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Acquiring parametric linguistic systems from natural language data: 

What selective learning biases can do 

 

Abstract  

Parametric systems have been proposed as models of children’s knowledge 

representations about language, often as a way for them to acquire the specific linguistic 

knowledge they eventually attain.  A reasonable test, then, is to see if children could in 

fact acquire the proposed parametric systems from the data available to them.  One might 

think it necessary to use all available information since natural language data are often 

ambiguous and noisy.  The case study here suggests that having a selective learning bias 

to learn only from unambiguous data leads to acquisition success for an instantiation of 

the English metrical phonology system involving nine parameters.  Special attention is 

given to the model’s input and the psychological plausibility of the knowledge states, 

learning biases, and algorithms used in the model, in order to consider the learning 

problem from the perspective of children acquiring the linguistic systems of their native 

language.  The results support both the unambiguous data bias as a viable strategy for 

acquisition, and also the parametric instantiation of the metrical phonology system since 

the correct system can be learned from the natural language data children encounter.  

 

key words: acquirability, acquisition, English, metrical phonology, natural language data, 

parametric systems, selective learning bias, unambiguous data 
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1. Introduction 

1.1. Language learnability and language acquisition 

Knowledge of language consists of many kinds of systematic knowledge, such as 

phonology, morphology, and syntax.  The task of language learners is to uncover this 

systematic knowledge for their native language.  If the learner is a child, this process is 

often termed “acquisition”, and there are several constraints on the learnability scenario, 

including the type of input the learner receives, how long the learner has to learn certain 

knowledge, and how the learner is able to process the input.  For this reason, as Johnson 

(2004) notes, “acquirability” is somewhat different from the learnability traditionally 

considered in computational learning literature (e.g. Gold (1967)), “even when children 

are identified with learning functions and natural languages with sets of sentences”, as 

might be the case for syntactic acquisition.  Often, the conflation of  learnability with 

acquirability has led linguists and psychologists to misinterpret the implications of 

computational learnability results for child language acquisition (e.g. see Johnson (2004) 

for a review of the numerous misinterpretations of Gold’s (1967) result).  Here, we 

consider the acquirability of a parametric linguistic system from natural language data, 

keeping the restrictions that come with acquisition in mind.  In this way, the learning 

results from this study can be more directly transferred to acquisition research. 

 

1.2. The tricky business of acquisition for complex systems 

Acquisition is not so easy if we believe children are acquiring a complex system (e.g. 

Chomsky (1981), Halle & Vergnaud (1987), Hayes (1995), Tesar & Smolensky (2000), 
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Prince & Smolensky (2004), Heinz (2007), among many others), rather than less abstract 

representations of the data they encounter (e.g. Daelemans, Gillis, & Durieux (1994), 

Goldberg (1995), Tomasello (2006), among many others).  The idea of a complex 

linguistic system that varies over a limited number of dimensions (often called 

parameters or constraints) serves a dual purpose in the linguistics literature.  First, it is 

used to explain the constrained variation seen in adult languages cross-linguistically 

within some specific domain (e.g. metrical phonology (Halle & Vergnaud (1987), Hayes 

(1995)) or syntax (Chomsky (1981)); second, it is used to explain how children acquiring 

a specific language converge quickly on the complex knowledge they seem to attain.  The 

proposal that children build complex systems from the available data is perhaps not too 

unreasonable – there is evidence that children search for linguistic generalizations in the 

available data, even when generalization is not required in order for children to 

effectively use the language (e.g. metrical phonology knowledge: Hochberg (1988)). To 

build the correct system as rapidly as children do, it is then hypothesized that children 

have prior knowledge of the parameters of variation available in the complex system (e.g. 

Chomsky (1981), Dresher (1999)).  Without this prior knowledge, it would be difficult to 

decide the relevant points of variation (henceforth ‘parameters’) among all the potential 

ways the system might vary, and also to decide the correct values for those parameters.  

So, under this view, the basic purpose of children having prior knowledge of linguistic 

parameters is to make the acquisition of a complex system possible in the time frame 

children have to do it. 
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It therefore seems reasonable to ask if a given proposal for prior knowledge makes 

the complex system it is designed to help acquire actually acquirable.  One proposal is a 

parametric system, and one domain for which it has been proposed is metrical phonology 

(Halle & Vergnaud (1987), Hayes (1995)).  This study examines the acquirability of a 

parametric system of metrical phonology for English from the input available to English 

children. If this system is not acquirable from realistic data, then we have mark against 

that proposal. If instead this system is acquirable, it is viable as a proposal of the 

knowledge representation in children’s minds, and we can then explore the conditions 

under which it is acquirable.   

To acquire a parametric system, children must view the encountered data as the 

output of that system and deconstruct those data in order to identify the parameters 

involved.  If we consider metrical phonology, the output is the stress contour associated 

with a given word, including the basic division into stressed and unstressed syllables.  

Suppose a child encounters the word elephant (stressed syllables will be indicated by 

underlining henceforth), which has the stress contour [stressed unstressed unstressed].  

