current algorithm, because the current algorithm is designed to capture 
acceptability effects. However, it should be noted that the current algorithm can in principle 
distinguish sentences that are low probability because of length (i.e., very many trigrams) and 
sentences that are low probability because one or more trigrams never occur. This is because the 
algorithm itself collects precisely that information (the number of trigrams and the relative 
probability of each trigram). In other words, the qualitative distinction between the two types of 
sentences can be recovered by looking at how the low probability was calculated. It is an open 
question how it is that a learner using this algorithm would access this calculation; however, as 
one anonymous reviewer observes, one simple formal way to capture this is with the geometric 
mean, which is calculated by multiplying a sequence of numbers together and taking the nth-root 
of the product where n is equal to the number of items that were originally multiplied (a formula 
is given in 20). The geometric mean of an ungrammatical dependency will be substantially lower 
than the geometric mean of a longer dependency, due to the presence of the trigrams that never 
occur. 
 
(20) Geometric mean of probabilities p1…pn = 

€ 

pi
i=1 to n
∏n  

                                                 
13 We are especially grateful to Colin Phillips for his thoughts and suggestions concerning this. 
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Phillips (2012b) suggests two additional ways around this issue. One is to make the smoothing 
factor α much smaller (e.g., .00005 instead of 0.5). This effectively further penalizes trigrams 
that have never been observed – their probability, though non-zero, is significantly smaller and 
thus lowers the probability of the dependency they are part of. Another way is to back off from 
the notion of a combined probability for the entire dependency. Instead, a learner could simply 
note the presence of a very low probability trigram in any given dependency - this might arise 
naturally if that part of the dependency is difficult to process, because that container node trigram 
hasn’t been encountered before. 
 
5.5 The success of the algorithm 
 
These results suggest that syntactic island effects can be learned from realistic child-directed 
input using an algorithm that does not directly encode syntactic island constraints. The proposed 
algorithm does require relatively sophisticated biases, such as (i) the parsing of sentences into 
phrase structure trees, (ii) the extraction of sequences of container nodes for the dependencies, 
(iii) the tracking of the frequency of trigrams of container nodes, and (iv) the calculation of the 
probability of the complete container node sequence for the dependency, based on its trigrams. 
The results also suggest that two desirable properties of acceptability judgments fall out of this 
algorithm:  (i) a general preference for shorter dependencies, and (ii) a qualitative distinction 
between long dependencies and ungrammatical dependencies (at least in principle). The 
construction of this algorithm represents substantial progress in understanding the space of 
possible learning theories for complex syntactic phenomena like syntactic island effects, but it 
also raises difficult questions about how the component biases of such an algorithm actually arise 
in the learner. We turn to these questions in the next section. 
 
6. A discussion of the biases of the algorithm 
 
The previous section presented the successes of the proposed algorithm. In this section, we 
discuss each bias that comprises the algorithm individually, with a particular focus on (i) the 
empirical motivation for each bias, (ii) the potential classification of each bias according to the 
framework laid out in section 1, and (iii) the unanswered questions (for future research) raised by 
the empirical necessity of each bias. 
 
6.1 Syntactic category and phrase structure information 
 
One of the most basic components of the proposed learning algorithm is that it operates over 
input that has been parsed into phrase structure trees. It therefore assumes that both syntactic 
category information and phrase structure information have already been acquired (or are in the 
process of being acquired). We do not have too much to say about this assumption because basic 
syntactic phenomena like syntactic categories and phrase structure parsing are required by nearly 
every syntactic phenomenon. It may be the case that the acquisition of syntactic categories or 
phrase structure requires at least one innate, domain-specific bias, in which case every syntactic 
phenomenon, including syntactic islands, would (strictly speaking) require such a bias. 
Nonetheless, this would not be a fact that is specific to syntactic islands, but rather a general fact 
of every syntactic phenomenon. We are specifically interested in the consequences of syntactic 
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islands for learning theories, not the consequences of every syntactic phenomenon. That being 
said, for recent work investigating the acquisition of syntactic categories from child-directed 
input, see Mintz (2003) and (2006), and for recent work investigating the acquisition of 
hierarchical structure given syntactic categories as input, see Klein & Manning (2002). 
 
6.2 Tracking frequencies and calculating probabilities 
 
Another basic component of the proposed algorithm is that the learner has the ability to track the 
frequency of units in the input, and then calculate the probabilities of those units. This is a 
relatively uncontroversial assumption, as many learning theories, both in language and other 
cognitive domains, assume that the learner can track frequencies and calculate probabilities. The 
ability to track frequencies and calculate probabilities is likely an innate, domain-general ability. 
Still, the interesting question about the ability to track frequencies and calculate probabilities is 
not so much the existence of the ability itself, but rather the units that are tracked – a question 
that we turn to in the next four subsections. 
 
6.3 Restricting the input to wh-dependencies 
 
The proposed algorithm assumes that only wh-dependencies are used as input by the learner, at 
least for the acquisition of syntactic island effects with wh-dependencies. This assumption is not 
as neutral as it first appears. First, many syntactic theories recognize similarities between wh-
dependencies and other types of dependencies, such as relative-clause-dependencies (rc-
dependencies), by postulating syntactic mechanisms that are common to both (e.g., A’-
movement). This might then suggest that, for the purposes of acquisition, the two types of 
dependencies should be treated as equal. However, recent formal acceptability judgment 
experiments suggest that, at least in English, wh-dependencies and rc-dependencies display 
different sets of island effects, although both do demonstrate some island effects (Sprouse, 
Caponigro, Greco, and Ceccheto submitted). This suggests that these two dependencies must be 
tracked separately for the purposes of acquisition, and so both should be input (separately) into 
the syntactic islands learning algorithm.  

