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Abstract

Computational models of language acquisition often face evaluation issues associated with
unsupervised machine learning approaches. These acquisition models are typically meant to cap-
ture how children solve language acquisition tasks without relying on explicit feedback, making
them similar to other unsupervised learning models. Evaluation issues include uncertainty about
the exact form of the target linguistic knowledge, which is exacerbated by a lack of empirical
evidence about children’s knowledge at different stages of development. Put simply, a model’s
output may be good enough even if it doesn’t match adult knowledge because children’s output
at various stages of development also may not match adult knowledge. However, it’s not easy to
determine what counts as “good enough” model output. We consider this problem using the case
study of speech segmentation modeling, where the acquisition task is to segment a fluent stream
of speech into useful units like words. We focus on a particular Bayesian segmentation strategy
previously shown to perform well on English, and discuss several options for assessing whether
a segmentation model’s output is good enough, including cross-linguistic utility, the presence of
reasonable errors, and downstream evaluation. Our findings highlight the utility of considering
multiple metrics for segmentation success, which is likely also true for language acquisition mod-
eling more generally.

1 Introduction
A core issue in machine learning is how to evaluate unsupervised learning approaches (von Luxburg,
Williamson, & Guyon, 2011), since there is no a priori correct answer the way that there is for su-
pervised learning approaches. Computational models of language acquisition commonly face this
problem because they attempt to capture how children solve language acquisition tasks without ex-
plicit feedback, and so typically use unsupervised learning approaches. Moreover, evaluation is made
more difficult by uncertainty about the exact nature of the target linguistic knowledge and a lack of
empirical evidence about children’s knowledge at specific stages in development. Given this, how
do we know that a model’s output is “good enough”? How should success be measured? To create
informative cognitive models of acquisition that offer insight into how children acquire language,
we should consider how to evaluate acquisition models appropriately (Pearl, 2014; Phillips, 2015;
Phillips & Pearl, 2015b).

As a case study, we investigate the initial stages of speech segmentation in infants, where a flu-
ent stream of speech is divided into useful units, such as words. For example, the acoustic signal
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transcribed via IPA as /ajl2vDizpENgwInz/ (Ilovethesepenguins) might be segmented as /aj l2v Diz
pEngwInz/ (I love these penguins). A particular Bayesian segmentation strategy has been shown to
be quite successful on English (Goldwater, Griffiths, & Johnson, 2009; Pearl, Goldwater, & Steyvers,
2011; Phillips & Pearl, 2012, 2014a, 2014b; Phillips, 2015; Phillips & Pearl, 2015b), particularly
when cognitive plausibility considerations have been incorporated at both the computational and al-
gorithmic levels of Marr (1982). One way to evaluate if this strategy is “good enough” is to see how
it fares cross-linguistically. This is based on the premise that core aspects of the language acquisition
process – such as the early stages of segmentation occurring in six- to seven-month-olds (Thiessen &
Saffran, 2003; Bortfeld, Morgan, Golinkoff, & Rathbun, 2005) – are universal. So, a viable learning
strategy for early segmentation should succeed on any language infants encounter.

Traditionally, a segmentation model’s output has been compared against a “gold standard” derived
from adult orthographic segmentation (e.g., Brent, 1999; M. Johnson, 2008; Goldwater et al., 2009;
Blanchard, Heinz, & Golinkoff, 2010; M. Johnson, Demuth, Jones, & Black, 2010; M. Johnson &
Demuth, 2010; Pearl et al., 2011; Lignos, 2012; Fourtassi, Börschinger, Johnson, & Dupoux, 2013).
Notably, orthographic segmentation assumes the desired units are orthographic words. However, if
we look at the world’s languages, it becomes clear that it’s also useful to identify morphemes – the
smallest meaningful linguistic units – particularly for languages with regular morphology. That is,
infants might reasonably segment morphemes from fluent speech rather than entire words. Notably,
models that identify sub-word morphology are penalized by the gold standard evaluation, and this
highlights the need for a more flexible metric of segmentation performance. More generally, a seg-
mentation strategy that identifies units useful for later linguistic analysis shouldn’t be penalized.

Still, how do we know that the segmented units are truly useful? If we believe that the output of
early segmentation scaffolds later acquisition processes, a useful segmentation output should simply
enable these later processes to successfully occur (Phillips & Pearl, 2015a). For example, one goal of
early segmentation is to generate a proto-lexicon in order to bootstrap language-specific segmentation
cues like stress pattern (e.g., in English, words in child-directed speech tend to begin with stress
(Swingley, 2005), and the same is true for child-directed German and Hungarian (Phillips & Pearl,
2015a)). Does the inferred proto-lexicon of units yield the appropriate language-specific cue? As
another example, infants begin to learn mappings from word forms to familiar objects as early as six
months (Tincoff & Jusczyk, 1999; Bergelson & Swingley, 2012; Tincoff & Jusczyk, 2012). Can the
inferred proto-lexicon be used successfully for this process?

In the remainder of this chapter, we first review relevant aspects of infant speech segmentation,
including what is known about the developmental trajectory, the cues infants are sensitive to, and how
infants perceive the input. This forms the empirical basis for the modeled Bayesian segmentation
strategy, which we then discuss in terms of its underlying generative assumptions and the algorithms
used to carry out its inference. We turn then to the cross-linguistic evaluation of this strategy over
input derived from child-directed speech corpora in seven languages from the CHILDES database
(MacWhinney, 2000): English, German, Spanish, Italian, Farsi, Hungarian, and Japanese. This sec-
tion includes comparison to the gold standard as well as a more flexible metric derived from the
gold standard that’s consistent with children’s imperfect early segmentation behavior. We find that
the Bayesian strategy seems to be “good enough” cross-linguistically. This is especially true once
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we use this more nuanced output evaluation that considers potentially useful non-word units valid.
This serves as a general methodological contribution about the definition of segmentation success,
especially when we consider that useful units may vary across the world’s languages.

We conclude with an evaluation metric that is even more utility-driven: whether the output of the
segmentation strategy is helpful for subsequent acquisition processes, such as inferring a language-
specific stress-based segmentation cue and learning early word-meaning mappings. Interestingly,
just because a strategy yields more accurate segmentations when compared against the gold standard
doesn’t mean it’s always more useful for subsequent acquisition processes. This underscores the value
of considering multiple metrics for segmentation success, in addition to the traditional comparison
against the gold standard.

2 Early speech segmentation
Segmentation isn’t easy – words blur against one another, making speech more like a stream of sound
rather than something divided into discrete, separable chunks (Cole & Jakimik, 1980). Yet, speech
segmentation is one of the first tasks infants accomplish in their native language, and the resulting
segmented units underlie subsequent processes such as learning word meanings, syntactic categories,
and syntactic structure. In order to accurately model the segmentation process, we need to know the
empirical data which form the basis for decisions regarding the model’s learning assumptions, input,
inference, and evaluation.

2.1 When does early speech segmentation begin?
The first behavioral evidence for speech segmentation in infants comes at six months (Bortfeld et al.,
2005), when infants seem to know a small set of very frequent words (Bergelson & Swingley, 2012).
They recognize these words in speech, and can use them to segment new utterances. Between seven
and nine months, infants learn to utilize language-specific cues such as stress pattern (Jusczyk, Cut-
ler, & Redanz, 1993; Jusczyk, Houston, & Newsome, 1999; Thiessen & Saffran, 2003), phonotactics
(Mattys, Jusczyk, & Luce, 1999), allophonic variation (Hohne & Jusczyk, 1994; Jusczyk, Hohne, &
Baumann, 1999), and coarticulation (E. Johnson & Jusczyk, 2001). These language-specific cues are
typically more reliable than language-independent cues like transitional probability between syllables.
However, it turns out that infants around seven months old prefer to rely on transitional probability
information alone rather than language-specific cues like stress patterns (Thiessen & Saffran, 2003),
even though transitional probability is a less reliable cue. Neuroimaging evidence from neonates sug-
gests that this sensitivity to statistical cues like transitional probabilities is present at birth (Teinonen,
Fellman, Näätänen, Alku, & Huotilainen, 2009). This in turn suggests that the initial stages of speech
segmentation rely on cues that are independent of the particular language being segmented (e.g.,
the process of tracking transitional probabilities does not vary from language to language, though
the probabilities themselves clearly do). It’s only after this initial stage that infants harness the more
powerful language-dependent cues that do vary between languages (e.g., the specific stress-based seg-
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mentation cues which differ between English and French). So, a model of early speech segmentation
should also likely rely only on language-independent cues.

2.2 The unit of infant speech perception
The basic unit of infant speech perception has been a source of significant debate for some time (see
Phillips (2015) and Jusczyk (1997) for a more detailed review of this debate). Experimental studies
have typically focused on whether the basic representational unit for infants is syllabic or segmental
(Jusczyk & Derrah, 1987; Bertonicini, Bijeljac-Babic, Jusczyk, Kennedy, & Mehler, 1988; Bijeljac-
Babic, Bertoncini, & Mehler, 1993; Jusczyk, Jusczyk, Kennedy, Schomberg, & Koenig, 1995; Eimas,
1999). Jusczyk (1997) summarizes several studies by noting that “there is no indication that infants
under six months of age represent utterances as strings of phonetic segments”. Instead, evidence for
segmental representations of speech is mostly present in infants older than six months: infants first
begin to ignore vowel contrasts that aren’t relevant for their native language around six months (Kuhl,
Williams, Lacerda, Stevens, & Lindblom, 1992; Polka & Werker, 1994), while irrelevant consonant
contrasts are ignored between eight and twelve months (Werker & Tees, 1984; Werker & Lalonde,
1988; Best, McRoberts, & Sithole, 1988; Best, McRoberts, LaFleur, & Silver-Isenstadt, 1995).