Even if the child is primed to acquire a parametric system, the task is very difficult 

without knowing the relevant parameters.  A parameter could be any variable present in 

the child’s linguistic or non-linguistic experience; for instance, the child might consider 

(a) if the individual segments of the word matter (e.g. e, l, t), (b) if the individual 

syllables matter (e.g. el, phant), (c) if rhyming matters (e.g. el does not rhyme with 

phant), (d) if the speaker’s rate of speech of matters (e.g. fast vs. normal speech), (e) if 

the speaker’s gender matters, (e.g. female vs. male speech), and so on.  Knowing which 
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parameters are relevant significantly constrains the child’s hypothesis space of language 

systems (sometimes referred to as ‘grammars’). In addition, knowing what values these 

parameters can have also reduces the hypothesis space. 

Still, even with this prior knowledge, the hypothesis space of possible grammars can 

be quite large as it grows exponentially with the number of parameters. For example, 

suppose the child is aware of n binary parameters. Then, there are 2n possible grammars 

in the hypothesis space.  Even if n is small (say 20), this can lead to a very large number 

of potential grammars (220 = 1,048,576).  

In addition, the known cross-linguistic parameters often interact, so the observable 

data are ambiguous between a number of available grammars (Clark  1994, among 

others).  Consider, for example, a stress contour such as [stressed unstressed stressed] in a 

word like afternoon. In (1), we see just a few of the analyses generated from grammars 

that can yield this stress contour.  Syllables are either undifferentiated (S), or divided into 

Light (L) and Heavy (H) syllables, according to the syllable’s structure.  Larger units 

called metrical feet (indicated by parentheses (…) ) are then formed that are made up of 

one or more syllables, and stress is assigned inside each metrical foot. 

 

(1) Generative grammar analyses compatible with the stress contour of afternoon 

 (a) (S    S)    (S) (b) (L     L)    (H) (c) (L)    (L      H) 

       af   ter   noon       af     ter   noon       af      ter   noon 
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Metrical phonology system parameters include which syllables are included in 

metrical feet, how large metrical feet are, and which syllables are stressed inside metrical 

feet.  Even if these parameters are known already, it can be difficult to determine which 

parameter values combined to yield the observed stress contour.  So, even with this prior 

knowledge, the acquisition problem is not in fact solved.  The acquirability of the correct 

grammar from the available data is still an open question. 

 

1.3. A framework for acquisition and learning biases 

If we consider the language acquisition mechanism, at least three separate pieces can 

be identified: the hypothesis space, the data intake, and the update procedure (Pearl 

2007). The hypothesis space consists of all the hypotheses currently under consideration.  

For instance, this could be the set of potential grammars available from the combination 

of the different parameter values available.  The data intake refers to the set of data 

children learn from (Fodor 1998b).  This may be the entire input set, or some subset of it.  

The update procedure specifies how children change belief in the various competing 

hypotheses, based on their data intake. This procedure is often instantiated in acquisition 

models as a domain-general learning algorithm that shifts probability among the 

hypotheses (e.g. Bayesian learning: Tenenbaum & Griffiths  (2001), Perfors et al. (2006), 

Foraker et al. (2007); Linear reward-penalty: Yang (2002)). 

With respect to acquisition, there are potentially advantageous constraints that can be 

placed on different pieces of this mechanism, which might be termed “learning biases”.  

A bias on the hypothesis space is knowing the relevant parameters and their respective 
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potential values, thereby restricting the hypothesis space to a subset of what it would 

otherwise be.  As discussed above, this bias serves to make the correct grammar more 

likely to be acquired. 

Another learning bias children might use relates to the data intake.  Specifically, 

children might selectively learn only from data they perceive as maximally informative:  

unambiguous data (Fodor 1998a, Dresher 1999, Lightfoot 1999, Pearl & Weinberg 

2007).  This unambiguous data bias would effectively be a data intake filter implemented 

by the child’s acquisition mechanism.  The filter then causes the child to ignore 

information in ambiguous data, and focus instead on information available in the data 

perceived as unambiguous in order to identify the correct grammar. 

While learning only from maximally informative data has intuitive appeal, it is not 

without its difficulties.  As mentioned above, data are often ambiguous, especially in 

systems involving multiple interacting parameters, such as metrical phonology.  So, 

unambiguous data would comprise only a small subset of the available input, if such data 

exist at all (Clark 1994).  A reasonable concern is the viability of this kind of selective 

learning bias, given a realistic parametric system to learn and realistic data to learn from. 

In short, though unambiguous data are highly informative, do they exist in the natural 

language data children encounter?  If they do exist, do they exist in sufficient quantities 

to lead children to the correct grammar?  

For any given acquisition scenario, an unambiguous data bias may prove detrimental 

if the answer to either of these questions is no.  The existence of unambiguous data is an 

empirical question that must be examined for a particular acquisition problem, as is the 
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existence of sufficient quantities for learning the correct grammar.  The identification of 

unambiguous data is a question that has been considered in various domains (e.g. syntax: 

Fodor 1998a, Lightfoot 1999, Pearl & Weinberg 2007; metrical phonology: Dresher 

1999), and promising proposals can be tested against a particular acquisition problem to 

assess their viability. 