Second, other dependencies, such as the binding dependencies that hold between nouns 
and pronouns, do not display syntactic island effects at all. The fact that binding dependencies 
lack island effects is ambiguous: It could either mean that binding dependencies are never 
subjected to the syntactic islands learning algorithm, or it could mean that the input for binding 
dependencies contains the trigrams that are never observed in the input for wh-dependencies, and 
so island effects are not observed for binding dependencies. Although teasing apart these two 
possibilities is beyond the scope of this article, we can at least say that some of the low 
probability trigrams that lead to island effects, such as VP-CPwhether-IP are certainly possible in 
binding dependencies, as in John wonders whether you like him. This suggests that even if the 
syntactic islands learning algorithm were applied to binding dependencies, the algorithm would 
likely not lead to syntactic island effects for binding dependencies. In a similar vein, both of the 
logical possibilities suggest that binding dependencies must be tracked separately from wh-
dependencies. 
 The fact that it is empirically necessary to separate wh-dependencies from other 
dependency types does not explain how it is that the acquisition system knows to separate the 
input. While it is logically possible to achieve this type of separation without necessarily 
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invoking innate, domain-specific biases, we simply do not have enough information about the 
learnability of these other dependency types to evaluate the possibilities. What we can say is that 
the learning strategy proposed here highlights the fact that the any theory of the acquisition of 
syntactic islands must be able to track wh-dependencies separately from rc-dependencies and 
binding dependencies.  
 
6.4 Tracking sequences of container nodes 
 
Much like the assumption that the input must be restricted to wh-dependencies, the bias in the 
proposed algorithm to track sequences of container nodes appears relatively neutral at first 
glance; after all, syntactic island effects are constraints on dependencies, and therefore the 
algorithm should track information about the dependencies. However, this assumption is far from 
neutral, as it is in essence informing the system that long-distance dependencies may have 
constraints on them and so information about them should be tracked. Of course this is an 
empirical necessity: There are such things as syntactic island effects, and they do appear to vary 
both across languages (Rizzi 1982) and across constructions (Sprouse et al. submitted). 
Therefore, the acquisition system must learn (something about) them. But nothing about this 
algorithm explains why the system attempts to learn constraints on long-distance dependencies. 
For attempts to explain the existence of syntactic islands based on considerations of 
computational (parsing) efficiency, see Fodor (1978, 1983), Berwick & Weinberg (1984), and 
Hawkins (1999). 
 Beyond encoding the very existence of constraints on long-distance dependencies, the 
bias to track sequences of container nodes also raises the question of how it is that the algorithm 
knows to track container nodes rather than some other piece of information about a dependency. 
In other words, why couldn’t the constraints be stated over the number of nouns in the 
dependency, or the number of prepositions, or even stated over certain semantic categories such 
as temporal modifiers? It is true, as mentioned in section 4, that the fact that the parsing of long-
distance dependencies is an active process means that the sequence of container nodes is 
information that is likely available to the language system, but availability is distinct from 
attention. The current algorithm is biased to attend to container nodes instead of all of the other 
logically possible types of information about dependencies that are potentially available. This 
bias is likely domain-specific, as long-distance dependencies (and their constraints) have not 
been clearly demonstrated in any other domain of cognition. It is, however, an open question 
whether this bias is also innate, or whether it can be derived from other biases. Nonetheless, it 
seems to be the case that any theory of syntactic islands that postulates a structurally-defined 
constraint will likely track container nodes, and therefore will be confronted with this difficult 
question. 
 
6.5 Tracking trigrams instead of other n-grams 
 
The proposed algorithm decomposes the sequence into trigrams (a moving window of three 
container nodes). Once again, this is an empirical necessity. The corpus analysis in section 3 
suggests that the learning algorithm must decompose the container node sequences into smaller 
units, otherwise three of the (grammatical) MATRIX | ISLAND conditions would be erroneously 
characterized as ungrammatical. A unigram model will successfully learn Whether and Adjunct 
islands, as there are container nodes in these dependencies that never appear in grammatical 
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dependencies (CPwhether and CPif), but will fail to learn Complex NP and Subject islands, as all of 
the container nodes in these islands are shared with grammatical dependencies. This is 
problematic under the assumption that all four island types should be learned by the same 
algorithm, although it is logically possible that different island types arise due to different 
algorithms (perhaps according to some of the theoretical distinctions that have been postulated in 
the syntax literature). In effect, there is tension between the size of the n-grams that the algorithm 
tracks, and the number of learning algorithms that are necessary: Decreasing one requires an 
increase in the other to capture the empirical facts of syntactic islands. 

A similar problem arises for a bigram model: At least for Subject islands, there is no 
bigram that occurs in a Subject island violation but not in any grammatical dependencies. The 
most likely candidate for such a bigram is IP-NP, as this is precisely the configuration that 
suggests extraction from the subject position (and thus distinguishes Subject islands from 
grammatical extraction from objects, which would be VP-NP). However, sentences such as 
What, again, about Jack impresses you? or What did you say about the movie scared you? 
suggest that a gap can arise inside of NPs, as long as the extraction is of the head noun (what), 
not of the noun complement of the preposition. One way to circumvent this problem is to assign 
a different structural analysis to these sentences such that the container node sequence no longer 
contains IP-NP. In this case, there is a tension between the simplicity of the structural analysis of 
certain sentences, and the size of the n-grams that the algorithm tracks. Another option is to 
postulate a distinct learning algorithm for Subject islands, as previously discussed for unigrams. 