More generally, as infants get older, they’re better able to represent information about segments; in
contrast, they appear relatively comfortable with syllables from early on. This can be seen in infants’
ability to track statistical relationships: while transitional probabilities over syllables can be tracked
at birth (Teinonen et al., 2009), transitional probabilities over segments first seems to occur around
nine months (Mattys et al., 1999). Given this, a reasonable assumption for a model meant to capture
segmentation strategies being used by six-month-olds would be that the input is perceived as a stream
of syllables.

2.3 Constraints on infant inference
One thing that makes child language acquisition so impressive is that it’s accomplished despite the
many cognitive constraints imposed by the developing brain. Though there’s been increasing interest
in cognitively-constrained language acquisition models (e.g., Anderson, 1990; Shi, Griffiths, Feld-
man, & Sanborn, 2010; Bonawitz, Denison, Chen, Gopnik, & Griffiths, 2011; Pearl et al., 2011;
Phillips & Pearl, 2015b), there isn’t very much experimental evidence to suggest exactly what kinds
of constraints should be imposed. There are many possibilities, but we focus on three that have been
incorporated into past acquisition models and which seem reasonable starting points: online process-
ing, non-optimal decision-making, and recency effects.

Online processing refers to the idea that data are processed as they are encountered, rather than
being stored in explicit detail for later batch processing. It’s generally accepted that this is a reasonable
constraint for human language processing, and commonly used as justification that a model operates
at the algorithmic level in the sense of Marr (1982), rather than being idealized (e.g., Lignos & Yang,
2010; Pearl et al., 2011; Lignos, 2012; Phillips & Pearl, 2014b, 2014a, 2015b). So, this is likely
reasonable to incorporate into infant inference.
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For decision-making, experimental evidence from infants and children suggest that they don’t al-
ways choose the highest probability option available, which would be considered the optimal decision
(Köpcke, 1998; C. H. Kam & Newport, 2005; C. L. H. Kam & Newport, 2009; Davis, Newport, &
Aslin, 2011; Denison, Bonawitz, Gopnik, & Griffiths, 2013). Instead, children sometimes appear to
probabilistically sample the available options (Davis et al., 2011; Denison et al., 2013). Other times,
they appear to simply generalize to a single option, which might in fact be a lower probability option
(Köpcke, 1998; C. H. Kam & Newport, 2005; C. L. H. Kam & Newport, 2009). This suggests that
infant inference may involve non-optimal decision-making.

With respect to memory constraints, experimental evidence suggests that a recency bias exists in
infants (Cornell & Bergstrom, 1983; Gulya, Rovee-Collier, Galluccio, & Wilk, 1998; Rose, Feldman,
& Jankowski, 2001), where the most recently encountered data have privileged status. So, this is also
reasonable to incorporate into infant inference.

2.4 What we know about segmentation output
As mentioned before, one empirical checkpoint for segmentation is that a strategy ought to be suc-
cessful for any human language. Beyond that, we also have some evidence about the kinds of er-
rors children produce – this underscores that successful early segmentation doesn’t necessarily mean
adult-like segmentation. For example, Brown (1973) and Peters (1983) find that even three-year-old
children still produce missegmentations. These errors can be broadly split into two types: function
word undersegmentations (e.g. that’sa, it’sa) and function word oversegmentations (e.g. a nother, be
have). So, segmentation error patterns may provide a useful qualitative benchmark for model output,
and have been previously used this way (Lignos, 2012; Phillips & Pearl, 2012, 2015b).

3 A Bayesian segmentation strategy
Bayesian segmentation strategies combine the prior probability of a potential segmentation s for an
utterance u with the likelihood in order to generate the posterior probability of s (P (s|u)) using
Bayes’ rule, as shown in (1).

P (s|u) ∝ P (s)P (u|s) (1)

The Bayesian strategy we investigate builds off of two fundamental insights about the infant’s
inferred proto-lexicon, both of which were used in an earlier segmentation strategy by Brent (1999).
First, frequent words should be preferred over infrequent words. Second, shorter words should be pre-
ferred over longer words. These parsimony biases were incorporated by Goldwater et al. (2009) into
a Bayesian strategy that used a Dirichlet Process (Ferguson, 1973) to determine the prior probability
of a segmentation.

The Dirichlet Process (DP) is a non-parametric stochastic process resulting in a probability dis-
tribution often used in Bayesian modeling as a prior because it has properties well-suited to language
modeling. First, because it’s non-parametric, it doesn’t need to pre-specify the number of items (e.g.,
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word types) which might be encountered. Second, the DP facilitates “rich-get-richer” behavior, where
frequent items are more likely to be encountered later. This is useful because word frequencies in nat-
ural languages tend to follow a power-law distribution which the DP naturally reproduces due to this
behavior (Goldwater, Griffiths, & Johnson, 2011).

Goldwater et al. (2009) implemented two versions of the DP segmentation strategy that differed
in their generative assumptions. Both versions use the likelihood function, i.e., the probability of an
utterance given its segmentation P (u|s), to simply rule out potential segmentations that don’t match
the observed utterance. For example, a possible segmentation /D@ pENgwIn/ (the penguin) doesn’t
match an observed speech stream /D@kIRi/ (thekitty) when the possible segmentation is concatenated
(thepenguin 6=thekitty). So, this possible segmentation would have a likelihood of 0. In contrast,
the possible segmentation /D@ki Ri/ (theki tty) does match (thekitty=thekitty), and so would have a
likelihood of 1. Where the DP strategy versions differ is how the prior probability for a segmentation
is determined. We describe each version in turn before reviewing the inference algorithms paired with
each generative model.

3.1 DP segmentation: Unigram assumption
The first version of the DP segmentation strategy uses a unigram language model (DP-Uni), with the
modeled learner naively assuming that each word is chosen independently of the words around it.
The prior of the potential segmentation is calculated using this generative assumption. To do this, the
model must define the probability of every word in the utterance, and so a DP-Uni learner assumes
that for any utterance, each segmented word wi is generated by the following process:

1. If wi is not a novel lexical item, choose an existing form ` for wi.

2. If wi is a novel lexical item, generate a form (e.g., the syllables x1 . . . xM ) for wi.

Because the model doesn’t know whether wi is novel, it has to consider both options when calcu-
lating the probability of the word. We note that deciding whether wi is novel is not the same as decid-
ing whether the form of wi has been previously encountered. As an example, consider the first time
the modeled learner encounters the sequence /et/ (such as in the word ate). Because count/et/ = 0,
the word must be novel (count/et/ then = 1). Now, suppose the same sequence is encountered again,
but from the word eight. The learner must decide if this sound sequence is a second instance of the
/et/ it saw before (ate) or instead the first instance of a novel /et/ type (such as in the word eight). In
the first case, the count might be updated to count/et/ = 2; in the second case, the counts might be
updated to count/et/ = 1 and count/et/2 = 1. This particular aspect of the DP distribution naturally
allows for the existence of homophones (e.g., ate/eight) without requiring any additional machinery.

Returning to the DP generation process, generating either non-novel or novel items is fundamental
to the DP. In a classic DP, the probability of generating a non-novel item is proportional to the number
of times that item has been previously encountered. This is shown in (2), where n` refers to the number
of times lexicon item ` has been seen in the set of words previously encountered, denoted as w−i. In
the denominator, i represents the total number of words encountered thus far, including the word
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previously under consideration. Because the current word is not included in n`, 1 is subtracted from
it.

P (wi = `, wi 6= novel|w−i) =
n`

i− 1 + α
(2)

Equation (2) gives higher probability to word types that have been encountered before. So, the
more a word type is encountered by the modeled learner, the more often the modeled learner will
prefer it in the future. This will end up generating the power-law frequency distribution found in
natural languages.

When the DP instead generates a novel word, the word is not represented as an atomic whole but
rather constructed from its individual parts, such as syllables. To model this, we make use of the P0 in
(3) to describe the probability that any word might be made up of a particular string of sub-word units
x1 . . . xM . Each sub-word unit xj is generated in turn for all M units in the word, with the probability
of xj treated as a uniform choice over all possible sub-word units in the corpus.1

P0(wi = x1 . . . xM) ∝
M∏
j=1

P (xj) (3)

The probability of generating a novel item in a DP is weighted by the free model parameter α,
also known as the DP concentration parameter. This parameter has an intuitive interpretation, where
higher values of α lead to a preference for generating novel words in the proto-lexicon.2 The full
probability of generating a novel word is therefore described by equation (4).

P (wi = `, wi = novel|w−i) =
αP0(wi = x1 . . . xM)

i− 1 + α
(4)

Both equations 2 and 4 can be combined to generate the full probability of a word being produced
either as a non-novel or novel item.

P (wi = `|w−i) =
n` + αP0(wi = x1 . . . xM)

i− 1 + α
(5)

3.2 DP segmentation: Bigram assumption
The second version of the DP segmentation strategy uses a bigram language model (DP-Bi), with
the learner assuming (slightly less naively) that each word is chosen based on the word preceding it.
Goldwater et al. (2009) model this using a hierarchical Dirichlet Process (Teh, Jordan, Beal, & Blei,
2006), with the generative process selecting bigrams, words, and sub-word units as follows:

1The model additionally includes the generation of word and utterance boundaries, with a word ending with some
probability p# and an utterance ending with some probability p$. See Goldwater et al. (2009) for discussion of these
model components in the unigram and bigram versions of this strategy.

2A more thorough treatment of the role of various model parameters for both the unigram and bigram DP segmentation
models can be found in Goldwater et al. (2009).
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1. If the pair < wi−1, wi > is not a novel bigram, choose an existing form ` for wi from those that
have been previously generated after wi−1.

2. If the pair < wi−1, wi > is a novel bigram:

If wi is not a novel lexical item, choose an existing form ` for wi.

If wi is a novel lexical item, generate a form (x1 . . . xM ) for wi.