 

1.4. The present study: Realistic acquisition scenarios  

Here we examine the viability of an unambiguous data bias for the acquisition of a 

parametric system of English metrical phonology.  The system we consider includes nine 

parameters (adapted from Dresher (1999) and Hayes (1995)). The data available to 

children (estimated from the CHILDES database (MacWhinney 2000)) are quite 

ambiguous and contain many exceptions to the English grammar. Both the complexity of 

the system and the noisiness of the data make converging on the correct grammar for 

English a non-trivial acquisition problem.  The existence of unambiguous data for the 

parameters is not assured; the existence of unambiguous data in sufficient quantities to 

lead the child to English is definitely not assured.  

Previous computational work on parametric metrical phonology systems, while 

exploring systems of similar complexity, has not used child-directed speech as input 

(Dresher & Kaye 1990, Dresher 1999) when testing the system’s acquirability.  To 

address this, the model here uses a data set as input that contains both the forms children 

are likely to encounter and the frequencies at which they will encounter these forms.  

Note that these data differ from adult-directed speech in several respects, so the use of 
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child-directed speech is important for testing acquirability.  See the appendix for a 

detailed comparison of the child-directed speech used here and adult-directed speech. 

Because we intend to measure the performance of an unambiguous data bias on the 

specific case study of English metrical phonology, we will briefly review the particular 

parametric system under consideration, the values for the target language English, and the 

distributions from English child-directed speech that are used as input.  We will then 

describe two classes of proposals (cues: Dresher 1999, Lightfoot 1999; parsing: Fodor 

1998a, Sakas & Fodor 2001) for how children can identify unambiguous data in their 

input.  These proposals will then each be used to implement an unambiguous data filter 

for the scenario where the child attempts to acquire English metrical phonology. 

We will see that a probabilistic learning model using an unambiguous data filter 

implemented with either of the two identification methods can in fact converge on 

English under certain conditions.  This is true despite highly ambiguous and exception-

filled data.  However, each identification method requires some additional knowledge in 

order to converge on English. The knowledge necessary for acquisition success will be 

discussed in each case, as well as the predictions that are generated from this required 

knowledge. We conclude with some general remarks on theoretical claims about how 

knowledge is represented in children’s minds. 

 

2. The parametric system of metrical phonology 

The instantiation of the metrical phonology system considered here has nine 

parameters (five main parameters and four sub-parameters), adapted from the systems 
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described in Dresher (1999) and Hayes (1995).   This system concerns only whether 

syllables are stressed or unstressed, and not how much stress syllables receive compared 

to other syllables.  Moreover, this system does not include interactions with the English 

morphology system, though such interactions are thought to be fairly pervasive in 

English (see Chomsky & Halle (1968), Kiparsky (1979), and Hayes (1982) for several 

examples).  This is due to considerations of the child’s likely initial knowledge state 

when acquiring the metrical phonology system.  Experimental work (Jusczyk et al. 1993,  

Turk et al. 1995) has suggested that children under a year old may already be acquiring 

some aspects of the English metrical phonology system.  Kehoe (1998) suggests that 

children already know several parameter values of the English system by 22 months.  It is 

unlikely that children of this age have extensive knowledge of English’s morphology 

system, and so they may not hypothesize the interaction between the morphology system 

and the metrical phonology system in English.   

We thus proceed with the following assumption: the child’s first hypothesis about the 

metrical phonology system is that it is autonomous, and does not interact with other 

systems.  Given this, the child first attempts to identify the grammar in the hypothesis 

space that is most compatible with the available data, perhaps noting that there are 

exceptions to this system.  Later, the child may recognize that some exceptions are 

systematic, and can be captured by considering interactions with the morphology system.   

It is important to note that the metrical phonology system considered here, while not 

the full system that will account for all of English, is still significantly more complex than 

parametric systems explored in some prior computational modeling work which involved 
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at most three interacting parameters (Gibson & Wexler 1994, Niyogi & Berwick 1996, 

Pearl & Weinberg 2007).  Previous work that has examined parametric systems of equal 

or greater complexity has often not been empirically grounded with realistic input 

distributions (Dresher 1999, Sakas & Nishimoto 2002, Sakas 2003, Fodor & Sakas 2004, 

among others).  In addition, a system very similar to the one here has been used to study 

the acquisition of stress in English as a second language (Archibald 1992). 

A sample metrical phonology analysis using the English grammar is shown for 

elephant in (2).  The word is divided into syllables (el, e, phant), which are then classified 

according to syllable structure as either (L)ight or (H)eavy.  The rightmost syllable 

(phant) is extrametrical (indicated by angle brackets < >), and so not included in a 

metrical foot. The metrical foot spans two syllables (el, e), and the leftmost syllable 

within the foot (el) is stressed.  This leads to the observable stress contour: elephant. 

