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Abstract
Humans routinely transmit and interpret subtle information about their mental states

through the language they use, even when only the language text is available. This
suggests humans can utilize the linguistic signature of a mental state (its mindprint),
comprised of features in the text. Once the relevant features are identified, mindprints
can be used to automatically identify mental states communicated via language. We
focus on the mindprints of eight mental states resulting from intentions, attitudes, and
emotions, and present a mindprint-based machine learning technique to automatically
identify these mental states in realistic language data. By using linguistic features that
leverage available semantic, syntactic, and valence information, our approach achieves
near-human performance on average and even exceeds human performance on occasion.
Given this, we believe mindprints could be very valuable for intelligent systems interact-
ing linguistically with humans.

Keywords: mental state, linguistic features, mindprint, natural language processing,
information extraction

1



Biographical Note

Lisa Pearl is an Associate Professor of Cognitive Sciences, Linguistics, and Logic &
Philosophy of Science at the University of California, Irvine, and directs the Computation of
Language laboratory. Igii Enverga is a junior undergraduate student in Computer Science at
the University of California, Irvine and a research assistant in the Computation of Language
laboratory. His interests include natural language processing and artificial intelligence.

2



1 Introduction
Humans routinely communicate subtle information about their mental states through the lan-
guage they use. Often, they are fairly good at transmitting and interpreting this information,
which is usually perceived as a message’s tone, even when only the language text is available
(Kruger, Epley, Parker, & Ng, 2005; Pearl & Steyvers, 2010, 2013). While there is certainly
individual variation in this ability (e.g., Pearl & Steyvers, 2010), humans typically are suffi-
ciently competent at it that a diagnostic feature of disorders such as Asperger’s Syndrome is
the miscomprehension of message nuance (McPartland & Klin, 2006).

This indicates that, in the absence of auditory and visual cues, humans can express cer-
tain aspects of their mental states in addition to the basic semantic content of their messages.
For example, in the message “Don’t you just love this idea?”, the basic semantic content
is something like love(you, this idea), while the tone is persuasive or possibly sarcastic, ex-
pressing the speaker’s intention to persuade the listener of the content (persuasion) or perhaps
communicate the opposite of the content in an amusing way (sarcasm).

This suggests that there are linguistic signatures for mental states – which we call mind-
prints – comprised of features in the language text, and humans are capable of utilizing
these mindprints to express and perceive different mental states. Once the relevant linguistic
features of mindprints are identified, mindprints can be used to automatically identify the
mental states underlying messages more generally. Because of this potential, much recent
research has focused on leveraging linguistic features to automatically identify mental states
such as intentions (Mihalcea & Strapparava, 2009; Pearl & Steyvers, 2010; Anand et al.,
2011; Rubin & Conroy, 2011; Pearl & Steyvers, 2013), attitudes (Mishne, 2005; Keshtkar
& Inkpen, 2009; Neviarouskaya, Prendinger, & Ishizuka, 2010; Pearl & Steyvers, 2010;
Danescu-Niculescu-Mizil, Sudhof, Jurafsky, Leskovec, & Potts, 2013; Pearl & Steyvers,
2013), emotions (Mishne, 2005; Strapparava & Mihalcea, 2008; Keshtkar & Inkpen, 2009;
Neviarouskaya et al., 2010; Pearl & Steyvers, 2010; Chaffar & Inkpen, 2011; Mohammed,
2012; Pearl & Steyvers, 2013), and perspectives (Lin, Wilson, Wiebe, & Hauptmann, 2006;
Hardisty, Boyd-Graber, & Resnik, 2010).

We first review previous approaches to mental state identification that are related to the
approach we pursue here. Notably, approaches have often been developed that target a par-
ticular mental state (e.g., politeness: Danescu-Niculescu-Mizil et al., 2013) or mental state
type (e.g., emotions: Chaffar & Inkpen, 2011; Mohammed, 2012), rather than mental state
identification more generally. There are, of course, numerous possible mental states – for
example, the blogging site Livejournal suggests over a hundred potential moods to its users
(Mishne, 2005; Keshtkar & Inkpen, 2009). However, previous approaches have tended to
target specific subsets of mental states because additional domain-specific knowledge has
been leveraged to identify the mental state(s) of interest (e.g., hedges in politeness: Danescu-
Niculescu-Mizil et al., 2013; affect lexicon features for emotions: Chaffar & Inkpen, 2011;
Mohammed, 2012). A common first step in developing an automated approach is to identify
which mental state is present from a circumscribed list of mental states (e.g., Chaffar and
Inkpen (2011) identify which of six emotions is present) or to assign a score along a scale
relating to one mental state (e.g., Danescu-Niculescu-Mizil et al. (2013) generate a score for
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a message ranging from very polite to very impolite).
Still, recent approaches for identifying different types of mental states have been success-

ful when using only shallow linguistic features (Keshtkar & Inkpen, 2009; Pearl & Steyvers,
2013). Here, we focus on mindprints that incorporate more sophisticated linguistic fea-
tures involving semantic, syntactic, and valence information, but notably no explicit domain-
specific knowledge about a mental state. That is, these linguistic features are not targeted
for a specific mental state or mental state type the way that a hedge feature for politeness
would be, or affect features for emotions would be. We apply these to the identification of
eight mental states spanning intentions, attitudes, and emotions. Our study thus continues the
investigation of this more difficult mental state identification task, where the possible mental
states are not all of the same type, and we focus on the linguistic features that can be utilized
to solve it.

After we describe the linguistic features allowed in our mindprints, we discuss the lan-
guage dataset we use to specify the features for each mental state. This dataset is drawn from
language data generated by the Word Sleuth game-with-a-purpose (wordsleuth.ss.uci.edu),
which was specifically designed by Pearl and Steyvers (2013) to create a database that can
be used for mental state identification research. In this game, human players are encouraged
to both create messages expressing a specific mental state and interpret messages previously
created by other players. Thus, these data have two useful properties. First, they indicate
the mental state intended for a particular message, and so provide a known ground truth for
every message. Second, they indicate which mental state was perceived in a particular mes-
sage, and so provide a metric of human performance on this task. The performance of our
automated mindprint-based techniques can thus be easily measured against human ability to
detect the intended mental state in these messages.

We find that machine learning classifiers using more linguistically sophisticated mind-
prints perform very well: they achieve near-human level performance on average and even
exceed human performance in one case. In addition, they significantly outperform classi-
fiers using mindprints that are based only on shallow linguistic features, underscoring the
utility of deeper linguistic features. Interestingly, we find that our best classifiers make sim-
ilar errors to humans in some cases, suggesting that the mindprints used here are similar to
the mindprints human use. Given the promising results we have found, we conclude that
linguistically-sophisticated mindprints are likely to be a viable and important component of
any intelligent system interacting linguistically with humans.