Although trigrams are the smallest n-gram that captures all four island effects without 
postulating a second learning algorithm, one could ask if increasing the size of the n-grams 
would result in better empirical coverage. The problem with an approach that assumes an n 
greater than 3 is that there is no straightforward way to accommodate extraction from the matrix 
subject position, which only results in a single container node (IP). It is possible to accommodate 
these sequences in a trigram model by assuming symbols for start and end, resulting in start-IP-
end. Start and end symbols may not be part of phrase structure grammars, but they are at least 
psychologically principled in that the algorithm needs to track the beginning and end of 
dependencies at some level. However there is no obviously principled way to incorporate an 
additional symbol in a 4-gram model to capture matrix subject dependencies. Alternatively, as an 
anonymous reviewer observes, one might argue that a learner could simply not divide these 
dependencies into 4-grams; rather, the learner would divide dependencies into 4-grams if they 
can be divided, and would leave them alone otherwise. This runs into a similar problem, 
however: Namely, something special must be done for dependencies that cannot be divided into 
4-grams (such as matrix subject dependencies) so that they can be both learned from and learned 
about. This suggests that a trigram model is simpler because the 4-gram model will require an 
exception for these dependencies. This problem holds for every n-gram above 3.  
 Like the previous biases, the bias to track trigrams appears to be an empirical necessity 
(unless the learner uses additional or more complex algorithms). Also like the previous biases, it 
is an open question how this bias arises. Learning models based on sequences of three units have 
been proposed and are consistent with children’s observable behavior for other linguistic 
knowledge (e.g., the comparison of three sequential transitional probabilities for word 
segmentation: Saffran et al. 1996, Aslin et al. 1998, Graf Estes et al. 2007, Pelucchi et al. 2009a, 
Pelucchi et al. 2009b; frequent frames consisting of three sequential units for grammatical 
categorization: Mintz 2006, Wang & Mintz 2008); additionally, these learning models are 
consistent with human behavior for non-linguistic phenomena (Saffran et al. 1996) and also with 
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learning behavior in non-human primates (Saffran et al. 2008). Given this, such a bias is likely 
domain-general; however, the fact that trigrams are an available option does not explain how it is 
that the learning algorithm knows to leverage trigrams (as opposed to other n-grams) for 
syntactic islands. The existence of certain syntactic islands in English appears to be predicated 
upon this choice (Complex NP and Subject islands do not arise under other choices), so this bias 
is inextricably linked to the question that arises throughout this discussion: Why is it that 
syntactic island effects exist in language at all? The explicit algorithm proposed here makes it 
clear that this is a problem that any theory of the learning of syntactic island constraints must 
address at some point. 
  
6.6 Subcategorization of CP 
 
In addition to a bias to track trigrams of container nodes, the proposed algorithm has a bias to 
track subcategories of CP based on the lexical item that introduces the CP (that, whether, if, and 
the null complementizer). Much like the other biases, this is empirically necessary: An algorithm 
that treats all CPs identically will fail to learn Whether islands and Adjunct islands, because the 
only difference between Whether and Adjunct violations and their non-island control conditions 
is in the type of CP (that versus whether, and that versus if). Again, like the other biases, this 
raises the question of how the algorithm knows what the proper set of container nodes to track is. 
It is logically possible to subcategorize any number of maximal projections, or none at all, or 
even to count intermediate projections (e.g., N’) as a container node.  
 The fact that CPs can be subcategorized is relatively straightforward. Different CPs 
introduce different types of clauses, with substantial semantic differences: that introduces 
declarative clauses (which are semantically propositions), whether introduces questions (which 
are semantically sets of propositions), and if introduces condition clauses. It may also be possible 
to quantify the degree of semantic difference captured by the subcategorization of different types 
of maximal projections, such that one could argue that the differences between CPs is greater 
than the differences between NPs, or the differences between VPs. However, the fact that this 
type of information is available to the language system does not explain how it is that the learner 
knows to pursue this particular strategy (or knows where to draw the line between types of 
container nodes). It may be possible to capture part of this behavior with innate, domain-general 
preferences for certain types of hypotheses (either more specific hypotheses, such as 
subcategorize all container nodes, or more general hypotheses, such as subcategorize no 
container nodes) coupled with a domain-specific proposal about the types of information that 
could be used to correct mistaken hypotheses. But this simply pushes back the question to one 
about how the system knows which evidence to look for to correct mistaken hypotheses (i.e., is it 
innate or derived?). In short, much like the previous biases, the empirical necessity of 
subcategorizing CPs raises difficult questions for any theory of the acquisition of syntactic 
islands. 
 
6.7 The problems raised by the acquisition of syntactic island effects 
 
In this section we have attempted to illustrate (i) the empirical necessity of each of the biases of 
the proposed learning algorithm, and (ii) the difficult questions raised by the empirical necessity 
of these biases. Some of the basic components of the algorithm will be part of the learning theory 
for any syntactic phenomenon (e.g., assigning phrase structure and tracking frequencies), but 
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others appear to be specific to syntactic island effects, such as restricting the input to wh-
dependencies, tracking sequences of container nodes, segmenting container node sequences into 
trigrams, and subcategorizing CP container nodes by the lexical item that introduces them. These 
biases are interesting because on the one hand, they are significantly less specific than previous 
approaches to the acquisition of island effects (which tended to directly encode syntactic 
constraints in the learning algorithm); on the other hand, they are still specific enough to raise 
difficult questions about how they could arise in the learner. The explicit modeling procedure 
here (based on realistic input) suggests that any theory that seeks to learn syntactic islands as a 
type of grammatical constraint will be forced grapple with the empirical necessity of these 
specific biases. The other option, of course, is to deny that syntactic island effects are the result 
of grammatical knowledge, as has been proposed by several researchers in the past (e.g., Givón 
1979, Deane 1991, Pritchett 1991, Kluender & Kutas 1993, Kluender 1998, Kluender 2004, 
Hofmeister & Sag 2010). The problem with the non-grammatical solution to this problem is that 
the currently available empirical evidence, from sentence processing studies to cross-linguistic 
syntactic studies, suggests that a grammatical approach to syntactic islands is much more likely 
(see Sprouse et al. 2012b for a brief review).  
 
7. Consequences for syntactic theory 
 
Historically, there have been relatively close ties between syntactic theories and acquisition 
theories. These ties are bi-directional: One of the goals of syntactic theory is to systematically 
explain the properties of language acquisition through the form of syntactic theories (beginning 
with at least Chomsky 1965), and the goal of acquisition theories is to explain the learning 
trajectory from birth to the adult target state, as defined by syntactic theories. This means that 
any proposal regarding the acquisition of syntactic phenomena will likely interact with both the 
form and empirical coverage of syntactic theories. In this section, we investigate the interaction 
between the proposed algorithm and existing syntactic theories, to highlight both potential 
problems for the proposed algorithm, and potential areas for future research. 
 