 

(2) metrical phonology analysis for elephant 

  (H  L)  <H> 

  el    e   phant 

 

As we can see, many parameters combine to produce the word’s stress contour in this 

system. We will now briefly step through the various parameters involved (adapted from 

Dresher (1999) and Hayes (1995)).  For a detailed description of each of the parameters 

and their interactions with each other, see Pearl (2007). 
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One parameter, quantity sensitivity, refers to whether all syllables are identical in the 

system, or differentiated by syllable rime weight (Hayes 1980, Halle & Idsardi 1995, 

Dresher 1999, among many others).  The rime consists of the nucleus and coda only, so 

this definition of weight is insensitive to the syllable onset (e.g. en = ten = sten = stren). 

A language could be quantity sensitive (QS), so that syllables are differentiated into 

(H)eavy and (L)ight syllables. Long vowel syllables (VV) are Heavy, short vowel 

syllables (V) are Light, and short vowel syllables with codas (VC) are either Light (QS-

VC-L) or Heavy (QS-VC-H). In contrast, if the language is quantity insensitive (QI), all 

syllables are identical (represented below as ‘S’).  Both kinds of analyses are shown in 

(3) for company. 

 

(3)  QS and QI analyses of  company 

 QS analysis    L/H     L          H        QI analysis       S        S        S 

 syllable rime    VC       V         VV 

 syllable structure CVC    CV    CCVV 

 syllables      com      pa       ny        com      pa       ny 

 

Syllables classified as Heavy should receive stress, but sometimes do not due to 

another parameter, extrametricality, which concerns whether all syllables of the word are 

contained in metrical feet.  Only syllables included in metrical feet receive stress, so an 

excluded Heavy syllable will not be stressed.  In languages with extrametricality (Em-

Some), either the leftmost syllable (Em-Left) or the rightmost syllable (Em-Right) is 



 
14 

excluded.  In contrast, languages without extrametricality (Em-None) have all syllables 

included in metrical feet.  Example (4a) shows Em-Some analyses for giraffe and 

company, while (4b) shows an Em-None analysis for afternoon. 

 

 (4a) Em-Some analyses 

  Em-Left     Em-Right 

  syllable class   <L>   (H)  (H     L)    <H>  

  syllable rime    V     VC     VC    V     VV 

  syllables       gi     raffe    com   pa    ny 

  

 (4b) An Em-None analysis 

  syllable class     (L      L)    (H) 

  syllable rime   VC   VC   VV 

  syllables     af     ter   noon 

 

Once the syllables to be included in metrical feet are known, metrical feet can be 

constructed.  The feet directionality parameter controls which side of the word metrical 

foot construction begins at, the left (Ft-Dir-Left) or the right (Ft-Dir-Rt).  Examples of 

both options are shown in (5). 

 

(5a) Start metrical feet construction from the left (Ft-Dir-Left):   (L    L   H  

(5b) Start metrical feet construction from the right (Ft-Dir-Rt):     L    L   H) 
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Then, the size of metrical feet must be determined by the boundedness parameter.  An 

unbounded (Unb) language has no arbitrary limit on foot size; a metrical foot is only 

closed upon encountering a Heavy syllable or the edge of the word. If there are no Heavy 

syllables or the syllables are undifferentiated, then the metrical foot encompasses all the 

non-extrametrical syllables in the word.  Some example Unb analyses are shown in (6).   

 

(6) Unb analyses 

(a) Differentiated syllables, building feet from the left (Ft-Dir-Left) 

  (L   L   L)   (H   L) 

(b) Differentiated syllables, building feet from the right (Ft-Dir-Rt) 

 (L   L   L   H)   (L) 

(c) (Un)differentiated syllables, building feet from either direction 

 (L   L   L   L   L) 

 (S   S   S   S   S) 

 

The alternative is for metrical feet to be Bounded (B), and so to be no larger than a 

specific size.  A metrical foot can be either two units (B-2) or three units (B-3); units are 

either syllables (B-Syl) or sub-syllabic units called moras (B-Mor) that are determined by 

the syllable’s weight (Heavy syllables are two moras while Light syllables are one).    

Only if the word edge is reached can metrical feet deviate from this size.  Example (7) 

demonstrates different bounded analyses, with various combinations of these parameter 

values.  
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(7) Bounded analyses of four syllable sequences 

 B-2, B-Syl 

      (a)  (L     H)    (L     L)      

(b)  (H     H)    (L     L)      

(c)  (S      S)    (S      S)  

 B-2, B-Mor 

 (d)        mora analysis             µ µ   µ µ    µ      µ 

            syllable classification      (H)   (H)   (L      L) 

 

Once the metrical feet are formed, the feet headedness parameter determines which 

syllable within a foot is stressed.  Feet headed on the left have the leftmost syllable of the 

foot stressed (Ft-Hd-Left) while feet headed on the right have the rightmost syllable of 

the foot stressed (Ft-Hd-Rt).  Example (8) shows samples of both analyses. 