As with the DP-Uni model, the DP-Bi model must make a decision between an item being novel
or not; the main difference is that the DP-Bi model considers bigrams first. If a bigram isn’t novel, the
DP-Bi model gives higher probability to bigrams that have been encountered before. If a bigram is
instead novel, then the individual lexical item (the second word in the bigram) must also be generated.
This is done with a DP in the same fashion as the unigram DP, making this a hierarchical DP. The
probability of any bigram < wi−1, wi > is then determined using equations (6), (7), and (3).

P (< wi−1, wi = ` > |w−i) =
n<wi−1,wi=`> + βP1(wi = `|w−i)

nwi−1
+ β

(6)

Equation (6) calculates the probability of the bigram < wi−1, wi >, given that the second word of
the bigram wi takes the form ` and considering all the words observed previously except wi, denoted
by w−i. This includes the number of times ` appears as the second word of bigrams beginning with
word wi−1 (n<wi−1,wi=`>), as well as the total number of bigrams beginning with wi−1, denoted by
nwi−1

. The concentration parameter β determines how often a novel second word is expected, with
higher values indicating a general preference for more novel bigrams.

Equation (7) describes the process for generating a novel second word in the bigram.

P1(wi = `|w−i) =
twi=` + γP0(wi = x1 . . . xM)

t+ γ
(7)

A novel second word with form ` is based on the number of times any bigram with second word `
has been generated, twi=`. The total number of novel bigrams is represented by t. The concentration
parameter γ determines how often this novel second word is itself a novel lexical item, constructed
from its constituent sub-word units x1 . . . xM using P0, as in Equation (3).

3.3 DP segmentation inference
Pearl et al. (2011) used a variety of inference algorithms with these two DP segmentation strate-
gies, including both idealized and constrained procedures. Idealized inference procedures provide
a computational-level analysis in the sense of Marr (1982), and offer a best-case scenario of how
useful the learning assumptions of the model are. Constrained inference procedures provide a more
algorithmic-level analysis in the sense of Marr (1982). They in turn offer a more cognitively plausible
assessment of how useable the learning assumptions are by humans, who have cognitive limitations
on their inference capabilities (particularly infants). Here we focus on one inference algorithm of
each kind.
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3.3.1 Idealized inference

The original inference algorithm used by Goldwater et al. (2009) for DP segmentation was Gibbs
sampling (Geman & Geman, 1984), a batch procedure commonly used for idealized inference, due
to its guaranteed convergence on the optimal solution given the model constraints. Gibbs sampling
initializes the model parameters (in this case potential word boundaries), and then updates each pa-
rameter value one at a time, conditioned on the current value of all other parameters. This process
is repeated for a number of iterations until convergence is reached (e.g., Goldwater et al. (2009) and
Pearl et al. (2011) used 20,000 iterations).

For DP segmentation, each possible boundary location is a parameter which either has a boundary
or not. Boundaries are initialized randomly, and the inference procedure goes through each boundary
location in the corpus, deciding whether to place/remove a boundary, given the other current boundary
locations. In particular, for each possible boundary, there is a choice between creating a single word
(H0) or two words (H1) out of the two adjoining pieces. For example, H0 might be /D@kIRi/ (thekitty)
while H1 is /D@ kIRi/ (the kitty) for the potential boundary location between /D@/ and /kIRi/. The proba-
bility of inserting a boundary (H1) can be defined as the normalized probability of H1, shown in (8),
with P (H0) and P (H1) defined by the DP-Uni or DP-Bi generative models:

Normalized P (H1) =
P (H1)

P (H1) + P (H0)
(8)

The inference procedure then probabilistically selects either H0 or H1, based on their normalized
probabilities. If no boundary is placed (H0), only a single word has to be generated; if a boundary
is placed (H1), two words have to be generated. Intuitively, the model may prefer either H0 because
it requires fewer words or H1 because it requires shorter words. The exact trade-off depends on
the model parameters and, most importantly, on the frequency each word (or bigram) is currently
perceived to have.

3.3.2 Constrained inference

Pearl et al. (2011) described several inference procedures that incorporate one or more of the cognitive
limitations relevant for infant speech segmentation mentioned before: (i) online processing, (ii) non-
optimal decision-making, and (iii) a recency bias. We focus on the one that incorporates all three of
these constraints to some degree (called the DMCMC constrained learner by Pearl et al. (2011)). This
inference procedure performs inference online, segmenting each utterance as it’s encountered. It can
also be thought to involve non-optimal decision-making because it probabilistically samples whether
to insert a boundary rather than always selecting the highest probability option.3

It additionally uses the Decayed Markov Chain Monte Carlo method (Marthi, Pasula, Russell, &
Peres, 2002) to implement a recency bias. In particular, similar to the idealized inference procedure,

3Unlike Gibbs sampling, which also probabilistically samples whether to insert a boundary, there is no guarantee of
convergence on the optimal solution.
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it samples individual boundary locations and updates them conditioned on the value of all other cur-
rently encountered potential boundaries. However, instead of sampling all currently known potential
boundaries equally, the locations to sample are selected based on a decaying function anchored from
the most recently encountered potential boundary location (at the end of the current utterance). The
probability of sampling potential boundary ba, which is a potential boundaries away from the end of
the current utterance, is determined by (9):

P (ba) =
a−d∑
a−di

(9)

The parameter d implements the recency effect: larger values of d indicate stronger biases, con-
centrating the boundary sampling efforts on more recently encountered data. We discuss results using
d = 1.5, which implements a strong recency bias: using this d value, Phillips and Pearl (2015b) found
that 83.6% of sampled boundaries occurred in the current utterance in their corpus of English child-
directed speech, 11.8% in the previous utterance, and only 4.6% in any other previous utterance.

4 How well does this work cross-linguistically?

4.1 Cross-linguistic corpora
Phillips and Pearl (2014b, 2014a) evaluated the DP segmentation strategy on seven languages: En-
glish, German, Spanish, Italian, Farsi, Hungarian, and Japanese. These languages vary in many ways,
including their morphology: some are more agglutinative and have more regular morphology systems
(Hungarian, Japanese) while the others are fusional to different degrees and have less regular morpho-
logical systems (English, German, Spanish, Italian, and Farsi). Syllabified child-directed speech cor-
pora were derived from the CHILDES database (MacWhinney, 2000; Gervain & Erra, 2012; Phillips
& Pearl, 2015b)4 and relevant summary statistics for them are shown in Table 1.

We can make a few observations. First, not all languages had corpora available of speech directed
at children younger than a year old, so the age range does vary. Second, the corpora vary in size,
though this doesn’t appear to negatively impact the results for smaller corpora. Third, the number
of unique syllables in each corpus varies considerably by language (e.g., Spanish: 522, Hungarian:
3029). While some of this variation is due to the size of the corpus itself (more utterances allow more
syllable types to appear), there are also language-specific phonotactic restrictions on syllables that
impact the number of syllable types observed. For example, in Japanese only the phoneme /ð/ may
appear after a vowel, and in Spanish only the phoneme /s/ can appear as the second consonant in
a coda. In contrast, languages such as English, German, and Hungarian allow much more complex
syllable types (e.g., consider the English coda in warmth, /ômT/).

The average number of syllables per utterance also varies, which is partially due to speech directed
at older children containing longer utterances (e.g., Farsi utterances have 6.98 syllables per utterance
and are directed at children up to age five). However, the number of syllables per utterance is also

4See Phillips (2015) for details of this process.
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Language Corpora Age range # Utt # Syl types Syls/Utt B Prob
English Brent 0;6-0;9 28391 2330 4.16 76.26
German Caroline 0;10-4;3 9378 1682 5.30 68.60
Spanish JacksonThal 0;10-1;8 16924 522 4.80 53.93
Italian Gervain 1;0-3;4 10473 1158 8.78 49.94
Farsi Family, Samadi 1;8-5;2 31657 2008 6.98 43.80
Hungarian Gervain 1;11-2;11 15208 3029 6.30 51.19
Japanese Noji, Miyata, Ishii 0;2-1;8 12246 526 4.20 44.12

Table 1: Summary of the syllabified child-directed speech corpora, including the CHILDES database
corpora they are drawn from (Corpora), the age ranges of the children they are directed at (Age range),
the number of utterances (# Utt), the number of unique syllables (# Syl types), the average number of
syllables per utterance (Syls/Utt), and the probability of a word boundary appearing between syllables
(B Prob).

impacted by the number of syllables per word - languages that tend to be more monosyllabic will
tend to have fewer syllables per word, and so their utterances will tend to have fewer syllables as
well. Boundary probability captures this monosyllabic tendency, where higher probabilities indicate
that syllables tend to be followed by boundaries (i.e., words are more likely to be monosyllabic). For
example, the English and German data have higher boundary probabilities than the other languages,
and therefore tend to have more monosyllabic words.

4.2 Gold standard evaluation
4.2.1 Evaluation metrics

We first present the DP segmentation’s ability to match the gold standard, the adult-level knowledge
typically represented via the orthographic segmentation. There are multiple units a segmentation can
be measured on: word tokens, lexical items, and word boundaries. For example, the utterance The
penguin is next to the kitty might be segmented as Thepenguin is nextto the kitty. There are seven word
tokens (individual words) in the original sentence, but the segmentation only identifies three of those
tokens (is, the and kitty). The same utterance has six lexical items, which correspond to the unique
words: the, penguin, is, next, to, kitty (the appears twice). Again, the segmentation only correctly
identifies three lexical items (is, the, and kitty). This utterance also has six word boundaries (excluding
the utterance boundaries) and the segmentation correctly identifies four of those (thepenguin is, is
nextto, nextto the, and the kitty). This highlights the differences between the units.