2 Related approaches
While much research has focused on leveraging linguistic features associated with a specific
mental state (e.g., politeness) or mental state type (e.g., emotions), few studies have attempted
to identify the linguistic features that could comprise mindprints more generally. This may
be because researchers have assumed (not unreasonably) that much of how humans transmit
information about a mental state involves knowledge that pertains only to that mental state.
For example, to convey politeness, strategies such as asserting common ground and avoiding
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disagreement can be used (Brown & Levinson, 1987), while to convey a particular emotion
(e.g., anger), lexicon items that are associated with that emotion (e.g., mad) can be used.

Nonetheless, some research on the identification of mental states more generally has ex-
amined the efficacy of shallow linguistic features. Research in the classification of moods,
(Mishne, 2005; Keshtkar & Inkpen, 2009), which span emotions such as happy, attitudes
such as contemplative, and physically-based states such as sleepy, has found mixed results.
Mishne (2005) combined support vector machines (SVMs) with shallow linguistic features
(see Table 1) to identify 40 moods in Livejournal blog text, achieving performance barely
above baseline (57% on average with a 50% baseline1). Notably, Mishne (2005) found that
humans struggled to identify the moods in the linguistic data used for evaluation, achieving
only 63% accuracy (again with a 50% baseline). Thus, these particular data may not have
been very reliable to begin with for the classification task chosen.

Still, Keshtkar and Inkpen (2009) used this same dataset and attempted to identify 132
moods using a subset of the features Mishne (2005) used (see Table 1). Notably, they em-
ployed a more intricate machine learning technique involving a cascading set of SVMs, with
each SVM classifying a mood into a finer-grained set of possible moods (e.g., a sequence of
classifications for a mood might first be sad, then uncomfortable, given that it was sad, and
then cold, given that it was uncomfortable). Their cascading approach achieved 55% accu-
racy (with a 7% baseline), which suggests that fairly shallow linguistic features can be more
effective if more sophisticated machine learning techniques are utilized.

In this vein, Pearl and Steyvers (2013) investigated techniques to identify eight mental
states spanning intentions, attitudes, and emotions that involved additional shallow linguistic
features (see Table 1) and a different sophisticated machine learning algorithm. Their lan-
guage data consisted of a set of brief messages (average length = 11.5 words) generated in the
Word Sleuth game-with-a-purpose. Due to the design of the game, the messages used for their
classification research tended to be more reliable with respect to mental state transmission,
with humans successfully interpreting the intended mental state in a message 74% of the time
on average (given a random guessing baseline of 12.5%). Pearl and Steyvers (2013) employed
the Sparse Multinomial Logistic Regression (SMLR) classifier (Krishnapuram, Figueiredo,
Carin, & Hartemink, 2005), which simultaneously learned (i) the linguistic features that were
most useful for identifying each mental state and (ii) which mental state was being expressed
in each message. Thus, the SMLR classifier identified the features comprising the mindprint
for each mental state at the same time as it learned to identify the mental state with that mind-
print. This technique achieved 70% accuracy on average (with the same baseline as humans
had of 12.5%), and identified promising mindprint features for all the mental states. Given
this success, it seems that machine learning approaches leveraging mindprints have the po-
tential to identify mental states in language text as well as humans do by paying attention to
the kind of linguistic features that humans may use. It is with this in mind that we pursue a

1The basline was 50% since the classification task was to indicate whether the text was an example of the
mood or not. For example, a text would be rated as happy or not happy, and the perfect outcome would be for
all happy texts to be labeled happy and all other texts to be labeled not happy. This classification was conducted
for each mood, so the same texts would then be rated as contemplative or not contemplative, and then as sleepy
or not sleepy, and so on.
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richer set of linguistic features from which to build mindprints for mental states.

Table 1: Linguistic feature types used by related approaches: M2005 = Mishne (2005),
K&I2009 = Keshtkar & Inkpen (2009), P&S2013 = Pearl & Steyvers (2013). Two classes
of features are represented. The first class is drawn from standard features used in stylomet-
ric analysis and potentially reveals subconscious linguistic style changes caused by different
mental states (parts of speech, length, punctuation, characters, lexical diversity, 1st person
pronouns, average word log frequency). The second class is more directly linked to particu-
lar mental states, as it often can capture specific items or expressions related to a mental state
(n-grams, point-wise mutual information, valence, emphasized words, emoticons).

Feature type Examples M2005 K&I2009 P&S2013

parts of speech
singular noun

X
determiner

length
5.2 words per sentence

X X X
30 word tokens total

punctuation
...

X X
!

characters
all digits

X
p

lexical diversity # word types
# word tokens X

1st person pronouns
I

X
me

average word average log frequency
X

log frequency of words in message

n-grams
I+love

X X X
can’t+you+see

valence
POSITIVE

X X
+1.86

point-wise (goodnight, sleepy)
X

mutual information = -22.88

emphasized words
This is *NOT* okay

X
What is that?

emoticons
:)

X X
;)
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3 Linguistic features: Going deeper
The basic intuition behind mindprint features is that they capture some knowledge that hu-
mans have about a particular mental state. Shallow linguistic features may be useful because
they provide a coarse measure of this knowledge. For example, an n-gram such as the+best
seems to encode some kind of endorsement, which can indicate mental states like confi-
dence or persuasion. However, this notion of endorsement could be encoded more abstractly,
as something like the+POSITIVE-ADJECTIVE-IN-THE-SUPERLATIVE, and could then be in-
stantiated as a number of expressions: the best, the brightest, the most fantastic, the most
reputable, and so on. It seems likely that humans use more abstract linguistic features of this
kind, since they allow a more compact representation of useful knowledge about language
meaning, structure, and polarity. With this in mind, we investigate different abstractions of
the words in language text, focusing on automatically derivable semantic, syntactic, and va-
lence features that could be used to create more linguistically abstract n-gram features for
mindprints.

3.1 Semantic features
To automatically create more abstract semantic representations for the words in a message,
we used the hypernym classifications available through WordNet 3.1 (Fellbaum, 1998; Princeton-
University, 2010), where Y is a hypernym of X if X is a kind of Y. For example, edible-fruit
would be a hypernym of apple. We investigated three potential levels of semantic abstraction
(each progressively more abstract), shown in Table 2. Only words that had hypernym entries
in WordNet were semantically abstracted2 – all other words in a message were left as is.

Table 2: Example of semantic abstractions of a message, using available hypernyms from
WordNet 3.1.