 

(8) Ft-Hd-Left and Ft-Hd-Rt analyses for (H  L)  (L)  

 (a) Ft-Hd-Left: (H   L)   (L) 

 (b) Ft-Hd-Rt:    (H   L)   (L) 

 

These five parameters (quantity sensitivity, extrametricality, feet directionality, 

boundedness, feet headedness) and their sub-parameters (VC-H/L, Em-Left/Right, B-2/3, 

B-Syl/Mor) yield 156 grammars in the hypothesis space. Since these parameters interact, 

a change to any one of their values could non-trivially change the stress contour.  For 
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example, consider (9), where changing the extrametricality parameter from Em-Right to 

Em-Left causes the entire stress contour to become its inverse. 

 

(9) Consequences of changing a single parameter for a four syllable sequence 

 (a) QI, Em-Some, Em-Right, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left 

  (S     S)  (S)  <S>   S S S S  

 (b) QI, Em-Some, Em-Left, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left  

  <S> (S    S)   (S)    S S S S 

 

Due to parameter interaction, it may be difficult for a child to determine if a particular 

parameter value is responsible for generating the correct stress contour.  This has been 

called the Credit Problem (Dresher 1999), and is the result of data ambiguity.  

 

3. English 

Previous computational models that explored the acquirability of parametric metrical 

phonology systems (Dresher & Kaye 1990, Dresher 1999) have not used realistic 

estimates of the data that children are likely to encounter.  So, while these systems may 

be learnable given certain data, it is unclear if they are acquirable given the data that 

children have access to.  Perhaps these methods only work when the data set contains 

very long words or words in certain frequencies.  The model presented here attempts to 

address this by using child-directed speech to estimate the model’s input.  
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The particular language considered in this modeling study is English, which has the 

following parameter values: QS, QS-VC-H, Em-Some, Em-Right, Ft-Dir-Rt, B, B-2, B-

Syl, and Ft-Hd-Left.  There are several reasons English was chosen as the target 

language. First, English child-directed speech data are very ambiguous with respect to the 

156 grammars in the hypothesis space, making the acquisition problem non-trivial.  

Second, there are numerous irregular data that favor the incorrect parameter values for 

English, again making acquisition non-trivial.  More specifically, the English grammar is 

incompatible with approximately 27% of the available data by tokens, and with 

approximately 37% by types – that is, for 27% of the data tokens (and 37% of the types), 

the child can only conclude that parameter values other than the English values are 

responsible for generating the data point.  So, these data points are noise with respect to 

the English grammar.  A reasonable question is if a grammar incompatible with such a 

large portion of the data is really the right grammar.  While there obviously must be some 

way to deal with these exceptional data, a grammar that can reliably cover a majority of 

the data is still a useful grammar for children to have.  Hochberg (1988) finds that 

children’s “propensity to hypothesize linguistic rules is so strong as to tolerate a high 

degree of exceptionality”, suggesting that children may still search for an underlying 

system even though there are numerous exceptions.  Also, this situation is not too unusual 

for metrical acquisition data; for example, Daelemans et al. (1994) note that 20% of the 

Dutch data they consider are irregular according to a generally accepted metrical analysis 

and so must be dealt with in terms of idiosyncratic marking.  Another way of framing this 

situation is that the regular data compatible with the English grammar are the core data, 
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and the exceptional/irregular data are the periphery data that must be accounted for by 

some other means (e.g. Daelemans et al. (1994) suggest exception features, or associating 

the irregular pattern with the specific lexical item).  Since many of the exceptional data 

are due to interaction with the morphological system, no grammar in the hypothesis space 

(which does not contain interactions with morphology) will be able to cover much more 

than the English grammar in the data. 

Another reason for choosing English is that previous computational modeling 

research (Pearl, to appear) has found that unbiased probabilistic models are unable to 

acquire the English grammar from child-directed English speech, and concluded that 

some kind of bias is required if children are to accomplish this.  This paper provides an 

exploration of one plausible learning bias, which is to learn only from data perceived as 

unambiguous.  The final reason for choosing English is that numerous English child-

directed speech samples are available through CHILDES (MacWhinney 2000), so 

realistic estimates of the data distributions children encounter can be obtained. 

The Bernstein-Ratner corpus (Bernstein 1984) and the Brent corpus (Brent & Siskind 

2001) were selected from the CHILDES database (MacWhinney 2000) because they 

contain speech to children between the ages of six months and two years old. This age 

range was estimated as the time period when parameters of the metrical phonology 

system under consideration might be set, given that several parameters of this system 

seem to be known by 22 months (Kehoe 1998).  In total, this yielded 540505 words of 

orthographically transcribed child-directed speech, consisting of 8093 types.  For the 

most part, words were defined as strings of text surrounded by space, though there were 
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some exceptions such as words connected by +, like nightie+night. A child’s 

syllabification of these words and the associated stress contour was estimated by 

referencing the CALLHOME American English Lexicon (Canavan et al. 1997) and the 

MRC Psycholinguistic Database (Wilson 1988).  In cases of conflict, the CALLHOME 

database was given preference.  Words not present in these two databases of 

pronunciation were given a pronunciation consistent with the conventions in the 

CALLHOME database – such words were usually child-register words, e.g. booboo.  See 

the appendix for a detailed summary of the corpus. 