Word tokens are impacted by word frequency, while lexical items factor out word frequency.
Measuring boundary identification tends to yield better performance than measuring word tokens or
lexical items. Intuitively, this is because identifying a boundary requires the model to be correct only
once. On contrast, correctly segmenting words requires being correct twice, both in inserting the
word-initial and word-final boundaries (unless the word is at an utterance edge).
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No matter which unit we use for comparison, they are measured with the same metrics: precision
and recall, which are often combined into a single summary statistic, the F-score. Precision captures
how accurate the segmentation is: for each unit identified, is that unit correct in the segmentation?
Recall captures how complete the segmentation is: for each unit that should have been identified, is
that unit identified in the segmentation? In signal detection theoretic terms, these correspond to (10),
which involve Hits (units correctly identified in the segmentation), False Alarms (units identified in
the segmentation that aren’t correct), and Misses (units not identified in the segmentation that are
nonetheless correct).

Precision =
Hits

Hits + False Alarms
Recall =

Hits
Hits + Misses

(10)

High precision indicates that when a unit is identified in a segmentation, it is often correct. High
recall indicates that when a unit should be identified in a segmentation, it often is. Because both
of these are desirable properties, they are often combined into the F-score via the harmonic mean.
Precision, recall, and F-scores all range between 0 and 1 (though sometimes this is represented as a
percentage between 0 and 100), with higher values indicating a better match to the gold standard.

F-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

4.2.2 Model training and parameter estimation

Because the algorithms used for inference are probabilistic in nature, each modeled strategy (DP-Uni
and DP-Bi) was trained and evaluated five times, with the results averaged. Although the learning
process modeled is unsupervised, Phillips and Pearl (2014a, 2014b) nonetheless separated the data
into training and test sets to better determine how each modeled strategy adapted to new data. Each
corpus was randomly split five times so that the training set consisted of 90% of the corpus and the
remaining 10% became the corresponding test set. The corpora themselves are temporally ordered,
so utterance order captures the order an infant might encounter the utterances. This relative ordering
was preserved in both the training and test sets.

The free parameters for the DP-Uni (α) and DP-Bi strategies (β, γ) were set by searching ranges
derived from those explored in Goldwater et al. (2009) and Pearl et al. (2011): α, β ∈ [1, 500], γ ∈
[1, 3000]. For each language and each strategy, a learner using the idealized inference algorithm was
used to determine which free parameter values resulted in the best word token F-score. The values
identified by this process are shown in Table 2.

When we look at the best parameter values, it turns out that the DP-Uni strategy fares best on all
languages when α = 1. This indicates a strong bias for small proto-lexicons, since novel words are
dispreferred. In contrast, the DP-Bi strategy has more variation, roughly breaking into three classes.
The first class, represented by English, Italian, and German, has β = 1 and γ between 90 and 100. This
indicates a very strong bias for small proto-lexicons, since novel bigrams are strongly dispreferred (β)
and novel words as the second word in a bigram are somewhat dispreferred (γ). The second class,
represented by Spanish and Japanese, has β between 200 and 300 and γ between 50 and 100. This
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DP-Uni DP-Bi
α β γ

English 1 1 90
Italian 1 1 90
German 1 1 100
Spanish 1 200 50
Japanese 1 300 100
Farsi 1 200 500
Hungarian 1 300 500

Table 2: Best free parameter values for all unigram and bigram Bayesian segmentation strategies
across each language.

indicates a weaker bias for small proto-lexicons, since novel bigrams are only somewhat dispreferred
(β) and novel words as the second word in a bigram are also only somewhat dispreferred (γ). The third
class, represented by Farsi and Hungarian, has β between 200 and 300 and γ = 500. This indicates an
even weaker bias for small proto-lexicons, since novel bigrams are again only somewhat dispreferred
(β) and novel words as the second word in a bigram are even less dispreferred (γ).

Since we are setting these parameter values for our analyses, this translates to the modeled infant
already knowing the appropriate values for each language. For the DP-Uni strategy, this may reflect
a language-independent bias, since the values are all the same. However, for the DP-Bi strategy,
the infant would need to adjust the values based on the ambient language. For either strategy, one
potential way to converge on the best values is to have hyperparameters on them and simply learn
their values at the same time as segmentation is learned. Incorporating hyperparameter inference into
the DP segmentation strategy would be a welcome avenue for future segmentation modeling work,
particularly if it turns out infants are using something like the DP-Bi strategy. Here we discuss the
results obtained by manually setting the free parameters to their respective optimized values in each
language.

4.2.3 Baseline strategy: Random Oracle

A baseline strategy first explored by Lignos (2012) is a random oracle strategy (RandOracle). The
random aspect refers to the strategy treating each possible boundary location as a Bernoulli trial. The
oracle aspect comes from the strategy already knowing the true probability of a boundary occurring
in the corpus (B Prob in Table 1). Boundaries are then randomly inserted with this probability.

4.2.4 Cross-linguistic performance

Table 3 presents the gold standard word token F-score results for each learner on all seven languages.
First, we can see that bigram assumption is generally helpful, though the degree of helpfulness varies
cross-linguistically. For example, it seems very helpful in English and German (e.g., English Ideal-
ized DP-Uni: 53.1 vs. DP-Bi: 77.1; German Constrained DP-Uni: 60.3 vs. DP-Bi: 82.6) and not
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Eng Ger Spa Ita Far Hun Jpn

DP-Uni Idealized 53.1 60.3 55.0 61.9 66.6 59.9 63.2
Constrained 55.1 60.3 56.1 58.6 59.6 54.5 63.7

DP-Bi Idealized 77.1 73.1 64.8 71.3 69.6 66.2 66.5
Constrained 86.3 82.6 60.2 60.9 62.5 59.5 63.3

Baseline RandOracle 56.4 47.5 27.0 22.8 20.3 26.4 26.1

Table 3: Word token F-scores for learners across English, German, Spanish, Italian, Farsi, Hungar-
ian, and Japanese. Higher token F-scores indicate better performance, with the best score for each
language in bold.

particularly helpful at all in Japanese (Japanese Idealized DP-Uni: 63.2 vs. DP-Bi: 66.5; Japanese
Constrained DP-Uni: 63.7 vs. DP-Bi: 63.3). Still, with the exception of the English DP-Uni learner,
every single Bayesian learner does better than the random oracle baseline. Interestingly, in English,
the DP-Bi constrained learner has the highest score of all learners in all languages. Altogether, this
suggests that the DP segmentation strategy is generally a very good one for identifying words in fluent
speech.

Nonetheless, something seems to be going on cross-linguistically. Why do we see such variability
in segmentation performance (DP-Uni: 53.1-66.6; DP-Bi: 59.5-86.3; RandOracle: 20.3-56.4)? The
variability in the random oracle baseline is particularly suggestive that there is something about the
languages themselves, rather than something specific to the DP segmentation strategy. More specifi-
cally, English and German seem inherently easier to segment than the other languages.

Fourtassi et al. (2013) suggested that some languages are inherently more ambiguous with respect
to segmentation than others. Specifically, even if all the words of the language are already known,
some utterances can still be segmented in multiple ways (e.g., /gôejtf2l/ segmented as great full and
grateful in English). The degree to which this occurs varies by language, with the idea that languages
with high inherent ambiguity are harder to correctly segment. If this is true, we might expect that low
inherent segmentation ambiguity correlates to high performance by segmentation strategies. With
this in mind, perhaps English and German have lower inherent segmentation ambiguity than the other
languages (RandOracle English: 56.4, German: 47.5, Other languages: 20.3-26.4).

In order to quantify this ambiguity, Fourtassi et al. (2013) proposed the normalized-segmentation
entropy (NSE) metric:

NSE = −
∑
s

Ps log2(Ps)/(N − 1) (12)

Here, Ps represents the probability of a possible segmentation s of an utterance and N represents
the length of that utterance in terms of potential word boundaries (which is determined by the number
of syllables for our learners). To calculate the probability of an utterance, we use the unigram or
bigram DP generative model equations described above in section 3, since these represent the proba-
bility of generating that utterance under a unigram or bigram assumption. As an example, to calculate
the NSE of a single utterance /aimgôejtf2l/, we use the unigram and bigram model equations to gen-
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erate the probability of every segmentation comprised of true English words (Ps above). In this case,
two segmentations are possible: I’m grateful and I’m great full. The probabilities for each segmenta-
tion are then used in Equation 12 above, with N = 2 since there are two potential word boundaries
among the three syllables.

Because a low NSE represents a true segmentation that is less inherently ambiguous for the learn-
ers using the n-gram assumptions tested here, English and German should have lower NSE scores if
inherent segmentation ambiguity was the explanation for the better segmentation performance. Table
4 shows the NSE scores for both unigram and bigram learners for all seven languages, with token
F-scores for the respective idealized inference learners for comparison.

DP-Uni NSE F-score DP-Bi NSE F-score
German 0.000257 60.3 German 0.000502 73.0
Italian 0.000348 61.9 Italian 0.000604 71.3
Hungarian 0.000424 59.9 Hungarian 0.000694 66.2
English 0.000424 53.1 English 0.000907 77.1
Farsi 0.000602 66.6 Spanish 0.00103 64.8
Japanese 0.00126 55.0 Farsi 0.00111 69.6
Spanish 0.00128 63.2 Japanese 0.00239 66.5

Table 4: Average NSE scores across all utterances in a language’s corpus, ordered from lowest to
highest NSE and compared against the idealized inference token F-score for the language. Results
are shown for both the DP-Uni and DP-Bi models. Lower NSE scores represent less inherent seg-
mentation ambiguity and higher token F-scores indicate a better segmentation performance.

From Table 4, we see that German fits with the hypothesis that low NSE predicts higher segmen-
tation performance, having in both cases the lowest NSE scores. Yet English doesn’t fit this pattern,
ranking third/fourth overall for a unigram DP learner and fourth overall for a bigram DP learner.
This is despite English having the lowest token F-scores for the DP-Uni learner and highest token
F-scores for the DP-Bi learner. Because of this, the high segmentation performance on both German
and English can’t simply be due to both having lower inherent segmentation ambiguity.