7.1 Parasitic gaps and Across-the-Board constructions 
 
Though this statistical learning model demonstrates that syntactic islands can in principle be 
learned from child-directed input, this particular model cannot capture certain known exceptions 
to syntactic island constraints, such as parasitic gap constructions (Ross 1967, Engdahl 1983). 
Parasitic gaps are constructions where a displaced element is associated with two gap positions, 
one which is licit and one which is inside a syntactic island (21). While a single gap inside an 
island structure results in unacceptability (21a), an additional gap outside the island seems to 
eliminate the unacceptability (21b) (see Phillips 2006 for experimentally collected judgments). 
The two gaps in these constructions are often described as the true gap, which occurs outside of 
the island, and the parasitic gap, which occurs inside of the island. The name is a metaphorical 
reference to the fact that the parasitic gap could not exist without the true gap, much like a 
parasite cannot exist without a host. 
 
(21) a. *Which book did you laugh [before reading __]?  
  *Ungrammatical gap dependency:  IP-VP-CPbefore-IP-VP 

b. *Which book did you judge __true [before reading __parasitic]? 
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  *Parasitic gap dependency:   IP-VP-CPbefore-IP-VP 
 
The proposed algorithm fails to capture the acceptability of parasitic gaps because the probability 
of the dependency involving the parasitic gap would be identical to the probability of the 
dependency in the structurally identical syntactic island violation (as shown by the container 
node sequences in (21)). So, both (21b) and (21a) would be judged as ungrammatical, as they 
both contain the same low probability dependency. This, of course, is not the adult target state 
for acquisition, and therefore suggests that the current strategy is not the precise strategy used by 
human language learners.   
 Across-the-Board (ATB) constructions (Williams 1978) also involve a displaced element 
that is associated with two gap positions; however, in ATB constructions, both of the gap 
positions would ordinarily be illicit, as they appear in the two conjuncts of a coordinate structure. 
In this way, each gap on its own would violate the Coordinate Structure Constraint (Ross 1967), 
but together appear to be a grammatical option, as in (22b-c). 
 
(22) a. *What did you read __ and then review __? 
    ATB gap dependencies (both):  IP-VP-VP 
 b. *What did you read __ and then review the book? 
    Ungrammatical gap dependency:  IP-VP-VP 
 c. *What did you read the book and then review __? 
    Ungrammatical gap dependency:  IP-VP-VP  
 
As with parasitic gaps, the current learning strategy would not fare well on ATB extractions: The 
ungrammatical gaps in (22b-c) and the grammatical gaps in (22a) are all characterized by the 
same container node sequence, and thus would be assigned the same status (either all 
grammatical, or all ungrammatical), contrary to the human adult target state.  
 Crucially, both parasitic gaps and ATB extractions involve combination of the 
information coming from each gap (which the current strategy would represent as combining the 
container node sequences characterizing each gap). Success in both cases involves recognizing 
that a gap that would be ungrammatical on its own becomes grammatical when it is combined 
with another gap of a specific kind. The question then becomes how children know combination 
can occur, and what the precise combination operation is.14 
 A preliminary investigation of 9 child-directed speech corpora containing approximately 
675,000 words shows that ATB extractions do occur in the input (albeit rarely – we found only 
78 examples), while parasitic gaps do not occur at all (0 examples). The fact that ATB 
constructions do exist in child-directed input suggests that the properties of ATB construction 
can in principle be learned from the input (with some combination of learning biases); however, 
the lack of parasitic gap examples suggests that these may either be acquired later (assuming that 
parasitic gaps do appear in adult-directed input), or may be learned in conjunction with ATB 
constructions. This latter possibility receives some support from the fact that parasitic gap and 

                                                 
14  We note that if a combination operation is always part of the learner’s treatment of utterances 
containing gaps, this should not affect our current results on dependencies associated with a 
single gap. This is because single gap dependencies would presumably be a special case for the 
combination operation where no combination of dependency information would need to occur. 



 34 

ATB constructions share a number of complex syntactic properties, some of which are given in 
(23-25) (see Munn 2001 for a review and references). 
 
(23)  The dependencies must be A’-dependencies, not A-dependencies: 
 a. *The book was borrowed __ after Jack read __. 
 b. *The book was borrowed __ and Jack read __. 
 
(24)  The true/first conjunct gap must not c-command the parasitic/second conjunct gap 
 a. *Who __ read the paper after John talked to __? 
 b. *Who __ read the paper but John didn’t talk to __? 
 
(25)  The parasitic/second conjunct gap cannot be inside an additional island 
 a. *Which report did you file __ after wondering whether you read __? 
 b. *Which report did you file __ and wonder whether you read __? 
 
To account for these properties, some syntactic analyses (e.g., Chomsky 1986) have postulated a 
null operator that (i) appears at the left periphery of the adjunct phrase in parasitic gap 
constructions (26a) and at the left periphery of the second conjunct phrase in ATB constructions 
(26b), and (ii) binds the parasitic/second conjunct gap instead of the displaced wh-phrase: 

 
(26) a. Which reporti did you read __i [OPj before filing __j]? 
 b. Which reporti did you read __i [OPj and then file __j]? 
 
The dependency (or chain) formed by the null operator must then be combined with the 
dependency between the wh-phrase and the true/first conjunct gap in order for the 
parasitic/second conjunct gap to receive the correct interpretation. The properties in (23-25) can 
then be accounted for by the existence of the null operator and by postulating constraints on the 
dependency combination operation. 
 Beyond providing a mechanism by which parasitic gap constructions could potentially be 
learned from exposure to ATB constructions, the null operator analysis provides a potential 
avenue for solving the problem posed by these constructions for the current learning strategy. In 
particular, the null operator analysis postulates two distinct dependencies in these constructions: 
one that holds between the wh-phrase and the true/first conjunct gap, and one that holds between 
the null operator and the parasitic/second conjunct gap. These two dependencies inside a single 
sentence will each have distinct container node trigram sequences. In the case of parasitic gap 
constructions, the syntactic island barrier (the adjunct node) will not be part of either of these 
sequences, thus eliminating the low probability container node sequence that leads the strategy to 
incorrectly predict parasitic gap constructions to be ungrammatical. The only way to introduce a 
syntactic island container node into these two dependencies is to insert a syntactic island in the 
main clause or in the adjunct clause, which, as predicted, will lead to ungrammaticality (25). Of 
course, the situation is more complicated for ATB constructions: Whereas the null operator 
dependency in an ATB construction will not contain any low probability container nodes, the 
dependency between the wh-phrase and the first conjunct gap would be illicit by itself (a 
Coordinate Structure Constraint (CSC) violation), so it presumably contains at least one low 
probability container node trigram (although we have not yet tested the CSC using the current 
algorithm). This means that the current learning strategy must still be expanded to include a 