 

4. Unambiguous data 

The acquisition problem for this case study is fairly difficult since the child must 

successfully navigate the vagaries of the data in order to converge on the correct 

parameter values for English.  It is possible that a useful bias for a child to have is to 

learn only from data perceived as unambiguous.  But, as noted earlier, many data are 

ambiguous.  The data perceived as unambiguous therefore comprise only a small subset 

of the available input, if they exist at all.  This makes learning only from unambiguous 

data a potentially dangerous strategy.  Moreover, there is no guarantee that unambiguous 

data will appear in the correct relative quantities to converge on the English values.  For 

instance, even if unambiguous data exist for having some extrametricality (Em-Some), 

more unambiguous data may exist for having no extrametricality (Em-None).  As Em-

Some is the correct value for English, this acquisition scenario is problematic for an 

English child even in the case that unambiguous data do exist. 
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In addition, the proposals that describe how a child could identify unambiguous data  

(cues (Dresher 1999) and parsing (Fodor 1998a, Sakas & Fodor 2001)) add in extra 

variation.  In each proposal, the way a child identifies any given data point as 

unambiguous for some parameter value can depend on the child’s current knowledge 

about the system as a whole (a property sometimes called “progressive disambiguation of 

the input” (Sakas 2000) or “dynamic disambiguation” (Sakas & Fodor 2001)).  So, what 

is perceived as unambiguous can change as the child acquires more knowledge about the 

system. Data that are ambiguous early on in the acquisition process may be viewed as 

unambiguous later on once the child knows more of the target language’s parameter 

values; data unambiguous initially may later be viewed as exceptional if they don’t 

accord with the parameter values then known. A data point’s status as unambiguous will 

be gauged subjectively by the child, and so will change over time. This represents the 

idea that the information an unambiguous learner garners from the data depends on what 

the learner already knows.  This seems a desirable property from an information-theoretic 

standpoint (Shannon 1948), but it does make “unambiguous data” a moving target since a 

data point’s status can change over time. 

In the next section, we review the two proposals for identifying unambiguous data, 

and define how they work for acquiring the parametric metrical phonology system. 

 

4.1 Identification via cues  

A cue is a “specific configuration in the input” associated with a particular parameter 

value (Dresher 1999). The cues presented here match the observable form of a data point 
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– in this case, the combination of syllable structure and stress.  The presence of a cue 

signals to the child that one parameter value is preferred over another for a given 

parameter. Cues for each value of the metrical phonology system are given in Table 1, 

with an example of each cue in parentheses after the description of the cue.  Note that 

most cues depend on the current state of the child’s knowledge (e.g. see the cues for QS, 

Ft-Dir-Left, B-Syl, and Ft-Hd-Left). 

It should also be noted that the cues advocated here are not the cues proposed in 

Dresher (1999), but are designed in the same spirit – to identify highly informative data.  

Unlike some of the cues in Dresher’s proposal, all the cues here can be identified within a 

single data point.  This is in contrast to cues that operate over multiple data points.  Not 

needing to compare multiple data points may be desirable if the child is simply extracting 

information from the current data point and integrating that information into her 

knowledge of the parametric system, rather than explicitly comparing the current data 

point to items already in the lexicon.  In addition, cues are proposed not just for those 

parameter values that could be viewed as marked, but also for parameter values that 

could be viewed as the default option. 

 

[Put table 1 approximately here: Cues for metrical phonology parameter values.] 

 

4.2 Identification via parsing 

The parsing method involves the child using the structure-assigning ability of parsing 

that is presumably used already during language comprehension (Fodor 1998a, b, Sakas 
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& Fodor 2001). The parsing instantiation we examine here tries to analyze a data point 

with “all possible parameter value combinations”, conducting an exhaustive search of “all 

parametric possibilities” (Fodor 1998a).  We will call this the find-all-parses approach, 

though it has also been called the Strong Structural Triggers Learner approach (Sakas & 

Fodor 2001, Fodor & Sakas 2004).  Note that there are numerous implementations of 

parsing that could be tried (see Fodor & Sakas (2004) for a review), often with different 

strengths and weaknesses than the implementation examined here. The find-all-parses 

variant was chosen for this study as it contrasts most strongly with the cues method, as 

will be discussed below. 

For find-all-parses parsing, a successful parameter value combination will generate a 

stress contour that matches the observed stress contour of the data point  - this is then a 

successful parse of the data point.  For instance, the combination  (QI, Em-None, Ft-Dir-

Left, B, B-2, B-Syl, Ft Hd Left) is able to generate the stress contour [stressed unstressed 

stressed] for the word afternoon.  Since the stress contour the child would encounter for 

afternoon matches this stress contour (afternoon), this combination can successfully 

parse this data point. 