Original Utterance Level Semantically abstracted message
1 Big edible-fruit are the best!

Big apples are the best! 2 Big produce are the best!
3 Big food are the best!

3.2 Syntactic features
To automatically create more abstract syntactic representations for the words in a message,
we used the part-of-speech labels automatically generated by the Stanford Part-of-Speech
Tagger (Toutanova, Klein, Manning, & Singer, 2003), which correspond to grammatical cat-
egories like PLURAL NOUN and MODAL VERB. We investigated abstracting all words, all

2When multiple word senses were available for a word, we selected the most frequent word sense.
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content words only (nouns, non-copula and non-auxiliary verbs, adjectives, and adverbs),
and all non-content words only, shown in Table 3.3

Table 3: Example of syntactic abstractions of a message, using part-of-speech tags from the
Stanford Part-of-Speech Tagger.

Original Utterance Type Syntactically abstracted message
all JJ NNS VBP DT JJS!

Big apples are the best! content only JJ NNS are the JJS!
non-content only Big apples VBP DT best!

3.3 Valence features
To automatically create more abstract valence representations for the words in a message,
which correspond to sentiments like POSITIVE or NEGATIVE, we used the valence ratings
from the affective ratings database compiled by Warriner, Kuperman, and Brysbaert (2013),
which includes nearly 14,000 words. These ratings ranged between 1 (very negative) and 9
(very positive), and we investigated two options for abstraction (shown in Table 4): replacing
all words that had a valence rating with either POSITIVE (if its score was 5 or above) or
NEGATIVE (if its score was below 5), and replacing only words whose valence ratings were
in the top or bottom third of all valence ratings. This second option effectively abstracted
only those words with stronger valences, whether negative or positive.

3.4 The potential features in mindprints
Based on pilot classification results with all 18 combinations of linguistically abstracted fea-
tures (3 semantic options x 3 syntactic options x 2 valence options), we decided to use the

3The labels from the Stanford Part-of-Speech Tagger are as follows, with an example of each tag in
parentheses and an indication of whether this tag was considered a content (Co) or non-content (NCo) word:
CC=coordinating conjunction (and, NCo), CD=cardinal number (one penguin, Co), DT=determiner (the, NCo),
EOS=end of sentence marker (there’s a penguin here!), EX=existential there (there’s a penguin here, NCo),
FW=foreign word (hola, NCo), IN=preposition or subordinating conjunction (after, NCo), JJ=adjective (cute,
Co), JJR=comparative adjective (cuter, Co), JJS=superlative adjective (cutest, Co), LS=list item marker (one,
two, three, . . ., Co), MD=modal (could, NCo), NN=singular or mass noun (penguin, ice, Co), NNP=proper
noun (Jack, Co), NNPS=plural proper noun (There are two Jacks?, Co), NNS=plural nouns (penguins, Co),
PDT=predeterminer (all the penguins, NCo), POS=possessive ending (penguin’s, NCo), PRP=personal pro-
noun (me, NCo), PRP$=possessive pronoun (my, NCo), RB=adverb (easily, Co), RBR=comparative adverb
(later, Co), RBS=superlative adverb (most easily, Co), RP =particle (look it up, NCo), SYM=symbol (this =
that), TO=infinitival to (I want to go, NCo), UH=interjection (oh, NCo), VB=base form of verb (we should go,
Co), VBD=past tense verb (we went, Co), VBG=gerund or present participle (we are going, Co), VBN=past
participle (we should have gone, Co), VBP=non-3rd person singular present tense verb (you go, Co), VBZ=3rd

singular present tense verb (he goes, Co) WDT=wh-determiner (which one, NCo), WP=wh-pronoun (who,
NCo), WP$=possessive wh-pronoun (whose, NCo), WRB=wh-adverb (how, NCo).

8



Table 4: Example of valence abstractions of a message, using valence ratings from Warriner
et al. (2013)’s affective ratings database.

Original Utterance Type Valence abstracted message

Big apples are the best!
all POSITIVE POSITIVE are the POSITIVE!

strong only Big POSITIVE are the POSITIVE!

most successful combination for our main classification task. The most effective semantic
abstraction was one level (e.g., apple as edible-fruit rather than produce or food), suggesting
that too much abstraction loses more nuanced information that humans use to communicate
mental states. The most effective syntactic abstraction was content words only (e.g., Big ap-
ples are the best! becomes JJ NNS are the JJS!), which indicates that specific content words
are not always so important to the linguistic structures associated with mental states while
specific function words contain valuable information. For example, the phrase the best is ab-
stracted to the+JJS because this construction can indicate confidence or persuasion no matter
what superlative adjective is used. In contrast, modal verbs like can, may, and should are
linked to different mental states (e.g., confidence (I can), formality (may I), and persuasion
(you should)), so abstracting them all to the MD label would destroy this useful distinction.
The most effective valence abstraction was the strong valence words only, suggesting that
weaker valence information adds noise rather than useful information for detecting mental
states. Thus, the linguistic features potentially included in the mindprints we use here in-
clude multiple n-gram types: (i) the original n-gram, (ii) the semantically abstracted n-gram,
(iii) the syntactically abstracted n-gram, and (iv) the valence abstracted n-gram. The com-
plete list of features is in Table 5, and also includes 43 shallow linguistic features used by
Pearl and Steyvers (2013).

4 Language data: Word Sleuth
We investigate the eight mental states spanning intentions, attitudes, and emotions inves-
tigated by Pearl and Steyvers (2013): deception (intention), politeness (attitude), rudeness
(attitude), embarrassment (emotion), confidence (attitude), disbelief (attitude), formality (at-
titude), and persuasion (intention). We use language data derived from the Word Sleuth game-
with-a-purpose (GWAP) (Pearl & Steyvers, 2013), an online asynchronous game played
through a web browser interface (see wordsleuth.ss.uci.edu). GWAPs have been used to
accumulate information about many things that humans find easy to identify, such as objects
in images (von Ahn & Dabbish, 2004; von Ahn, Liu, & Blum, 2006), common sense relation-
ships between concepts (von Ahn, Kedia, & Blum, 2006), beliefs about others’ preferences
(Hacker & von Ahn, 2009), the musical style of songs (Law & von Ahn, 2009), and men-
tal states communicated through language text (Pearl & Steyvers, 2013). GWAPs leverage
human computation (von Ahn, 2006) to produce aggregated results that are more reliable
than any particular individual’s judgments, a “wisdom of the crowds” effect demonstrated
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Table 5: Linguistic features potentially included in mindprints. For all proportion calcula-
tions, a smoothing constant (0.5) was added to the raw counts. Note also that lexical diversity
values range between 0 and 1, with higher values indicating more diverse usage (each word
appears around once). The valence scores were derived from the affective ratings database of
Warriner et al. (2013). In addition, all bigrams and trigrams include begin-message (BEGIN)
and end-message (END) markers.