More generally, it becomes clear by looking at all seven languages that low NSE doesn’t always
lead to higher token F-scores. If it did, we would expect to find a significant negative correlation
between NSE score and token F-score – but this doesn’t happen (DP-Uni: r = -0.084, p = 0.86;
DP-Bi, r = -0.341, p = 0.45). Examining individual languages in Table 4, this lack of correlation is
apparent. The DP-Uni Farsi NSE score is ranked fifth lowest, but in fact has the highest F-score,
while the DP-Uni Spanish NSE score is actually the worst, though it has the second best F-score.
When we turn to the DP-Bi learners, we see that Hungarian has the third best NSE score but the next
to worst F-score, while English has the fourth worst NSE score but the best F-score. So, NSE isn’t
the principal factor determining segmentation performance, though it may play some role.

An alternative factor comes from considering how often words of the language tend to be mono-
syllabic. This is captured by the boundary probability in Table 1, where English and German both
have a much higher probability of having a boundary appear after a syllable (76.26% and 68.60%,
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respectively, compared to the next highest language Spanish, with boundary probability 53.93%).
These are precisely the languages that especially benefit – though only for the DP-Bi and RandOracle
learners.

One possible explanation for why boundary probability especially impacts these learners relates
to the types of errors these learners make. More specifically, if a learner tends to oversegment (i.e.,
incorrectly insert word boundaries), languages that tend to be more monosyllabic already may benefit
more – this bias to insert word boundaries may yield true words more often by sheer luck in these
languages. We can get a sense of whether a strategy tends to oversegment by looking at the errors it
produces. Table 5 shows the percentage of all segmentation errors that were oversegmentations for
each learner, where possible error types are undersegmentations like thekitty, oversegmentations like
the ki tty, and other segmentation errors like theki tty.

Oversegmentation Errors (%)
Eng Ger Spa Ita Far Hun Jpn

DP-Uni Idealized 1.7 9.1 8.7 39.9 47.7 45.3 39.0
Constrained 9.0 15.9 25.8 53.8 68.0 55.3 53.5

DP-Bi Idealized 13.8 26.0 33.0 73.1 59.8 58.0 58.4
Constrained 44.8 60.6 72.8 89.9 93.4 82.7 79.9

Baseline RandOracle 51.7 60.0 57.7 57.7 58.7 56.9 54.5

Table 5: Percentage of errors which resulted in an oversegmentation as compared to adult ortho-
graphic segmentation.

If we look at the DP-Uni learners, we see that there isn’t an oversegmentation tendency for English
and German, though there is for most of the rest of the languages. Because English and German are
the only two languages where an oversegmentation tendency is specifically beneficial (because they
tend to have more monosyllabic words), this may be why the DP-Uni learners don’t do much better on
English and German compared with the rest of the languages. This contrasts noticeably with the DP-
Bi and RandOracle oversegmentation tendencies, which are comparatively much higher for English
and German (e.g., DP-Bi Constrained English: 44.8% and RandOracle English: 51.7% vs. DP-Uni
Constrained English: 9.0%). So, English and German, which tend to have more word boundaries per
utterance anyway, yield better performance for learners that have a stronger tendency to insert word
boundaries.

This makes an interesting testable prediction about infant segmentation more generally. If the
segmentation strategy infants use leads them to oversegment more often (such as the DP-Bi strategy
here, particularly when coupled with constrained inference), we might expect infant segmentations
to better match adult-like segmentations in languages whose child-directed speech contains more
monosyllabic words (e.g., English and German). In contrast, for languages with fewer monosyllabic
words, we would expect infant segmentation to match adult-like segmentation less well.
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4.3 A more flexible metric: Reasonable errors
We know that infant segmentation certainly isn’t a perfect match to adult-like segmentation, given
the available observational and behavioral data. With this in mind, Phillips and Pearl (2014a, 2014b,
2015b) considered an output evaluation that allowed the following “reasonable errors” as legitimate
early segmentations:

1. Oversegmentations that result in real words (e.g., grateful /gôejt f2l/ segmented as great /gôejt/
and full /f2l/)

2. Oversegmentations that result in productive morphology (e.g., segmenting off –ing /iN/)

3. Undersegmentations that produce function word collocations (e.g., segmenting that a as thata)

Table 6 offers some examples of each reasonable error type in different languages, while Table 7
shows how frequently each error type is made by the modeled learners.

True Segmented

Real words
Spa porque por que

‘because’ ‘why’

Jap moshimoshi moshi moshi
‘hello’ ‘if if’

Morphology
Ita devi dev i

‘you must’ ‘must’ 2nd-PL

Far miduni mi dun i
‘you know’ PRES ‘know’ 2nd-SG

Function words
Ita a me ame

‘to me’ ‘to-me’

Far mæn hæm mænhæm
‘me too’ ‘me-too’

Table 6: Examples of reasonable errors (with English glosses) made in different languages. True
words refer to the segmentation in the original corpus, while Segmented output represents the seg-
mentation generated by a modeled learner.

For the errors resulting in at least one true word, Phillips and Pearl (2014a, 2014b, 2015b) included
only those occurring at least five times in the corpus because of the reason these types of errors are
helpful – namely, they boost the perceived frequency of the true word. For example, if a model
segments grateful as great and full, then the next time the word great is encountered, it is more likely
to be segmented because it has been previously seen. So, only true word errors occurring with some
frequency are likely to have this beneficial effect. Additionally, this ensures that typos and nonsense
words in the corpus are unlikely to be treated as true words.

We can see in Table 7 that certain modeled learners tend to produce more real word errors: learners
using constrained inference and learners in Italian, Farsi, and Japanese. Additionally, the DP-Bi
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Eng Ger Spa Ita Far Hun Jpn
Real Word Errors (%)

DP-Uni Idealized 1.0 3.3 2.8 23.7 20.1 11.9 17.7
Constrained 3.4 4.5 6.3 27.6 25.5 14.9 21.4

DP-Bi Idealized 5.8 7.9 11.2 38.3 24.6 17.8 26.7
Constrained 29.6 17.6 15.1 57.0 41.5 27.7 34.6

Baseline RandOracle 17.5 7.7 13.6 14.9 10.0 8.6 12.6
Morphology Errors (%)

DP-Uni Idealized 0.2 2.7 2.8 3.3 5.0 2.5 9.1
Constrained 0.6 4.6 7.5 4.8 7.5 3.4 10.5

DP-Bi Idealized 1.0 7.7 10.4 6.3 8.4 3.3 10.4
Constrained 2.6 24.9 20.4 6.7 13.0 4.6 16.9

Baseline RandOracle 2.2 12.1 10.6 3.0 5.1 3.0 10.1
Function Word Errors (%)

DP-Uni Idealized 8.8 27.2 8.9 6.4 4.3 2.3 6.9
Constrained 10.2 26.7 7.7 5.8 3.1 2.3 7.7

DP-Bi Idealized 15.7 28.2 6.4 5.8 3.7 2.9 5.2
Constrained 9.9 10.8 2.3 1.1 0.2 1.7 2.6

Baseline RandOracle 3.6 8.7 4.2 3.4 1.0 1.1 2.1

Table 7: Percentage of model errors which produced reasonable errors of different kinds. Real Word
Errors represent true words in the corpus occurring at least five times. Morphology Errors represent
morphological affixes occurring in the correct location (e.g. suffixes after the main word, prefixes at
the beginning). Function Word Errors represent collocations of function words.

learners tend to yield more than the DP-Uni learners. This is likely due to the oversegmentation
tendency – these are the same learners that also tend to oversegment more often. Because real word
errors occur due to oversegmentation, this makes this error type more likely to occur for learners that
oversegment.

For the errors resulting in productive morphology, Phillips and Pearl (2014a, 2014b, 2015b) ref-
erenced lists of morphemes for each language produced by linguistically-trained native speakers.
Similar to the true word errors, oversegmentations are more likely to produce productive morphology
because morphological affixes smaller than words can only be produced through oversegmenting.
However, we do note that sub-syllabic morphology was excluded, due to the modeled learners per-
ceiving the speech stream as a sequence of atomic syllables. This ruled out much of the common
inflectional morphology in Indo-European languages (e.g., -s in English). Still, German, Spanish,
Farsi, and Japanese have a number of these errors, regardless of the specific modeled learner.

Function word collocation errors, in contrast to the other two types, occur due to undersegmenta-
tion. So, learners with a stronger oversegmentation bias, like the constrained DP-Bi learner, produce
these relatively less frequently. Looking across the languages, we can see that English and German
tend to have more of these errors, perhaps because of the frequency of monosyllabic function words.
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For example, many of these errors are combinations of the form MODAL VERB+PRONOUN (e.g., can
you), COPULA+PRONOUN (e.g., are you), or PREPOSITION+DETERMINER (e.g., in a). The other lan-
guages tend to also have richer morphology which can negate the need for separate function words.

Table 8 shows the evaluation when we consider all three reasonable error types as acceptable
segmentation. The main difference (of course) is that the average token F-score is higher than before
(e.g., unadjusted DP-Bi average: 68.9; adjusted DP-Bi average: 77.4). Perhaps more interestingly, we
can see that the constrained learners perform as well as or better than the idealized bigram learner on
most languages. In cases where they perform noticeably below the idealized learner (DP-Uni: Italian,
Hungarian; DP-Bi: Spanish, Italian), they don’t perform so poorly that we would consider them
unsuccessful (e.g., all are above a word token F-score of 60). This indicates that constrained inference
doesn’t necessarily hinder this Bayesian segmentation strategy – and in fact, may be helpful for some
languages – especially once we incorporate a more nuanced standard of segmentation success.