If all successful parses use only one of the available parameter values for a given 

parameter (e.g. Em-None of the extrametricality values), that data point is viewed as 

unambiguous for that parameter value. Data points that can be parsed with multiple 

parameter values of the same parameter (e.g. Ft-Hd-Left and Ft-Hd-Rt for the feet 

headedness parameter) are considered ambiguous.  These ambiguous data points are 
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filtered out of the child’s intake for that parameter value (e.g. feet headedness) by the 

child’s unambiguous data learning bias. 

As an example of this parsing method in action, suppose the child encounters 

afternoon, and successfully recognizes two pieces of information: (1) the syllables are af 

(VC), ter (VC), and noon (VV), and (2) the associated stress contour is VC VC VV.  A 

find-all-parses child would try to generate the observed stress contour with all available 

parameter value combinations and come up with five that are successful (10).  Note that a 

parameter value ceases to be available when the child has converged on the opposing 

parameter value for the language.  For example, if the child has decided the language’s 

metrical feet are QS, then the QI value will no longer be available.  So, at that point, the 

child will only try parameter value combinations using the QS value. 

All the successful parses in (10) share Em-None, meaning that Em-None was 

required for a successful parse.  The child then perceives this data point as unambiguous 

for Em-None. 

 

(10) Successful parameter value combinations for afternoon: Em-None required 

 (a) (QI, Em-None, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left) 

 (b) (QI, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Rt) 

 (c) (QS, QS-VC-L, Em-None, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left) 

 (d) (QS, QS-VC-L, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Rt) 

 (e) (QS, QS-VC-L, Em-None, Ft-Dir-Left, Unb, Ft-Hd-Left) 
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Recall that the informativity of a data point changes over time; more specifically, 

what a data point may be unambiguous for changes depending on the child’s current 

knowledge of the adult language.  We observed this in the cues learner as a change in 

what the cues for parameter values look like in the observable data (see table 1 where, for 

example, the cue for QS shifts based on the child’s knowledge of extrametricality).  This 

same malleability occurs for a parsing learner.  Taking the data point from (10), we saw 

that five successful parses exist if all parameter values are available.  However, suppose 

the child has some knowledge of the target language, specifically that English is bounded 

(B).  Then, the previously successful parse using the unbounded (Unb) parameter value 

(10e) will no longer be tried, since it uses the incorrect parameter value.  The remaining 

successful parses have more in common than Em-None: they share all of the Bounded 

values as well: B, B-2, and B-Syl (11).  So, this very same data point will now be viewed 

by the child as unambiguous for Em-None, B, B-2, and B-Syl.   

 

(11) Successful parameter value combinations for afternoon: B known 

 (a) (QI, Em-None, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left) 

 (b) (QI, Em-None, Ft Dir Rt, B, B-2, B-Syl, Ft-Hd-Rt) 

 (c) (QS, QS-VC-L, Em-None, Ft-Dir-Left, B, B-2, B-Syl, Ft-Hd-Left) 

 (d) (QS, QS-VC-L, Em-None, Ft-Dir-Rt, B, B-2, B-Syl, Ft-Hd-Rt) 

 

4.3 Cues and parsing: A quick comparison 

To identify unambiguous data with cues, a child needs only to match the cue to the 

observable data – this makes identification simple. In addition, a cue can match a subpart 
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of the data point and so, for example, can match a portion of a word. This means the child 

can glean information without understanding the structure for the entire data point. This 

is also advantageous if the remaining portion of the data point is exceptional in some 

fashion (for instance, an unusual stress contour resulting from emotional speech). 

Because cue learners can extract information from partial comprehension, cues offer a 

way to get off the ground when children do not know much about the system.   

Another advantage of learning with cues is the ability to easily incorporate default 

parameter values. For some parameters, a default assumption about the parameter value 

may be quite natural – e.g. since the child is initially dividing the word into syllables, 

using syllables as the counting unit for metrical feet (B-Syl) might be a more natural 

initial hypothesis than counting by moras (B-Mor). A child using default values for 

parameters would assume the default value is true unless there is evidence from the input 

to the contrary. The cue child can collect evidence for the non-default value by using that 

value’s cue, which is quite important if the adult system actually uses the non-default 

value.  However, if the language uses the default value, the child’s work is partially done 

already – the child does not need to explicitly learn this value from the input. 

Still, the main pitfall of cues is that the child must already have knowledge of what 

the cues are in order to learn this way.  In addition, cues are heuristic, and may lead to 

false positives or false negatives that could have a detrimental effect on acquisition. In 

(12), we see an example of both error types.  In the false positive example (12a), a cue for 

metrical feet headed on the left (Ft-Hd-Left) can match a data point that was generated 

using the feet headed right (Ft-Hd-Rt) parameter value. In the false negative example 
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(12b), the cue for quantity sensitivity (QS) does not match a data point that was generated 

using the QS parameter value. 