Feature type Description # Implementation Sample(s)

basic n-grams
unigrams, bigrams, &

varies # of n-gram
apple

trigrams appearing 2+ good+day
times in dataset i+love+you

semantic n-grams varies # of n-gram
edible-fruit

semantically abstracted good+time-unit
basic n-grams i+love+you

syntactic n-grams varies # of n-gram
NN

syntactically abstracted JJ+NN
basic n-grams i+VBP+you

valence n-grams varies # of n-gram
POSITIVE

valence abstracted POSITIVE+POSITIVE
basic n-grams i+POSITIVE+you

characters a,b,c,...z, all digits, 28 # character(type)
#characters

We saw 2 penguins
all punctuation and 3 fish! ≈ 2

23 digits
punctuation marks ? ! . ; : , 6 # of mark This is the best! = 1 !

word tokens number of word tokens 1 # word tokens The penguin ate the fish
= 5

word types number of word types 1 # word types The penguin ate the fish
= 4

1st person pronouns I, me, my, mine, we, us, 1 # 1st person pro
# word tokens

We like penguins! ≈ 1
3our, ours, myself, ourselves

lexical diversity word type to 1 # word types
# word tokens

The penguin ate the fish
word token ratio ≈ 4

5

average word length average characters 1 # characters
# word tokens

The penguin ate the fish
per word ≈ 4

average valence average word valence 1
∑

w∈msg
valence(w)

# words

We saw penguins
score ≈ 6.27+6.65

2

average log frequency
1

∑
w∈msg

log( # w∑
d∈ds

# d
)

# word tokens in msg
Same as implementationaverage word of words appearing

log frequency 2+ times in dataset

sentences number of sentences 1 # sentences What did you see?
We saw penguins. = 2

average sentence average words per sentence 1 # word tokens
# sentences

What did you see?
length We saw penguins. ≈ 7/2

in many knowledge domains, including human memory (Ditta & Steyvers, 2013), problem
solving (Yi, Steyvers, & Lee, 2012), and prediction (Lee, Steyvers, de Young, & Miller,
2012).
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In the context of the Word Sleuth GWAP, players can play two roles: the Expressor and
the Word Sleuth (see Figures 1 and 2). Expressors are given a specific mental state to express,
and provided with a context picture to help guide their message creation. Word Sleuths
attempt to determine which mental state was intended in a particular message, and are also
shown the context picture that was available to the Expressor during the message’s creation.
Points are awarded to both the Expressor and the Word Sleuth when a message generated by
the Expressor to communicate a particular mental state is accurately interpreted by the Word
Sleuth as expressing that mental state. (See Pearl and Steyvers (2013) for more details of
Word Sleuth’s implementation and game play, including several design features that motivate
accurate game play.)

Figure 1: An example of Expressor game play.

Figure 2: An example of Word Sleuth game play.

There are two main benefits to using a GWAP such as Word Sleuth to generate language
data. First, specific mental states can be targeted because players are guided to create mes-
sages expressing these mental states. So, instead of researchers sifting through naturally
occurring data in an attempt to find language expressing a certain mental state, language is
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generated which is known to express that mental state. Relatedly, the “ground truth” is known
with respect to which mental state is being expressed in a message, because the Expressor
explicitly generated the message to communicate that mental state.

Second, messages that reliably express particular mental states can be identified, based
on how accurately a message is interpreted by human players. A message that is consistently
perceived to communicate the intended mental state is likely to provide a good source of
linguistic cues for that mental state. Thus, we can harness the cumulative interpretations of
a collection of humans (the “wisdom of the crowds”) to identify messages that are useful for
developing mindprint-based techniques to automatically recognize mental states in text.

At the time of writing, the Word Sleuth database contained 4839 messages expressing
the eight mental states of interest, and 55577 interpretations of those messages. To identify
reliable messages, we selected the subset of messages that had two or more interpretations
and greater than 50% interpretation accuracy. Notably, mental states differed on how many
reliable messages were generated for them, ranging from 151 to 568. To negate any bias for
the most frequent mental state type in the dataset that our classifier would train on, we selected
the most accurately perceived 151 messages for each mental state, yielding 1208 messages
total with 15514 interpretations. The human accuracy on this dataset was 83%, averaged
across messages and participants, with successful mental state interpretation ranging between
70% and 90% (see Table 6), which is significantly better than chance performance of 12.5%
(i.e., 1 out of 8). This demonstrates that humans can be very good at transmitting mental
states through language text, though still imperfect.

Notably, some mental states are easier than others to express and interpret, as shown in
Table 6. The confusion matrix in Table 6 indicates p(interpreted|generated), the probability
that a message will be interpreted as expressing a specific mental state (in the columns),
given that it has been generated to express that specific mental state (in the rows), averaged
over messages and participants. The diagonal probabilities represent how often a message’s
mental state was correctly interpreted for each mental state, and so indicate mental state
transmission accuracy. From this, we can see that rudeness (0.90), confidence (0.89), and
disbelief (0.87) are among the easier mental states to express and interpret, while formality
(0.70) and deception (0.77) are more difficult. The total number of interpretations for each
mental state is shown in the rightmost column.

Table 7 shows sample messages (with the players’ own spelling and punctuation), high-
lighting why some mental states may be easier than others. For example, rude messages
tend to use negative valence words, such as “stupid” while confidence can be expressed with
markers of certainty like “of course” and disbelief can be expressed with markers of skepti-
cism like “no way.” In contrast, formality is often confused with politeness – the confusion
matrix in Table 6 indicates that formal messages are often interpreted as polite (0.19) and
polite messages are often interpreted as formal (0.09). The underlying issue is that the use
of a formal tone is typically a signal of polite discourse (even if the content is negative, such
as in a complaint). This causes the linguistic cues used to convey these mental states (e.g.,
words like “please” in the message in Table 7) to overlap. Notably, it is possible to be polite
without being formal, e.g., apologizing for bumping into someone by saying “I’m sorry” is
likely to be interpreted as polite, but not formal. Because of this, formality may be inter-
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Table 6: Human confusion matrix on the filtered Word Sleuth dataset comprising eight mental
states. The rows represent the intended mental state, while the columns represent the inter-
preted mental state. The bolded diagonal indicates the percentage of correct interpretations
for each mental state type. The total number of interpretations for each mental state type is
shown in the rightmost column.
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deception 0.77 0.02 0.03 0.03 0.02 0.02 0.02 0.08 2316
politeness 0.01 0.82 0.01 0.02 0.01 0.01 0.09 0.03 1966
rudeness 0.01 0.01 0.90 0.01 0.02 0.02 0.01 0.02 2090