Eng Ger Spa Ita Far Hun Jpn

DP-Uni Idealized 56.8 71.1 59.2 68.0 72.1 64.8 71.1
Constrained 60.0 71.3 64.6 65.1 75.5 61.4 72.7

DP-Bi Idealized 81.5 82.9 74.7 76.8 76.4 72.0 76.3
Constrained 90.1 88.4 71.5 71.2 75.1 71.4 75.1

Baseline RandOracle 64.6 59.4 42.4 31.0 31.7 33.1 41.8

Table 8: Adjusted word token F-scores, counting reasonable errors as acceptable output, for learners
across English, German, Spanish, Italian, Farsi, Hungarian, and Japanese. Higher token F-scores
indicate better performance, with the best score for each language in bold.

More generally, many errors made by each learner may not be so harmful. For example, they
can potentially be useful for later segmentation (real word errors), identifying productive morphol-
ogy (morphology errors), grammatical categorization (morphology errors), and the early stages of
syntactic bootstrapping (morphology errors, function word collocations). So, the output units of this
strategy may be useful for the acquisition process, even if they’re not the adult-like segmentation. But
how do we tell if they really are useful for acquisition?

5 How useful are the units?
Model output can be measured in two core ways: intrinsically and extrinsically (Galliers & Jones,
1993). Intrinsic evaluations are concerned with the model’s direct objective, i.e., the task it was trained
for. Intrinsic measures for speech segmentation include comparisons against the gold standard (e.g.,
F-score), measures of model fit (e.g., log posterior probability), and comparison against behavioral
results from experimental setups (e.g., see Frank, Goodman, and Tenenbaum (2009) and Kolodny,
Lotem, and Edelman (2015)). In contrast, extrinsic measures are concerned with how the model
output is used for alternative tasks. For speech segmentation, this relates to how the segmented
items are used in the overall acquisition process. That is, because the segmented units are used
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by other processes during acquisition, it makes sense to try to measure their effectiveness for these
secondary tasks. Two ways to do this are (1) incorporate the secondary task into the segmentation
model (joint modeling), and (2) use the output of the segmentation process to perform the secondary
task in isolation (downstream evaluation).

Joint modeling for acquisition makes sense when we have reason to believe the two tasks are
solved at the same time by infants. So, for example, while joint modeling of early segmentation
and phonotactics may be possible, experimental evidence suggests that phonotactic learning begins
significantly after early segmentation (Bortfeld et al., 2005; Thiessen & Saffran, 2003; Mattys et al.,
1999). This makes it seem cognitively implausible to model both processes jointly.

However, for tasks that may be solved simultaneously, the idea is that the two tasks can bootstrap
off each other, resulting in better overall performance in both than if the tasks were solved in isolation.
Still, this requires the modeler to make assumptions about what the infant knows with respect to how
the two tasks relate to each other, so that the connections between them can be leveraged. More
specifically, because these assumptions are typically built into the joint model directly, the implication
is that infants already know them a priori (either innately or learned very rapidly in the first months
of life). Depending on the particular joint relationship, these assumptions may be plausible – or not.

Downstream evaluation, on the other hand, assumes that there is no feedback between the first
task and the second – the first task happens first, and its output is used as input to the second task.
This may be appropriate when there’s a known gap between the tasks, such as early segmentation and
phonotactic learning. It may also be appropriate if the tasks have some overlap, but there’s reason to
think infants don’t leverage the synergies between the tasks.

In a sense, joint modeling represents a best case scenario for infants. The infant knows that the two
tasks are connected and knows specifically how they are related, allowing for joint learning to take
advantage of the two processes. In contrast, downstream evaluation represents a worst case scenario
because the infant doesn’t realize the two tasks are connected and so can’t leverage the additional
information available. In reality, infants may often fall somewhere in between these two endpoints,
depending on the specific acquisition tasks. By considering both perspectives, we can set upper and
lower bounds on what acquisition success looks like. This is particularly helpful for tasks happening
early in acquisition, because we are often unsure exactly what infant knowledge representations look
like. So, instead of relying only on intrinsic measures that assume these representations take a certain
form, we can also use extrinsic measures to evaluate the utility of the inferred representations.

5.1 Learning the right stress-based segmentation cue
In languages with lexical stress, where stress is placed on syllables within a word, stressed syllables
can provide a cue to word boundaries in fluent speech particularly when stressed syllables reliably
occur at word edges. In languages with fixed lexical stress, like Hungarian, this cue is essentially
deterministic: every Hungarian word has stress on the initial syllable. In languages with variable
lexical stress, like English, this cue can be probabilistic: the exact position of stressed syllables varies
from word to word (e.g., ápple vs. banána), though there is a reliable tendency for words in English
child-directed speech to begin with stressed syllables (Pearl et al., 2011; Phillips & Pearl, 2015b).
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Importantly, the existence of these reliable stress cues and their exact implementation depends on
the language. Given this, there’s been significant interest about when infants learn to identify and
leverage these stress-based cues to speech segmentation (e.g, Jusczyk et al., 1993; Jusczyk, Houston,
& Newsome, 1999; E. Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003; Thiessan & Saffran,
2007).

Because these stress-based cues are language-specific, it’s usually thought that infants have to first
identify enough words in the language to determine the specific instantiation of the stress-based cue
(assuming there is one). The earliest evidence for infant sensitivity to stress cues is at 7.5 months
(Jusczyk, Houston, & Newsome, 1999) while the early stages of segmentation begin around 6 months
(Bortfeld et al., 2005). However, given how close in time these two processes occur (stress-cue
identification and early segmentation), it’s quite possible they overlap. That is, infants could be
learning to segment using statistical cues while simultaneously trying to identify if there’s a dominant
stress pattern in the segmented words. So, a joint model of acquisition seems reasonable. Of course,
it’s also possible that in reality early segmentation provides a seed pool of segmented words very
quickly, and infants subsequently use these to infer a stress-based segmentation cue. So, a downstream
evaluation also seems reasonable. We discuss studies using each as extrinsic evaluation metrics for
the DP segmentation strategy.

5.1.1 Stress cue identification: Joint modeling

Doyle and Levy (2013) investigate a joint model of the DP-Bi segmentation strategy (the best-
performing DP segmentation variant) and stress pattern identification, using idealized inference. In
particular, this model assumes that the learner knows lexical stress exists in the language and attempts
to identify the dominant pattern for every sequence of M syllables (i.e., it assumes all two syllable
words have a dominant pattern, and this pattern may be different from the one all three syllable words
have, and so on). This is accomplished via an update to the P0 probability from (3), as shown in (13),
which now depends both on the probability of the syllables in the word wi (PW ) and the stress pattern
si observed for a word with M syllables (PS).

P0(wi, si) = PW (wi)PS(si|M) (13)

More specifically, PW is calculated using P0 from the original DP-Bi implementation. PS is
calculated as a multinomial over all possible stress patterns of length M (given a uniform prior),
with the parameter values derived from observed frequency and plus-one smoothing. This places
minimal restrictions on stress patterns for words: a word might possess multiple stressed syllables or
no stressed syllables at all.

Doyle and Levy (2013) evaluated their joint model on the Korman corpus of English child-directed
speech (Korman, 1984), as modified by Christiansen, Allen, and Seidenberg (1998). This sample
contains speech directed at infants between 1.5 and 4 months old, with 24493 word tokens. Notably,
this corpus highlights the monosyllabic bias in English child-directed speech, as the corpus consists
of 87.3% monosyllabic words. Phonemic forms, syllabification, and stress patterns were all derived
from the MRC Psycholinguistic Database (Wilson, 1988), and demonstrated that this English speech
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sample had a strong word-initial stress bias (89.2% of all multisyllabic tokens had stress on the first
syllable).

Doyle and Levy (2013) compared modeled learners using a joint DP-Bi+Stress strategy against
learners using the original DP-Bi strategy. From the perspective of extrinsic measures of segmen-
tation, the question is whether there is bootstrapping observed for both processes. If so, this means
the segmented units provide useful information for inferring stress-based cues and stress-based cues
provide useful information for segmentation.

To determine whether the segmented units are helpful for inferring stress-based cues, Doyle and
Levy (2013) compared the word-initial stress bias in the segmented words generated by both strate-
gies. Given that the English stress-based cue is that words begin with stressed syllables, modeled
learners who succeed should have a bias for stress-initial words over stress-final words. It turned
out that while both strategies generated this bias for the segmented units (as shown in Table 9), the
joint DP-Bi+Stress strategy did so slightly more strongly (DP-Bi+Stress: 87.3% vs. DP-Bi: 86.4%
word-initial stress on bisyllabic words). So, there is some synergistic value in the segmented units for
the learner – they are useful for more easily inferring the correct stress-based cue in English, with the
idea that a stronger bias in the correct direction makes inference easier.

To determine whether the stress-based cues are helpful for segmentation, Doyle and Levy (2013)
compared the word token and word type F-scores for both strategies. If there is useful segmentation
information contained in the developing representation of the English-specific stress cue, this should
be reflected in the F-scores of the DP-Bi+Stress being higher than the DP-Bi alone. As Table 9 shows,
this does indeed occur (though again, the benefit is somewhat slight, given the excellent segmentation
performance the DP-Bi already achieves on its own).

DP-Bi+Stress DP-Bi
Stress bias 87.3% 86.4%
Word token F-score 68 67
Word type F-score 80 77

Table 9: Extrinsic measure evaluations for the joint model from Doyle & Levy 2013 (DP-Bi+Stress)
compared against the original DP-Bi model. Stress bias indicates the bias towards the correct English
stress-based cue to segmentation, with higher percentages indicating a stronger bias. F-scores are
shown either including frequency (Word token) or factoring it out (Word type). Higher scores indicate
better segmentation performance compared against the gold standard.