 35 

mechanism whereby the first conjunct gap is licit only if there is a gap in the second conjunct. 
That this type of complex grammatical knowledge exists in the adult state has recently been 
experimentally confirmed by Wagers and Phillips (2009), who demonstrated both that ATB 
constructions are rated as acceptable by native speakers, and that the human sentence parser 
actively searches for a second conjunct gap after encountering a first conjunct gap. 
 Beyond the problem raised by the first conjunct gap in ATB constructions, the null 
operator analysis also raises questions about the acquisition of the dependency combination 
operation: To what extent can the existence of the dependency combination operation be 
constructed from non-UG biases? To what extent can the constraints on the dependency 
combination operation that are required to fully capture properties (23-25) above be learned from 
non-UG biases? These are difficult questions that can only be addressed after we have expanded 
our child-directed speech corpora to have a better estimate of the relative frequencies of ATB 
and parasitic gap constructions in child-directed speech. They will require a systematic 
evaluation of the performance of our models with both classic examples of ATB and parasitic 
gaps and the ungrammatical sentences in (23-25) that have been used to identify the properties of 
ATB and parasitic gap constructions.  
 
7.2 Italian wh-islands: High probability trigrams that are ungrammatical 
 
Just as the current learning strategy would be forced to treat parasitic gaps as ungrammatical 
because any dependency that contains a very low frequency trigram is ungrammatical, the 
algorithm would similarly treat all dependencies that contain only higher frequency trigrams as 
grammatical. This is not problematic in English, as all such dependencies are in fact 
grammatical. However, Rizzi (1982) reports an interesting paradigm in Italian in which it looks 
as though simply doubling a grammatical sequence of trigrams leads to ungrammaticality 
(Phillips 2012b). Rizzi (1982) reports that Italian does not have wh-island effects the way that 
English does, as an extraction of an NP from a wh-island structure is grammatical ((27) = Rizzi’s 
(6a)): 
 
(27) Tuo fratello, a cui mi domando che storie abbiano raccontato, era molto preoccupato. 
 your brother, to whom1 I wonder which stories2 they have told __2 __1, was very worried. 
 
 …to whom1 [IP I [VP wonder [CP which stories2 [IP they [VP have told __2 __1]]]]] 
  

Dependency for to whom: IP-VP-CPwh-IP-VP 
 
Rizzi analyzes this fact as evidence that the (Subjacency-based) bounding nodes in Italian are NP 
and CP, which correctly captures the fact that extraction from a CP is possible even when the 
specifier of CP is filled with a wh-phrase. This analysis makes an interesting prediction: If CP is 
a bounding node, extraction should not be able to cross two CPs with filled specifier positions. 
Rizzi reports that this prediction appears is borne out ((28)=Rizzi’s (15b)): 
 
(28)  *Questo argomento, di cui mi sto domandando a chi potrei chiedere quando dovrò  

parlare, mi sembra sempre più complicato. 
*this topic, of which1 I am wondering to whom2 I may ask __2 when3 I'll have to speak 
__1 __3, to me seems ever more complicated 
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…of which1 [IP I [VP  am wondering [CP to whom2 [IP I [VP may ask __2 [CP when3 [IP I   
[VP ‘ll have [IP to [VP speak __1 __3]]]]]]] 

  
Dependency for of which: IP-VP-CPwh-IP-VP-CPwh-IP-VP-IP-VP 

 
The problem for the current algorithm is that the container node sequence of the ungrammatical 
sentence in (28) (CPwh-IP-VP-CPwh-IP-VP) consists of the very same trigrams that are in the 
grammatical sentence in (27) (CPwh-IP-VP, IP-VP-CPwh, and VP-CPwh-IP). Therefore the current 
algorithm will treat it as grammatical. Whether sentences such as (28) are unacceptable or not is 
an empirical question. Nonetheless, the example serves to illustrate one of the primary 
limitations of the current algorithm: The grammaticality of each sentence is predicated solely 
upon the frequency of the individual “parts”, where the parts are trigrams of container nodes. If 
any one trigram is low frequency, as in parasitic gaps, the model will treat the sentence as 
ungrammatical; if all of the trigrams are higher frequency, as in example (28), the model will 
treat the sentence as grammatical. 
 
7.3 Cross-linguistic variation  
 
The current learning strategy primarily learns the pattern of island effects for a given language 
from the input that it is presented. There are no additional constraints on the possible patterns of 
island effects imposed by the learning mechanism itself. What this means in practice is that this 
model predicts no constraints on the variation of island effects cross-linguistically: Any potential 
pattern of results (for the four island types investigated) can be derived given the correct input. 
The problem posed by constrained variation in island effects for the current strategy is 
straightforward: If there is indeed constrained variation in island effects cross-linguistically, then 
the current strategy would force us to conclude that the apparent constraint is simply a 
coincidence. The inputs of the languages in question just happened to not include the information 
that would be necessary to lead to the unobserved patterns of island effects.  

It has been claimed in the syntactic literature that the cross-linguistic pattern of island 
effects is constrained. A classic example of this is again provided by Italian. Rizzi (1982) 
observes that whereas English exhibits WH, Complex NP, and Subject islands, Italian only 
appears to exhibit Complex NP islands: 
 
(29) WH ISLAND  
 *Tuo fratello, a cui mi domando che storie abbiano raccontato, era molto preoccupato. 

*your brother, to whom1 I wonder which stories2 have.3PL told __2 __1, was very  
  worried. 