embarrassment 0.02 0.02 0.02 0.85 0.01 0.06 0.01 0.01 2341
confidence 0.01 0.02 0.01 0.01 0.89 0.01 0.01 0.05 1955

disbelief 0.02 0.02 0.03 0.02 0.02 0.87 0.01 0.01 1441
formality 0.01 0.19 0.01 0.01 0.03 0.01 0.70 0.04 1723

persuasion 0.04 0.03 0.02 0.04 0.00 0.01 0.02 0.84 1682
15514

preted as a subset of politeness, and so the linguistic cues for formality may be a subset of the
cues for politeness. So, to recognize formality, humans must effectively recognize that the
message is conveying a particular kind of politeness, rather than politeness in general. This
relates to the broader issue of messages conveying multiple mental states, which we return to
in section 5.2.1. Since the Word Sleuth players were asked to select the single mental state
best represented in a message, different reasonable decisions could be made when multiple
mental states were communicated.

Deception is another more difficult mental state for humans to detect, and is often con-
fused with persuasion (0.08). This is also likely due to multiple mental states being commu-
nicated in a message, and so having overlapping linguistic cues. In particular, a speaker may
attempt deception while trying to persuade the listener of something. This appears in the ex-
ample message in Table 7: the speaker is trying to persuade the listener that their boss enjoys
files being submitted late, even though that is not true. This highlights one way in which
deception may be a more complex mental state – it effectively involves the speaker inverting
the true semantic content (e.g., their boss does not, in fact, enjoy tardy files) and violating
the conversational maxim of Quality (Grice, 1975) that assumes a cooperative conversational
partner will be truthful. Thus, deception alters the fundamental content of the message con-
veyed, while the other mental states do not. For example, a persuasive version of hate(boss,
late files) does not change the underlying content (e.g., “Our boss really hates late files, so
you should make sure to turn yours in immediately.”), while a deceptive version would nec-
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essarily do so (e.g., “Our boss loves it when you don’t give him the files immediately.”).
Because of this, the linguistic cues for deception are likely more subtle.4

Table 7: Sample messages from the filtered Word Sleuth dataset. The top three messages’
mental states are correctly interpreted while the bottom two are not.

Intended Interpreted Messagemental state mental state
rudeness rudeness “Uh, no. Your idea is stupid.”

confidence confidence “Of course. This case is in the bag.”
disbelief disbelief “there is no way this perfume is only 20 dollars”
formality politeness “Please, calm down. The patient is here and wait-

ing for the results sir.”
deception persuasion “Our boss loves it when you don’t give him the

files immediately.”

These human confusion data on the filtered dataset are useful in two ways. First, they rep-
resent the accuracy levels we would like to achieve (or exceed) with our automatic mindprint-
based techniques. Second, they suggest that two of our selected mental states – formality and
deception – are likely to be more difficult to automatically classify, since humans sometimes
struggle to identify them from language text.

5 Automatically identifying mental states

5.1 The classification task
To set up the classification task, we first determined which machine learning classifier to use.
We followed Pearl and Steyvers (2013) and used the Sparse Multinomial Logistic Regres-
sion (SMLR) classifier developed by Krishnapuram et al. (2005), since it can use regression
analysis to determine the subset of features that are relevant for making its classifications. It
assigns these relevant features some weight (depending on how useful they are in actually
making a decision), while all irrelevant features are given zero weight. This means that we
do not need to identify the useful mindprint linguistic features for each mental state a priori
– instead, we can allow the SMLR classifier to learn which linguistic features are relevant for
detecting each mental state, given all the features available. Thus, while there is a common
set of potential mindprint features for mental states, each mental state will have a subset of
these actually comprise its mindprint, with that subset identified by the SMLR classifier.

We then determined the baseline of performance to be chance performance when selecting
a mental state from one of eight choices (1 of 8 = 0.125), since this is the task the classifier

4Sarcasm and irony function similarly by inverting semantic content and violating the conversational maxim
of Quality, and so may also involve subtle cues similar to deception cues.
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was faced with. Because we eliminated any differences in frequency in the training set, a
baseline of selecting the most frequent mental state observed in the training set is equivalent
to this baseline.

We used 10-fold classification for training and testing, so that the classifier trained on
90% of the messages and then was tested on the remaining 10%, repeated ten times for each
of the folds. Results were then aggregated from all ten iterations, and their average reported.

To use the SMLR classifier, there are two parameters whose values must be set: (i) λ,
which determines how strongly the classifier prefers to base its decisions on a smaller subset
of features (as opposed to utilizing a larger set), and (ii) r, the number of regression rounds.
In our preliminary investigations, we determined that the parameter values yielding the best
results were λ=0.0075 and r=10.

5.2 Classifier results
Table 8 shows the mental state identification results from a classifier using the basic lin-
guistic features used by Pearl and Steyvers (2013) (i.e., all linguistic features in Table 5
except for the semantic, syntactic, and valence n-grams), a classifier using the more so-
phisticated linguistic features described in section 3 (i.e., all linguistic features in Table
5), and human performance on the filtered Word Sleuth dataset. The score shown is the
F-score, which is the harmonic mean of precision and recall (F = 2 ∗ P∗R

P+R
). Precision is

p(generated|interpreted), which is the probability that a message actually was generated
to express a particular mental state, given that it was interpreted as expressing that men-
tal state. Recall is p(interpreted|generated) (the accuracy calculation shown in Table 6
above), which is the probability that a message was actually interpreted as expressing a par-
ticular mental state, given that it was generated to express that mental state. The F-score
provides a single summary statistic that balances precision and recall, as it is possible to
have high precision with low recall (e.g., classifying only one message as deception, but do-
ing so correctly) as well as low precision with high recall (e.g., classifying all messages as
deception). Thus, to achieve a high F-score, both precision and recall must be high.

We find that a classifier using only basic linguistic features can actually do quite well
(average=0.712), similar to the results found by Pearl and Steyvers (2013). However, the
classifier that incorporates more sophisticated semantic, syntactic, and valence features im-
proves significantly on this average performance (average=0.756), which suggests that mind-
prints incorporating these more sophisticated features are indeed helpful. While average
performance of the classifier using more sophisticated features does not yet reach human per-
formance (average=0.824), it is much closer. This suggests that the mindprints humans use
are likely to contain these more sophisticated linguistic features.