These results indicate that jointly inferring boundaries and stress cues does yield a bootstrapping
effect for both tasks. However, because this effect is rather small, it may well be that infants can do
just fine even if these processes aren’t occurring simultaneously.

5.1.2 Stress cue identification: Downstream evaluation

Here we consider the downstream evaluation for the DP segmentation strategy explored by Phillips
and Pearl (2015a), where the segmentation process yields a proto-lexicon. We can then evaluate that

22



proto-lexicon with respect to inferring the correct stress-based cue. Phillips and Pearl (2015a) did this
for several DP segmentation variants, some of which had significantly lower F-score performance
than others. This can give us a sense of how good segmentation needs to be in order for the units in
the proto-lexicon to be helpful for inferring the correct stress-based cue.

The evaluation process itself is similar to the approach taken by Doyle and Levy (2013): exam-
ine the proto-lexicon yielded by different DP segmentation strategy variants and calculate the bias
towards word-initial stress for each. Table 10 shows the adjusted segmentation F-scores achieved by
each strategy against the gold standard on English child-directed speech from the Brent corpus, when
reasonable errors are counted as acceptable. It additionally shows the strength of the bias in the in-
ferred proto-lexicon towards word-initial stress. To determine the stress patterns for segmented words,
Phillips and Pearl (2015a) referenced the English Callhome Lexicon (Kingsbury, Strassel, McLemore,
& MacIntyre, 1997). Child-register words not found in standard dictionaries (e.g., moosha) were man-
ually coded when the proper stress could be reasonably inferred. Additionally, to better approximate
the stress of words in fluent speech, monosyllabic words were left unstressed. Similar stress anal-
yses were done for German and Hungarian, using the Caroline (German) and Gervain (Hungarian)
corpora of child-directed speech, and determining stress patterns by using the Callhome German Lex-
icon (Karins, MacIntyre, Brandmair, Lauscher, & McLemore, 1997) and the stress rules of Hungarian
(all words are stress-initial).

Adjusted F-score % Stress-initial items
English German Hungarian English German Hungarian

Adult seg 100 100 100 88.4% 90.3% 100%

Unigram Idealized 56.8 71.1 64.8 87.3% 90.8% 96.9%
Constrained 60.0 71.3 61.4 85.3% 87.6% 93.1%

Bigram Idealized 81.5 82.9 72.0 88.4% 90.9% 97.9%
Constrained 90.1 88.4 71.4 90.6% 92.6% 96.4%

Baseline RandOracle 64.6 59.4 33.1 46.7% 49.6% 52.5%

Table 10: Downstream evaluation for different DP segmentation strategy variants, compared against
the adult orthographic segmentation and the random oracle baseline in English, German, and Hungar-
ian. Adjusted word token F-scores are shown, which count reasonable errors as acceptable segmen-
tation. The percentage of bisyllabic word types in the inferred proto-lexicon with word-initial stress
are shown, given all bisyllabic word types the learner identified containing a single stressed syllable.

We can first observe that if segmentation matches adult orthographic segmentation (with an F-
score of 100), the stress-initial bias is quite strong: 88.4% (English), 90.3% (German), or 100%
(Hungarian) of bisyllabic word types with a single stressed syllable have that syllable at the begin-
ning of the word. This should make inferring the stress-based segmentation cue straightforward. In-
terestingly, every single DP segmentation learner – regardless of its F-score performance – achieves a
stress-initial bias that’s almost as strong (English, German, Hungarian), as strong (English, German),
or stronger (English, German). That is, even strategies whose segmentation seems poorer (DP-Uni
learners) or actually worse than the baseline on F-score (e.g., DP-Uni learners in English) achieve a
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very strong stress-initial bias in their proto-lexicons. It doesn’t matter that their segmentation doesn’t
match the adult orthographic standard; it’s good enough from the perspective of inferring the correct
stress cue to segmentation.

This contrasts notably with the baseline random oracle strategy, which is the only strategy to
identify a proto-lexicon that fails to have a bias (German), has only a very slight bias in the correct
direction (Hungarian), or actually has a bias in the wrong direction (English, where less than 50%
of its bisyllabic word types are stress-initial). This occurs even though its adjusted English F-score
is higher than the F-scores of the DP-Uni learners. This underscores that even if a strategy’s output
doesn’t match adult segmentation, that output can still be quite useful – as we see here especially with
the DP-Uni learners. The important stress pattern property is preserved in the inferred proto-lexicon.

5.1.3 Stress cue identification: Summary

Both the joint modeling and downstream extrinsic metrics suggest that the DP segmentation strategy
is quite useful for identifying the stress-based segmentation cue for a language. It’s particularly
notable that this can occur for the downstream evaluation even if the segmentation doesn’t match
the adult segmentation very well, as indicated by the standard metric of the F-score. So, even lower
quality proto-lexicons may be good enough for subsequent acquisition processes like identifying the
language-specific stress cue to speech segmentation. We turn next to another acquisition process that
relies on the output of segmentation.

5.2 Learning the meaning of concrete nouns
Infants begin associating word forms from their proto-lexicons with concrete objects such as cookie
and nose when they’re between six and nine months old (Bergelson & Swingley, 2012) and so this
process could very well overlap with early speech segmentation. Frank et al. (2009) proposed a
Bayesian word-mapping strategy for concrete objects that incorporates an infant’s developing ideas
about referential intention, which they called the Intentional strategy. The Intentional strategy iden-
tifies a comparatively accurate lexicon of word-meaning mappings, and accounts for several well-
known phenomena in the developmental word-mapping literature, including cross-situational word
learning (Yu & Smith, 2007; Smith & Yu, 2008; Yu & Smith, 2011), mutual exclusivity (Markman
& Wachtel, 1988; Markman, 1989; Markman, Wasow, & Hansen, 2003), one-trial learning (Carey,
1978; Markson & Bloom, 1997), object individuation (Xu, 2002), and intention reading (Baldwin,
1993). One assumption Frank et al. (2009)’s implementation makes is that speech is represented in its
adult orthographic segmentation. Given the Intentional strategy’s success at matching developmental
data and its reliance on segmented speech, it seems reasonable to use it either within a joint model of
segmentation and word learning or as a downstream evaluation of a segmentation strategy’s output.
We first give an overview of the Intentional strategy and then discuss each evaluation in turn.
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5.2.1 The Intentional word learning strategy

Because the Intentional strategy is a Bayesian strategy that relies on a generative model, its compo-
nents can be represented with a plate diagram as shown in Figure 1. The modeled infant using this
strategy observes the individual words uttered (Ws) in a particular situation s and the concrete objects
Os in the vicinity. The learner then infers which objects Is the speaker intends to refer to as well as
the lexicon L the speaker is drawing from in order to make the words Ws refer to those objects. That
is, the lexicon L is a set of word-meaning mappings, drawn from the word forms W and the available
objects O in all observed situations.

Situation s

WsWords

Is
Referential

Intention L Lexicon

OsObjects

Figure 1: Plate diagram of the Intentional strategy’s generative model.

The probability of a corpus of situations S, given an adult speaker’s lexicon L, can be represented
as in (14). It is the product of the probability of each individual situation s, where the probabil-
ity of each possible intended object Is is summed (because the actual intention of the speaker isn’t
observed).

P (C|L) =
∏
s∈S

∑
Is∈Os

P (Is|Os)P (Ws|Is, L) (14)

The probability of intending to speak about any available object, P (Is|Os), is treated as uniform,
such that all objects are equally likely to be referred to. The difference between intended objects
comes from the probability of selecting the words Ws given the speaker’s intentions in that situation
Is and the speaker’s lexicon (P (Ws|Is, L)). The modeled learner is aware that some words may be
spoken non-referentially (i.e., they don’t map to a concrete object) and so this probability is calculated
as in (15). More specifically, there is some probability γ that the word is used referentially and some
probability (1-γ) that it isn’t. The best-performing variant of the Intentional strategy reported in Frank
et al. (2009) used γ = 0.1, implementing a strong bias for words to be used non-referentially. This
makes intuitive sense as only a few words (and often only a single word) in an utterance actually
refers to a concrete noun (e.g., In Look at the kitty!, only kitty is referential in this sense).
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P (Ws|Is, L) =
∏

w∈Ws

[γ
∑
o∈Is

1

|Is|
PR(w|o, L) + (1− γ)PNR(w|L)] (15)

The probability for all observed words Ws is the product of each individual word w. If a word
is used referentially, the learner assumes it’s chosen uniformly from all words linked in the lexicon
to the intended object in question (PR(w|o, L)). For instance, if duck is the only word linked to the
object DUCK, then it has probability 1. If both duck and bird are linked to the object DUCK, then each
has probability 0.5. This probability is summed across all potential intended objects Is and averaged.

In contrast, if a word is used non-referentially (in the sense that it doesn’t refer to an available
concrete noun in Os), the learner then distinguishes within PNR(w|L) between words that are in the
lexicon and words that aren’t. A word can be used non-referentially even if it’s in the lexicon because
a word form may map to more than one meaning (e.g., consider the concrete noun duck vs. the
action verb duck), and the learner allows this possibility. So, if a word in the lexicon is used non-
referentially, it’s selected with probability proportional to κ. In contrast, if a word not in the lexicon
is used non-referentially, it’s selected with probability proportional to 1. If κ < 1, words with entries
in the lexicon are less likely to be used non-referentially than words that aren’t. The best-performing
variant of the Intentional strategy reported in Frank et al. (2009) used κ = 0.05, implementing a
strong bias for words in the lexicon not to be used non-referentially. That is, if a word has an entry in
the lexicon mapping the word form to one or more concrete objects, this learner strongly prefers the
word to be used to refer to a concrete object.