 
(30) COMPLEX NP ISLAND 
 *Questo incarico, che non sapevo la novità che avrebbero affidato a te,… 
  *this task, that not knew.1SG the news that have.3PL assigned __ to you  
 
(31) SUBJECT ISLAND 
 *Questo autore, di cui so che il primo libro è stato pubblicato recentemente, … 
 *This author, by whom know.1SG that the first book __ has been published recently, … 
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In other words, it appears as though WH islands and Subject islands tend to covary (if a language 
has one, it will have the other; if it lacks one, it will lack the other). This pattern was also 
corroborated by Torrego (1984) for Spanish, suggesting that it may be a prevalent pattern for 
Romance languages. Whether this pattern holds for all languages that have displacement 
phenomena and island effects is an open empirical question, but it is clear that if it did, it would 
be a problem for the proposed strategy (unless, again, we are willing to subscribe it to 
coincidence). The formal experimental results of Sprouse et al. submitted suggest that English 
relative clause dependencies exhibit Subject island effects but not WH island effects, which casts 
some doubt on the claim that WH and Subject islands always covary. However, only future 
studies in several additional languages can settle this empirical question.  
 
7.4 The complementizer that 
 
Another potential issue for the current algorithm concerns complementizer that – specifically, 
because of the rarity of complementizer that in the input data, a learner using this model will 
generally disprefer dependencies using complementizer that (Phillips 2012b). In some cases, this 
may be desirable. For example, so-called that-trace effects are unacceptability that occurs when a 
gap immediately follows the complementizer that (32a), but does not arise when that is omitted 
(32b) (see Cowart 1997 for experimentally collected acceptability judgments). The current 
learning strategy can capture the distinction between these, shown in (32), using either child-
directed or adult-directed input (the log-odds of (32b) versus (32a) is 7.12 for child-directed 
input and 5.40 for adult-directed input). 
 
(32) 
  a. *Who do [IP you [VP think     [CP that [IP __ [VP read the book]]]]]?  

b. *Who do [IP you [VP think     [CP        [IP __ [VP read the book]]]]]? 
 
However, the current learning strategy will also generate a preference for object gaps without 
that (33b) compared to object gaps with that (33a) (the log-odds of (33b) versus (33a) is 6.61 for 
child-directed input and 2.81 for adult-directed input). 
 
(33) 
  a. *What do [IP you [VP think     [CP that [IP Jack [VP read __ ]]]]]?  

b. *What do [IP you [VP think     [CP        [IP Jack [VP read __]]]]]? 
 
Interestingly, Cowart (1997) reports that there is a small preference in adult acceptability 
judgments for (33b) over (33a), but it is significantly smaller than the preference for (32b) over 
(32a). In other words, there is an object that-trace effect, but it is much smaller than the subject 
that-trace effect. The current strategy generates relatively equal dispreference for (32a) and (33a) 
when using the child-directed corpora (7.12 versus 6.61), which contain relatively few instances 
of that. However, the model generates an asymmetrical dispreference that is more in line with 
Cowart’s (1997) data when using the adult-directed corpora (5.40 versus 2.81), which contain 
more instances of that. This could be taken to be a developmental prediction of the current 
algorithm: Children may disprefer object gaps in embedded that-CP clauses more than adults, 
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and this dispreference will weaken as they are exposed to additional tokens of that in utterances 
containing dependencies. 
 
7.5 The proposed algorithm and syntactic theory 
 
In many ways, the algorithm proposed here looks very similar to existing theories of syntactic 
islands: Island effects arise due to constraints on sequences of abstract units derivable from 
phrase structure trees. This similarity is to be expected given that the syntactic analysis of long-
studied phenomena such as syntactic islands have substantial empirical support (e.g., Ross 1967, 
Chomsky 1973, Rizzi 1980, Huang 1982, Lasnik & Saito 1984, Torrego 1984, Chomsky 1986, 
among many others). However, it should be noted the proposed algorithm is not a direct 
instantiation of any existing syntactic analysis that we are aware of. For example, while Head-
Driven Phrase Structure Grammar (HPSG) does make use of container node sequences directly 
in the form of extraction paths, HPSG analyses generally do not postulate syntactic constraints 
on extraction paths to explain island effects (e.g., Pollard & Sag 1994). In contrast, while 
Government and Binding (GB) Theory does postulate syntactic constraints to explain island 
effects, GB analyses generally define those constraints over sequences of bounding nodes or 
barriers, not sequences of container nodes (e.g., Chomsky 1973, 1986). Whether the current 
approach of defining constraints over (trigrams of) container node sequences is more appropriate 
than these other approaches is an empirical question. Nonetheless, the close ties between 
syntactic theories and acquisition theories allow for a productive investigation of both the 
potential predictions and potential problems inherent in the proposed algorithm.  
 