Interestingly, when we examine individual mental states, there is one where the mindprint-
based classifiers exceed human performance: formality. This is particularly true of the clas-
sifier using more sophisticated linguistic features (Ling-Basic: 0.685, Ling-Soph: 0.721, Hu-
mans: 0.656). This suggests that the classifier is better able to distinguish formal cues than
humans can, possibly due to the overlap in formal and politeness cues discussed in section 4.
This contrasts with the relatively poor performance on deception, the other mental state that
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is more difficult for humans. Here, both classifiers struggle more than humans do, though the
classifier using more sophisticated features performs better (Ling-Basic: 0.544, Ling-Soph:
0.606, Humans: 0.770).

Table 8: Comparison of the performance of a classifier using basic linguistic features (Ling-
Basic), a classifier using more sophisticated linguistic features (Ling-Soph), and humans
against the baseline, as measured by F-score.

Mental State Baseline Ling-Basic Ling-Soph Humans
deception 0.125 0.544 0.606 0.770
politeness 0.125 0.702 0.768 0.800
rudeness 0.125 0.638 0.734 0.900
embarrassment 0.125 0.789 0.795 0.874
confidence 0.125 0.794 0.787 0.880
disbelief 0.125 0.755 0.818 0.875
formality 0.125 0.685 0.721 0.656
persuasion 0.125 0.774 0.800 0.835
average 0.125 0.712 0.756 0.824

5.2.1 Error patterns

If we wish to bridge the performance gap between automatic identification and human identi-
fication, it is useful to know what errors the classifier makes. Moreover, one way to determine
if the mindprints used by our classifier are similar to the ones humans use is to see if the clas-
sifier errors are similar to human errors. To investigate error patterns, we can examine the
confusion matrix for the classifier that uses sophisticated linguistic features. This is shown in
Table 9, where p(interpreted|generated) (i.e., the recall score) is calculated for each mental
state. The diagonal probabilities represent how often a message’s mental state was correctly
interpreted for each mental state.

Similar to humans, the linguistically sophisticated classifier is best at identifying confi-
dence (0.84) and disbelief (0.86), rarely confusing them with other mental states. However,
unlike humans, this classifier confuses rudeness with politeness (0.07), a curious mistake that
Pearl and Steyvers (2013) also found with their original classifier that used shallow linguis-
tic features. Notably, the classifier using more sophisticated features has this confusion less
often, which we attribute to its use of valence cues (see Table 11). Nonetheless, this is an in-
dication that our more linguistically sophisticated mindprints still differ from the mindprints
humans use to detect rudeness.

For other mental states, the classifier errors are more similar to human errors, suggesting
similar mindprints. For example, deception is often interpreted as persuasion (Human: 0.08,
Classifier: 0.09). As discussed in section 4, this may not be an unreasonable confusion since
many deceptive messages may be attempting to persuade the listener of something. Thus, the
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Table 9: Confusion matrix for the classifier using linguistically sophisticated features. The
rows represent the intended mental state, while the columns represent the interpreted mental
state. The bolded diagonal indicates the percentage of correct predictions for each mental
state type.
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deception 0.54 0.01 0.06 0.08 0.12 0.07 0.04 0.09
politeness 0.01 0.81 0.05 0.02 0.02 0.02 0.05 0.03
rudeness 0.03 0.07 0.71 0.04 0.05 0.05 0.01 0.03

embarrassment 0.07 0.01 0.04 0.81 0.02 0.04 0.01 0.01
confidence 0.05 0.03 0.01 0.03 0.84 0.01 0.01 0.03

disbelief 0.03 0.03 0.01 0.03 0.01 0.86 0.01 0.01
formality 0.04 0.11 0.02 0.03 0.04 0.04 0.67 0.05

persuasion 0.02 0.05 0.03 0.01 0.03 0.01 0.04 0.82

message really is expressing multiple mental states, but the classifier (and the human Word
Sleuth player) is forced to select only one mental state. So, depending on which linguistic
features are more salient, the message is interpreted (correctly) as deception or (incorrectly)
as persuasion. Notably, because both mental states are likely present in the message, this
“mistake” is a reasonable one for the classifier to make. Similarly, the classifier often in-
terprets deception as confidence (0.12), which may also be a legitimate interpretation, as a
speaker may attempt to deceive the listener by sounding very confident about the content of
the message (e.g., “This is totally and completely safe. I swear.”).

Also similar to humans, the classifier interprets formality as politeness (0.11), though
notably less so than humans (0.19). This suggests that the classifier may be using mindprint
features that humans use, but is able to use them more accurately than humans to distinguish
formal messages from polite messages.

5.2.2 Mindprint feature comparison

Since the SMLR classifier learns which subset of the potential linguistic features comprise
the mindprint of each mental state, we can examine what these inferred mindprints look like.
As Table 10 shows, only a fraction of the available linguistic features were selected for each
mental state from the 21,388 potential features. Nonetheless, this small subset was clearly
quite useful, since the classifier used those features to achieve the excellent identification
performance that it did.

It is also clear from the distribution of these useful mindprint features that the more so-
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phisticated linguistic features were useful for every single mental state. The original shallow
linguistic features still comprise the majority of mindprint features (ranging between 63%
and 72% of the mindprint features), which is likely why Pearl and Steyvers (2013)’s origi-
nal study (and our replication here) found reasonable identification performance using only
those features. Nonetheless, the more sophisticated linguistic features helped bridge the gap
between machine and human performance. Also, it turns out that the semantic features were
uniformly used more often than the syntactic features, which were uniformly used more often
than the valence features for each mental state (Semantic: 12%-18%, Syntactic: 9%-13%, Va-
lence: 3%-6%). This suggests that the semantic features were the most useful, and so more
sophisticated semantic features may lead to the largest improvements in automatic mental
state identification in the future.

Table 10: The linguistic features in each mental state’s mindprint, as inferred by the SMLR
classifier. The quantity of features is shown, with the percentage of the total features avail-
able (21388) that this quantity represents in parentheses. Also shown is the distribution of
mindprint features across the original shallow linguistic features and the deeper semantic,
syntactic, and valence features.