5.2.2 Learning concrete nouns: Joint modeling

M. Johnson et al. (2010) explore one approach to a joint model of segmentation and word-object map-
ping. They implement these models using Adaptor Grammars (AGs), an extension of probabilistic
context free grammars (PCFGs) that can be used to model segmentation. Using AGs, they imple-
ment both the DP-Uni and DP-Bi segmentation strategies, as well as joint models that incorporate
the Intentional strategy for learning a concrete noun lexicon. They implement two variants of the
Intentional strategy: the original version (+Intention), which they refer to as reference, and one that
builds in a hard constraint that a word can only refer to a single concrete object within an utterance
(+Intention+Only1), which they refer to as reference1 (for DP-Uni) and referenceC1 (for DP-Bi). In
effect, in (15), the +Intention+Only1 learner has an additional constraint on PR that considers whether
the word has already been used referentially for an intended object in Is. If it has, PR=0.

M. Johnson et al. (2010) used idealized inference and evaluated these strategies on the Fernald-
Morikawa corpus (Fernald & Morikawa, 1993), which consists of 22,000 words (5,600 utterances) of
mother-child play sessions involving pairs of toys. These utterances were phonemically transcribed
using the VoxForge dictionary and segmentation assumed phonemes were the basic units of represen-
tation. Given the empirical data about infant speech representation, it turns out this may not be the
most plausible assumption. Nonetheless, M. Johnson et al. (2010) found synergies between speech
segmentation and concrete object learning, as shown below in Table 11, and so future studies may
wish to replicate these investigations using syllables as the basic unit of representation.
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Segmentation F Lexicon F

DP-Uni
Base 53.3 0.0
+Intention 53.7 14.9
+Intention+Only1 54.7 14.7

DP-Bi
Base 69.5 0.0
+Intention 72.6 22.0
+Intention+Only1 75.0 63.6

Table 11: Extrinsic measure evaluations for the joint model (+Intention, +Intention+Only1) from
Johnson et al. (2010) compared against the original DP segmentation strategies in isolation (Base).
Segmentation F-score indicates how well the modeled learner segmented the utterances, when com-
pared to the adult orthographic gold standard. Lexicon F-score indicates how well the modeled learner
identified the word-object mappings. For both F-scores, higher scores indicate better performance.

First, we can ask if knowing that some of the units in speech refer to available concrete objects im-
proves segmentation. Whether the modeled learner is using the DP-Uni or DP-Bi strategy variant, the
answer is clearly yes, though the improvement is more substantial for the DP-Bi learner (e.g., DP-Uni
Base=53.3 vs. +Intention+Only1=54.7; DP-Bi Base=69.5 vs. +Intention+Only1=75.0). Moreover,
hard-wiring in the constraint that words within an utterance can only refer to at most a single concrete
object is helpful (DP-Uni +Intention=53.7 vs. +Intention+Only1=54.7; DP-Bi +Intention=72.6 vs.
+Intention+Only1=75.0), though segmentation performance is already quite good for all DP segmen-
tation strategy variants.

Second, we can ask whether knowing the segmented units improves identification of the mappings
from word forms to concrete objects in the lexicon. M. Johnson et al. (2010) used a default assumption
that no words in the utterance are referential, and so the baseline performance for the DP-Uni and
DP-Bi segmentation strategies alone is 0.0. As a point of reference, Frank et al. (2009) achieved
a lexicon F-score of 55.0 on the corpus they used, and this was twice as good as the next closest
strategy, which had a lexicon F-score of 22.0. Looking at the joint model results, it seems that only
the DP-Bi joint model with the constraint restricting a word form’s referent within an utterance (DP-
Bi +Intention+Only1) achieves a noteworthy lexicon F-score (63.6). Still, it’s higher than Frank et al.
(2009)’s previous results that used the adult orthographic segmentation (though again, we note that
was on a different corpus). This suggests that the imperfectly segmented units are indeed helpful,
but only the more sophisticated segmentation strategy (DP-Bi) generates segmentations that are good
enough for a joint model to benefit from them, and only if the word-mapping portion of the joint
model contains that additional restriction on word reference within an utterance.

More generally, if infants are using joint learning strategies of this kind, these results indicate that
the imperfect segmentations generated by the DP segmentation strategy may be sufficient to bootstrap
word-object mapping for concrete nouns. In particular, the more sophisticated DP-Bi assumption is
the most promising of the DP segmentation variants. Interestingly, this is also supported by the results
of the downstream evaluation we discuss in the next section, though whether the learner uses idealized
vs. constrained inference turns out to matter.
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5.2.3 Learning concrete nouns: Downstream evaluation

Phillips and Pearl (2015a) investigated a downstream evaluation of the syllable-based DP segmenta-
tion strategy using the Intentional strategy for learning concrete nouns. First, each modeled learner
was trained on a subsection of the Brent English corpus of child-directed speech (Brent & Siskind,
2001), which is naturalistic speech directed at children between six and nine months and consists of
28391 utterances. Using the proto-lexicon it had inferred, each modeled learner then segmented the
corpus used by Frank et al. (2009), which is derived from two video files from the Rollins corpus
(Rollins, 2003) directed at six-month-olds, where caretakers were asked to play with their infants in
an experimental setup. These files were hand-annotated for concrete objects in the immediate vicinity,
yielding 619 utterances. The segmented Rollins utterances were then used as input to the Intentional
strategy, along with the annotations of available concrete objects in each utterance. The results for
both segmentation and inferring the lexicon of concrete nouns are shown in Table 12.

Segmentation Mapping
Token F Lexicon P

Brent Rollins Rollins
Adult Segmentation 100 100 58.3

DP-Uni Idealized 53.1 51.4 46.5
Constrained 55.1 52.4 47.3

DP-Bi Idealized 77.1 74.6 54.4
Constrained 86.3 81.3 38.8

Baseline RandOracle 56.4 57.6 40.6

Table 12: Segmentation and word-object mapping results for modeled learners in Phillips & Pearl
(2015a). Token F-scores are shown for segmentations both on the original Brent corpus and the
Rollins corpus. Lexicon precision is shown for the Rollins corpus, representing the accuracy of the
word-object mapping model trained on each learner’s segmentation.

The first thing to notice is that segmentation performance transfers quite well between the Brent
and Rollins corpora, no matter which learner we look at (e.g., DP-Bi Idealized: Brent=77.1 vs.
Rollins=74.6). This highlights the generalizability of the segmentation knowledge each learner has
internalized by first encountering the Brent data.

Turning to the lexicon of word-mappings inferred by the learners, Phillips and Pearl (2015a)
chose to focus on the precision only, with the idea that it is more important for the very early stages
of word learning to find a highly accurate set of mappings, even if not all correct mappings are
identified. Moreover, certain principles of word learning infants follow, such as mutual exclusivity
(Markman & Wachtel, 1988; Markman et al., 2003), would prevent them from learning all possible
lexicon mappings in the Rollins corpus (e.g. both rabbit and bunny can refer to RABBIT). So, Phillips
and Pearl (2015a) reasoned precision was the more relevant metric, rather than the F-score which
additionally incorporates recall.

While the Intentional strategy trained on the adult orthographic segmentation did the best (58.3),
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all of the DP segmentation strategy variants yielded segmentations the Intentional strategy found more
useful than a random segmentation (40.6), except for the constrained DP-Bi learner. Strikingly, the
constrained DP-Bi learner yielded the least accurate lexicon (38.8), despite having the highest token
F-scores among the modeled learners (Brent: 86.3, Rollins: 81.3). This surprising results underscores
the importance of extrinsic evaluation metrics – just because a strategy fares well on intrinsic measures
like token F-score doesn’t mean it will be useful, as assessed by extrinsic measures like downstream
evaluation.

On the other hand, of course, good performance on an intrinsic measure doesn’t automatically
yield poor performance on extrinsic measures. The idealized DP-Bi learner, in contrast to the con-
strained version, yields the most accurate lexicon (54.4) among the modeled learners and has the
second highest segmentation performance on the Rollins corpus (74.6). This is in line with the joint
modeling results from M. Johnson et al. (2010), who also found that the best lexicon resulted from
the idealized DP-Bi learner. Also, both DP-Uni learners yield better lexicons than the random oracle
baseline (DP Uni Idealized=46.5, Constrained=47.3), despite having significantly poorer segmenta-
tion performance.

5.2.4 Learning concrete nouns: Summary

The results of both the joint and downstream evaluations using word-object mapping suggest that
the DP segmentation strategy (particularly the DP-Bi version) yields segmentations that are useful
for learning a lexicon of concrete nouns. Like the findings for stress cue identification, it’s notable
that yielding a less adult-like segmentation doesn’t necessarily mean the segmentation isn’t useful for
word learning. So, as before, even lower quality proto-lexicons (as measured against adult orthogra-
phy) may be good enough for acquisition processes that depend on those segmented units.

5.3 Extrinsic evaluations: Summary
More generally, these extrinsic evaluations suggest that judging the quality of an acquisition strategy
from multiple perspectives, both intrinsic and extrinsic, is worth doing. Output that may not intrinsi-
cally seem so good could very well be good enough to accomplish what it needs to for the language
acquisition process. In terms of extrinsic evaluation options, a joint model may be a good option when
two tasks are closely interrelated and overlap in development. However, implementing a joint model
can prove technically challenging, depending on the modifications required, and requires assumptions
about infant learning which may or may not be well-founded. In contrast, downstream evaluation can
be applied without altering the learning strategy for either task, though it may underestimate the syn-
ergistic information available to children.

6 Closing thoughts
In this chapter, we hope to have shown that the output of early acquisition processes, such as speech
segmentation, is not necessarily the knowledge that an adult has. Nonetheless, this output may very
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well be useful for infants by providing units that scaffold other acquisition processes. Given this
goal, the Bayesian segmentation strategy seems effective for all seven languages tested. Moreover,
because learners using this segmentation strategy are looking for useful units, which can be realized
in different ways across languages, they can identify foundational aspects of a language that are both
smaller and larger than orthographic words.
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