8. Conclusion 
 
Given the rate of progress in cognitive science, the most lasting contribution of the current study 
is likely the construction of structurally annotated child-directed speech corpora that can be used 
by researchers interested in the acquisition of complex syntactic phenomena (freely available at 
http://www.socsci.uci.edu/~lpearl/CoLaLab/TestingUG/index.html as well as the derived 
corpora section of CHILDES: http://childes.psy.cmu.edu/derived/). We have also seen that at the 
level of abstraction necessary for syntactic islands, the composition of adult-directed input is not 
substantially different from the composition of child-directed speech. This is an important 
methodological point for researchers interested in syntactic acquisition, as it is often the case that 
large samples of syntactically annotated adult-directed input are more easily accessible and 
readily available than syntactically annotated child-directed speech. This suggests that it may be 
the case that other complex syntactic phenomena can also be studied using adult-directed input; 
however, given that this is an empirical question, we recommend using structurally annotated 
child-directed speech whenever possible. 
 At a theoretical level, we have also seen that syntactic islands can be learned from 
realistic child-directed speech without directly encoding syntactic constraints into the learning 
strategy. The learning strategy proposed here has some desirable properties, such as resembling 
the target state postulated by syntactic theories, capturing the well-known dispreference for 
longer dependencies, and maintaining a qualitative distinction (in principle) between dispreferred 
longer dependencies and truly ungrammatical dependencies. The proposed strategy also makes 
some interesting empirical predictions when compared to syntactic theories, some of which are 
beginning to find empirical support in recent formal acceptability judgment experiments. 
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 It is also interesting to note that we were able to successfully model the acquisition of a 
complex syntactic phenomenon without sophisticated probabilistic inference mechanisms, such 
as Bayesian inference (e.g., Regier & Gahl 2004, Feldman et al. 2009, Foraker et al. 2009, Frank 
et al. 2009, Goldwater et al. 2009, Pearl & Lidz 2009, Pearl et al. 2011, Perfors et al. 2011).15 
Instead, a fairly simple probabilistic learning component (tracking frequencies of particular 
linguistic representations) was sufficient to learn the pattern from child-directed input. Given the 
relative complexity of syntactic islands with respect to other phenomena in syntactic theory, this 
suggests that there may be other (complex) syntactic phenomena that can be modeled with 
similarly simple probabilistic mechanisms. This may eliminate some of the concerns that have 
been raised about the psychological plausibility of Bayesian inference as a realistic learning 
mechanism for humans (e.g., see McClelland et al. 2010 for a recent review). 
 The process of explicitly modeling the proposed learning strategy, and testing it on both 
child-directed and adult-directed input, also highlighted several interesting properties of the 
“problem of syntactic island acquisition”. We have seen that the biases in the proposed algorithm 
appear to be empirically necessary, suggesting that biases such as these (or at least biases that 
solve the same problems as these) will be present in any theory of the acquisition of syntactic 
island effects. It seems that any theory of islands will have to answer the following questions:  
 
(i) Why does the system attempt to learn constraints on dependencies at all? 

 
(ii) Why does the system treat wh-dependencies as separate from other dependencies like rc-

dependencies and binding dependencies? 
 
(iii) Why does the system track the container nodes of the dependency as opposed to other 

types of information about the dependencies? 
 
(iv) Why does the system segment container node sequences into trigrams as opposed to other 

possible subsets? 
 
(v) Why does the system define container nodes as maximal projections as opposed to  

intermediate or smaller projects? 
 
(vi) Why does the system subcategorize CP container nodes? 
 
Although all of these questions can be encoded with explicit biases (as in the proposed 
algorithm), and many of them can be characterized using the framework in section 1 such that 
they are not obviously innate and domain-specific (i.e., UG-based) biases, it is not the case that 
we can confidently rule out the role of innate, domain-specific assumptions in giving rise to these 
biases. Future research is necessary to determine whether each of these problems raised by the 
acquisition of syntactic islands can be resolved without any innate, domain-specific biases. Still, 
this is much more tractable now that we have access to (i) structurally annotated child-directed 

                                                 
15 Of course, our model assumes that the phrase structure has already been inferred, and learning 
phrase structure may require sophisticated probabilistic inference methods.  However, once the 
phrase structure is available, no sophisticated inference is required to learn syntactic island 
constraints, which is the learning process explicitly modeled here.  
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input, and (ii) explicit computational models that reveal the importance of these questions for a 
complete theory of syntactic island acquisition.  
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Appendix A. Formal descriptions of procedures. 
 
The descriptions of the procedures used for learning and generating grammaticality preferences 
are given below in pseudocode format. The description for the grammatical preference 
generation highlights how the complete set of trigrams is generated (based off the container 
nodes encountered during learning) and how the trigram smoothing is implemented. 
 
(A1) Pseudocode description of the learning algorithm 
for each input utterance u 
  for each wh-dependency w in u 
    characterize w as a sequence of container nodes cns 
      divide cns into a sequence of container node trigrams cnts 
      for each container node trigram cn1-cn2-cn3 in cnts 
        cn1-cn2-cn3_count = cn1-cn2-cn3_count + 1 
 
(A2) Pseudocode description of the generation of grammaticality preferences 
# get full set of possible trigrams  
cn_set = set of container nodes encountered during learning period  
 
  # trigrams beginning with start 
  for each cn1 in cn_set 
    for each cn2 in cn_set 
      if start-cn1-cn2 exists as a trigram 
          start-cn1-cn2_count = start-cn1-cn2_count + alpha 
      else 
          start-cn1-cn2_count = alpha 
      total_trigram_count = total_trigram_count + start-cn1-cn2_count 
 
  # trigrams with container nodes in all slots 
  for each cn1 in cn_set 
    for each cn2 in cn_set 
      for each cn3 in cn_set 
        if cn1-cn2-cn3 exists as a trigram 
          cn1-cn2-cn3-count = cn1-cn2-cn3_count + alpha 
        else 
          cn1-cn2-cn3_count = alpha 
        total_trigram_count = total_trigram_count + cn1-cn2-cn3_count 
 
  # trigrams ending with end 
  for each cn2 in cn_set 
    for each cn3 in cn_set 
      if cn2-cn3-end exists as a trigram 
          cn2-cn3-end_count = cn2-cn3-end_count + alpha 
      else 
          cn2-cn3-end_count = alpha 
      total_trigram_count = total_trigram_count + cn2-cn3-end_count 
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# calculate trigram probabilities for all trigrams 
# assume each trigram has the form cnx-cny-cnz 
for each trigram cnx-cny-cnz in complete set of trigrams 
   cnx-cny-cnz_probability = (cnx-cny-cnz_count)/(total_trigram_count) 
 
# generate grammaticality preferences for wh-dependency w  
wh_probability = 1 
characterize w as a sequence of container nodes cns 
  divide cns into a sequence of container node trigrams cnts 
  for each container node trigram cnx-cny-cnz in cnts 
    wh_probability = wh_probability * cnx-cny-cnz_probability 
 
 
Appendix B. Distribution of wh-dependencies in the input. 
 
Table B1.  Description of child-directed and adult-directed input corpora. Percentages are shown 
for container node sequences, based on the total wh-dependencies in each corpus, with the 
quantity observed in the corpus on the line below. An example of each container node sequence 
is given below the sequence.  
 