Mental State Mindprint Features Shallow Semantic Syntactic Valence
deception 3740 (0.17) 0.72 0.16 0.09 0.03
politeness 2713 (0.13) 0.63 0.18 0.13 0.06
rudeness 3087 (0.14) 0.67 0.16 0.11 0.06
embarrassment 2915 (0.14) 0.72 0.15 0.09 0.04
confidence 2779 (0.13) 0.66 0.17 0.12 0.05
disbelief 2879 (0.13) 0.74 0.12 0.10 0.04
formality 2877 (0.13) 0.68 0.16 0.11 0.05
persuasion 2710 (0.13) 0.68 0.16 0.11 0.05

For each mental state, we can examine the most strongly weighted mindprint features
to get a sense of what the linguistic cues for each are (shown in Table 11). In general, the
mindprints have at least one kind of linguistically sophisticated feature in the most strongly
weighted features, with the exception of deception. Semantic features are found in the
strongest features for politeness, rudeness, embarrassment, confidence, and formality; syn-
tactic features are found in the strongest features for embarrassment, confidence, disbelief,
formality, and persuasion; valence features are found in the strongest features for politeness,
rudeness, embarrassment, confidence, formality, and persuasion. This suggests that not only
are these more sophisticated features helpful for constructing the mindprints in general, but
they are also highly indicative for most mental states. We also note that all of the strongest
mindprint features were positively weighted, and so were associated with the presence of a
mental state rather than its absence.

We now discuss some highlights of each mental state’s strongest features, particularly
in comparison to the mindprints identified by Pearl and Steyvers (2013) (P&S). For decep-
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Table 11: The most strongly weighted mindprint features for each mental state, including
both shallow and deeper (abstracted) features. Semantically abstracted features are italicized,
syntactically abstracted features are shown with their syntactic label in bold capitals, and
valence abstracted features are shown in SMALL CAPS. The weight assigned to each feature
is shown in parentheses.

Mental State Strongest Mindprint Features
deception am+an (1.13), nope (0.97), lie (0.97), background (0.81), of+course

(0.80), absolutely (0.79), promise (0.79), is+genuine (0.77), um (0.76)
politeness desire+your (2.16), acknowledgment (1.82), have+a+good (1.42),

lovely (1.30), glad (1.24), want+to+share (1.21), pardon+my (1.18),
would+you (1.13), are+a+POSITIVE (1.04), i+POSITIVE+your (1.01),
BEGIN+would (1.00)

rudeness dislike (2.01), screw+you (1.54), you’re+NEGATIVE (1.47), jerk (1.43),
NEGATIVE+NEGATIVE+END (1.42), misfit (1.32), idiot (1.23), ew
(1.18), waste (1.18), trash (1.12), is+NEGATIVE+END (1.13)

embarrassment shame (2.27), clothcovering (1.71), 1st person pronouns (1.27),
ashamed (1.24), oops (1.20), clumsy (1.11), oh+NN (1.11),
i+POSITIVE+NEGATIVE (1.01), a+fool (0.84), he+NEGATIVE (0.78)

confidence control (1.67), emotion (1.60), the+JJS (1.23), BEGIN+im (1.12),
i+can+VB (1.12), am+POSITIVE (1.09), can+VB+this (0.99),
i’m+POSITIVE (0.98), awesome (0.96), mvp (0.93)

disbelief unreal (1.21), cannot (1.08), BEGIN+really (1.05), BEGIN+wow
(0.87), no+way (0.86), this+RB (0.79), she+RB (0.77), he+RB (0.76)

formality may+i (1.60), pardon+me (1.51), BEGIN+good (1.40), aristocrat
(1.40), introduce (1.37), how+VBP (1.22), order (1.19), allow (1.17),
may+i+POSITIVE (1.11)

persuasion try+it (1.34), BEGIN+you+should (1.28), BEGIN+come (1.06), you’re
gonna (0.86), should+POSITIVE (0.84), c’mon (0.83), you+should+RB
(0.80), if+you+VBP (0.73), you+should+VB (0.72)

tion, we find the presence of verbs indicating intention (“promise”) and indicators of uncer-
tainty (“um”) as P&S did. However, we also find indicators of certainty (“of+course”, “abso-
lutely”), which are more subtle cues that correlate with the persuading intention and confident
attitude that can accompany deceptive messages. So, while the semantic reversal that decep-
tion entails is difficult to identify solely from linguistic features, these certainty indicators can
signal intentions and attitudes associated with deception. For politeness, we find that specific
positive valence words (“lovely”, “glad”) and phrases involving modals (“BEGIN+would”,
“would+you”) are strongly correlated, similar to P&S. In addition, we see that phrases in-
volving words with positive valence (“are+a+POSITIVE”, “i+POSITIVE+your”) are highly in-
dicative of politeness, presumably because one way to be polite is to compliment the listener.
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For rudeness, we find that specific negative valence words (“idiot”, “trash”) are highly corre-
lated, as P&S found. We additionally find that phrases that contain semantically abstracted
forms of specific negative valence words (e.g., misfit for “dork” and “jerk”) and negative va-
lence words in general are highly indicative (“you’re+NEGATIVE”, “is+NEGATIVE+END”).
This is intuitively satisfying, as a simple way to be rude is to insult the listener, which
can be captured by negative valence words. For embarrassment, we find that phrases in-
dicating the appearance of an accident (“ashamed”, “shame”, “oops”, ”clumsy”) are corre-
lated, as P&S found. In addition, we find that first person pronouns are highly indicative,
perhaps because a common cause of embarrassment is something the speaker is responsi-
ble for. We also find that negative valence words are highly indicative (“he+NEGATIVE”),
which is likely because causes of embarrassment are typically negative. For confidence,
we also find that first person pronouns are highly indicative, as P&S found. In addition,
many of the more sophisticated linguistic features are highly correlated: semantically ab-
stracted features (e.g., control for “conquer” and “handle”), syntactically abstracted features
involving the modal “can” (“can+VB+this”, “i+can+VB”), and positive valence words asso-
ciated with first person pronoun markers (“am+POSITIVE”, “i’m+POSITIVE’’). For disbelief,
we find that indicators of surprise (“BEGIN+wow”, “unreal”), some of which involve nega-
tion (“no+way”, “cannot”), are highly correlated, as P&S found. We additionally find that
syntactically abstracted features are highly indicative, particularly those involving adverb
abstractions of “really” or “actually” (“he+RB”, “she+RB”, “this+RB”), which express sur-
prise. For formality, we find some fixed formal expressions (“pardon+me”, “may+i”) are
correlated, as P&S found. In addition, we find that the semantically abstracted formal title
(aristocrat for “highness” and “prince”) is highly indicative, suggesting this more general
representation of a formal title was very useful. For persuasion, we find coercive expres-
sions (“you’re gonna”, “c’mon”, “try+it”, “BEGIN+you+should”) are correlated, as P&S
did. In addition, syntactically abstracted features allow instantiations of the phrase “you
should...” (“you+should+RB”, “you+should+VB”) to rise to the top of the persuasion mind-
print features. Positive valence words following the coercive modal “should” are also highly
indicative (“should+POSITIVE”), perhaps because expressing something in a positive light
can make it sound more attractive to the listener.