Container node sequence and 
example utterance 

Child-directed: 
speech 

Adult-directed: 
speech 

Adult-directed: 
text 

    

IP 
Who saw it? 

12.8% 
2680 

17.2% 
1464 

33.0% 
1396 

    

IP-VP 
What did she see? 

76.7% 
16039 

73.0% 
6215 

63.3% 
2677 

    

IP-VP-AdjP-IP-VP 
What are you willing to see? 

0.0% 
0 

<0.1% 
1 

0.1% 
5 

    

IP-VP-AdjP-IP-VP-PP 
What are you willing to go to? 

0.0% 
0 

<0.1% 
1 

0.0% 
0 

    

IP-VP-AdjP-PP 
What are they good for? 

0.0% 
0 

<0.1% 
1 

<0.1% 
1 

    

IP-VP-CPfor-IP-VP-PP 
What did she put on for you to dance 
to? 

<0.1% 
1 

0.0% 
0 

0.0% 
0 

    

IP-VP-CPnull-IP 
Who did he think stole it? 

0.1% 
24 

0.6% 
52 

0.3% 
12 

    

IP-VP-CPnull-IP-VP 
What did he think she stole? 

1.1% 
236 

0.4% 
30 

0.2% 
8 

    

IP-VP-CPnull-IP-VP-IP-VP 
What did he think she wanted to steal? 

0.1% 
28 

<0.1% 
3 

0.0% 
0 

    

IP-VP-CPnull-IP-VP-IP-VP-IP-VP 
What did he think she wanted to 
pretend to steal? 

<0.1% 
2 

0.0% 
0 

0.0% 
0 
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IP-VP-CPnull-IP-VP-IP-VP-IP-VP-PP 
Who did he think she wanted to 
pretend to steal from? 

0.0% 
0 

<0.1% 
1 

0.0% 
0 

    

IP-VP-CPnull-IP-VP-IP-VP-PP 
Who did he think she wanted to steal 
from? 

<0.1% 
1 

0.0% 
0 

0.0% 
0 

    

IP-VP-CPnull-IP-VP-NP 
What did he think she said about it? 

<0.1% 
1 

<0.1% 
5 

<0.1% 
1 

    

IP-VP-CPnull-IP-VP-PP 
What did he think she wanted it for? 

0.1% 
28 

<0.1% 
5 

<0.1% 
1 

    

IP-VP-CPnull-IP-VP-PP-PP 
What did he think she wanted out of? 

<0.1% 
1 

0.0% 
0 

0.0% 
0 

    

IP-VP-CPthat-IP-VP 
What did he think that she stole? 

<0.1% 
2 

<0.1% 
5 

<0.1% 
2 

    

IP-VP-CPthat-IP-VP-IP-VP 
What did he think that she wanted to 
steal? 

0.0% 
0 

<0.1% 
1 

0.0% 
0 

    

IP-VP-CPthat-IP-VP-PP 
Who did he think that she wanted to 
steal from? 

0.0% 
0 

<0.1% 
1 

0.0% 
0 

    

IP-VP-IP 
Who did he want to steal the necklace? 

<0.1% 
9 

<0.1% 
2 

0.0% 
0 

    

IP-VP-IP-VP 
What did he want her to steal? 

5.6% 
1167 

3.4% 
287 

1.3% 
57 

    

IP-VP-IP-VP-IP-VP 
What did he want her to pretend to 
steal? 

<0.1% 
11 

<0.1% 
6 

<0.1% 
1 

    

IP-VP-IP-VP-IP-VP-PP 
Who did he want her to pretend to 
steal from? 

0.2% 
43 

<0.1% 
6 

0.0% 
0 

    

IP-VP-IP-VP-NP 
What did he want to say about it? 

<0.1% 
6 

0.0% 
0 

0.0% 
0 

    

IP-VP-IP-VP-NP-IP-VP 
What did he have to give her the 
opportunity to steal? 

0.0% 
0 

0.0% 
0 

<0.1% 
1 

    

IP-VP-IP-VP-NP-PP 
What did she want to steal more of? 

<0.1% 
1 

<0.1% 
1 

0.0% 
0 

    

IP-VP-IP-VP-PP 0.4% 0.4% <0.1% 
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What did she want to steal from? 74 33 4 
    

IP-VP-IP-VP-PP-PP 
What did she want to get out from 
under? 

0.0% 
0 

0.0% 
0 

<0.1% 
1 

    

IP-VP-NP 
What did she say about the necklace? 

0.2% 
52 

0.1% 
10 

0.1% 
5 

    

IP-VP-NP-IP-VP 
What did he give her the opportunity 
to steal? 

0.0% 
0 

<0.1% 
1 

<0.1% 
2 

    

IP-VP-NP-PP 
What was she a member of? 

<0.1% 
7 

<0.1% 
6 

0.0% 
0 

    

IP-VP-PP 
Who did she steal from? 

2.5% 
524 

4.3% 
369 

1.3% 
57 

    

IP-VP-PP-CPnull-IP 
What did she feel like was a very good 
place? 

0.0% 
0 

<0.1% 
1 

0.0% 
0 

    

IP-VP-PP-CPnull-IP-VP 
What did she feel like he saw? 

<0.1% 
1 

0.0% 
0 

0.0% 
0 

    

IP-VP-PP-IP-VP 
What did she think about buying? 

0.0% 
0 

<0.1% 
3 

0.0% 
0 

    

IP-VP-PP-NP 
Where was she at in the building?  

0.0% 
0 

<0.1% 
2 

0.0% 
0 

    

IP-VP-PP-NP-PP 
What do you put it on top of?  

<0.1% 
2 

0.0% 
0 

0.0% 
0 

    

IP-VP-PP-NP-PP-IP-VP 
What is she in the habit of doing? 

0.0% 
0 

<0.1% 
1 

0.0% 
0 

    

IP-VP-PP-PP 
What does he eat out of?  

0.1% 
22 

0.0% 
0 

0.0% 
0 

    

IP-VP-PP-IP-VP 
What did he think about stealing?  

<0.1% 
1 

0.0% 
0 

0.0% 
0 

    

 