From this, it is apparent that the more linguistically sophisticated features are not only
generally helpful for constructing mindprints but usually among the strongest indicators of
a mental state. Thus, they are capturing some of the deeper knowledge that humans use to
detect mental states in language. Still, because automatic mental state identification has not
reached human levels for most mental states, it is likely that other linguistic features can be
used to augment mindprints. Based on the results here, it is likely that more sophisticated
semantic features could capture some of the missing abstract representations that humans
use. For example, potentially useful semantic abstractions include uncertainty (deception),
certainty (deception), intention (deception), accident (embarrassment), surprise (disbelief),
formal expression (formality), and coercion (persuasion).

Some potential tools exist for automatically identifying these semantic classes. The Lin-
guistic Inquiry and Word Count database (Pennebaker, Booth, & Francis, 2007) was devel-
oped to examine emotional, cognitive, structural, and process components present in lan-
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guage. It includes explicit lists of words that cover uncertainty (cognitive processes: tenta-
tive) and certainty (cognitive processes: certainty). Similarly, WordNet-Affect (Strapparava
& Valitutti, 2004) was developed to aid in emotion identification research, and includes a
WordNet class that explicitly lists words related to surprise.

Still, there are some potentially useful semantic classes that do not currently have explicit
lists of words available (intention, accident, formal expression, coercion). For these, we may
be able to use a machine learning technique called topic modeling (Griffiths & Steyvers,
2004) to automatically identify words corresponding to these semantic classes. “Topics” in
this approach are probability distributions over keywords that relate to a cohesive “concept”,
broadly construed. In particular, a topic may be something we typically think of as a con-
cept, such as fictional villains, or instead something that represents a set of expressions that
share a stylistic component, such as casual expressions. These topics, and the keywords that
comprise them, are identified in an unsupervised fashion from a collection of documents.
Without any additional information beyond the documents themselves, topic models can use
the words contained in the documents to identify both the topics expressed and which topic
each word, sentence, or subsection of the document most likely belongs to. Given a topic
model trained over a large enough collection of documents, we may find that a topic model
can spontaneously create the list of words associated with some of the semantic classes of
interest. For example, Pearl and Steyvers (2012) trained a topic model on a collection of blog
texts, and discovered a casual expressions topic containing expressions such as “oh”, “lol”,
“yeah”, and “gonna”. Since such words would not appear in messages expressing a formal
attitude, this is a semantic class that should be strongly negatively correlated with formality.
It may thus be possible to automatically identify useful semantic classes for mental states
using this technique, and perhaps even the specific semantic classes identified above that are
likely to indicate the presence of a particular mental state.

In addition, it may be useful to take more inspiration from the way humans process infor-
mation when we consider linguistic features. For example, the semantic features considered
here always abstracted a word one level up, using WordNet hypernyms (e.g., Dalmatian
would be abstracted to dog). Interestingly, dog is what Rosch (1978) terms a “basic level”
category of semantic representation, and is a level frequently used by humans when referring
to objects. Given this, a more nuanced semantic abstraction might collapse only those words
that are more detailed than this basic level, while leaving basic level words alone (e.g., dog
would not be collapsed to canine as it was here). While it is non-obvious how to automati-
cally identify the basic level for words from WordNet currently, it may be possible to draw
from the semantic categorization literature to discover a way to do so.

Also, while our focus in this study was on more general-purpose linguistically sophisti-
cated features, it is likely that augmenting the mindprints proposed here with features incor-
porating domain-specific knowledge about a mental state will improve identification results
(e.g., hedges for politeness, affect lexicon features for embarrassment). This would com-
bine the insights from previous work on targeted mental state identification (e.g., politeness,
emotions) with the results here that highlight the utility of deeper purely linguistic features.

21



5.3 Mindprint complexity and generalizability: Future work
There are other natural extensions to the mindprint-based approach we have presented here.
First, we can recognize the complexity of mental states that messages can communicate and
identify multiple mental states simultaneously in text. Our current findings indicate that
messages can be perceived as expressing multiple mental states (e.g., Table 6: deception and
persuasion), which suggests that the mindprints of these mental states can (and often do)
occur in the same message. So, we may wish to allow both our mindprint-based classifiers
and our human Word Sleuth players to identify multiple states when that happens. Given
this additional information about the mental states expressed in messages, we may then be
able to extract more nuanced mindprints for a particular mental state (e.g., separating out the
deceptive and persuasive components of a message that reflects both those mental states).

Second, we may wish to test how general the mindprints are that we identified here, and
how generalizable this mindprint-based approach is to other naturalistic texts. To do this, we
would want a corpus of naturalistic linguistic data that is annotated with the mental states
expressed by those data. It has typically been difficult to find this type of reliable annotation
for naturalistic corpora of significant size, which was one of the motivations for the creation
of the Word Sleuth game (see Pearl and Steyvers (2013)). Nonetheless, a good existing
resource to start with would be the Livejournal blog corpus of Mishne (2005), where each
entry has been tagged with the mood the author was in when writing that entry. Mishne
(2005) and Keshtkar and Inkpen (2009) used that mood tag as an indicator of the mental
state the entry conveyed (though it is likely each entry conveyed additional mental states
as well). If we assume that the mood an entry is tagged with is definitely communicated
in the entry’s text (e.g., an entry tagged as embarrassed expresses embarrassment), we can
investigate two questions: First, how well do the mindprints we have identified here work on
the Livejournal data? For example, do embarrassed entries use features of the embarrassment
mindprint we learned from the Word Sleuth data? Second, how well does the mindprint-based
approach work for other mental states encoded by the Livejournal moods? For example, can
we automatically identify mindprints for happy, contemplative, and sleepy moods using our
approach? If our approach is truly a general approach for identifying mental states in text, it
should be successful for other texts and other mental states.

6 Conclusion
We have investigated the utility of automatically constructed mindprints for identifying a
variety of mental states spanning intentions, attitudes, and emotions in text. Importantly,
these mindprints use more sophisticated linguistic features than previous studies have used,
and capture some of the more abstract knowledge humans may use when detecting the lin-
guistic signature of a mental state. By using more linguistically sophisticated features, our
mindprint-based technique achieves near-human level performance when identifying most
mental states from text and exceeds human-level performance for one mental state. This
indicates that mindprints incorporating deeper linguistic knowledge are a valuable tool for
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intelligent systems that are conversing with humans, as such systems can more easily iden-
tify the subtle information about mental states that humans convey in language.
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