 

(12) The heuristic nature of cues 

 (a) False positive: Ft-Hd-Left cue matches a data point generated with Ft-Hd-Rt 

  Ft-Hd-Left cue:  Leftmost syllable is stressed 

  Ft-Hd-Rt structure: (L)    (L      H)  

      af    ter    noon 

  

(b) False negative: QS cue misses a data point generated with QS 

  QS cue (Em-None/unknown): 2 syllable word with 2 stresses 

  QS structure:               (L)    (L      H)  

      af    ter    noon 

 

Turning to a find-all-parses learner, we find a rather complementary array of 

strengths and weaknesses.1 We begin with the weaknesses. First, identification of 

unambiguous data is a non-trivial process, requiring the child to find all parameter value 

combinations that can parse the given data point. Second, the entire data point must be 

parsed in order for any information to be extracted.  If exceptions exist in one portion of 

the data point, no information from the data point can be used since it cannot be parsed.  

This can make the initial stages of acquisition quite difficult, when the learner may not 

know enough to successfully analyze the entire data point.2 
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Third, no matter what the instantiation of parsing, a parsing learner cannot have a 

default value for a parameter and still collect data for the opposing parameter value.  

Specifically in that scenario, the only values available to the parser would be the default 

values. The parsing method cannot comprehend data that are unambiguous for the non-

default values since it cannot parse such data with the default values. This causes the 

child to be unable to recognize unambiguous data for the non-default values, a problem 

noted by Valian (1990). So, the learning benefit gained from default values is unavailable 

to a parsing learner.3  

Still, the main strength of parsing is that it does not require any additional knowledge 

beyond the ability to parse. Unlike the cues method, the child does not need any 

knowledge beyond the parameters themselves.  In addition, find-all-parses parsing is not 

heuristic, and will only identify data that are truly unambiguous.  So, a find-all-parses 

child will not be led astray by false positives or negatives. 

To sum up, cues and find-all-parses parsing are two methods a child could use to 

identify unambiguous data in the input.  Both methods have strengths and weaknesses, 

many in fact complementary.  However, despite their weaknesses, cues and parsing share 

a major strength: both are compatible with incremental learning models in the sense that 

they extract information from a data point as it comes in.  

The compatibility of these learning methods with incremental learning is an important 

point, as acquisition models should consider the psychological plausibility of the methods 

they employ (noted by Vallabha et al. (2007)).  In the case of incremental learning, young 
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children have limited memories, so it is important to consider that they probably cannot 

hold large quantities of data in mind for analysis.  This is not to say that they must 

instantly forget data that they hear; rather, it is that they cannot perfectly recall every 

detail of every data point they hear.  So, they are likely to extract the relevant information 

from the current data point and incorporate it into their current knowledge state – in the 

case of metrical phonology acquisition, knowledge about the word type and about the 

metrical phonology system. This contrasts with batch-learning, where the model may 

operate over the entire corpus’s worth of data (e.g. Perfors et al. 2006, Foraker et al. 

2007, Goldwater et al. 2007, Hayes & Wilson, 2008).  It seems reasonable for a model of 

acquirability to process data incrementally, though previously integrated information 

from prior data could be available (e.g. in the probabilities assigned to competing 

parameter values (Yang 2002)). 

 

5. Selective learning 

We turn now to the implementation of the probabilistic learning procedure a child 

would follow to acquire English metrical phonology.  The main idea is fairly 

straightforward: the child encounters a data point; if it is perceived as unambiguous for 

any parameter values, the probability of those parameter values is updated (either 

increased or decreased as appropriate).  The key intuition we will use is the following: if 

a child is trying to set a given parameter (P), the parameter value (P1 or P2) that has more 

unambiguous data in the input will eventually win the probabilistic learning race. Note 

that this will not apply for all learning algorithms. More specifically, while batch-learning 
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algorithms can have this property, not all algorithms with this property are batch-learning 

(e.g. see the Naïve Parameter Learner of Yang (2002) which relies on the frequency of 

unambiguous data, and Yang (2004) for empirical support of the relation of this 

frequency to children’s trajectory of acquisition).  For algorithms that have this property 

we can explore their behavior without explicitly implementing every learning algorithm 

of this kind. We note also that models could be setting parameters simultaneously, but it 

is the frequency of the unambiguous data that determines which parameters are set when 

(Yang 2002, Yang 2004). Crucially, the updating algorithm is only deployed for 

unambiguous data, rather than for ambiguous data.  So, it does not matter how much 

ambiguous data the child encounters in the input.  All that matters is the relative 

frequency of the unambiguous data for a given parameter’s values.  In addition, more 

than one unambiguous data point appears to be required to set a parameter, perhaps 

because children are aware that the world is a noisy place and they should be careful 

about making too big a change to their hypothesis without consistent support for that 

change.  Instead, gradual change and acquisition based on the frequency of unambiguous 

data appears to be what happens in several cases (Yang 2004). 

As long as the probabilistic learning procedure children use has this property of 

choosing the most probable value based on the available unambiguous data, we can 

predict what parameter values children will converge on by examining the input data.  

This allows us to be fairly agnostic about the particular details of the learning algorithm – 

for instance, it could easily be some instantiation of a linear reward-penalty scheme 

(Yang 2002), Bayesian learning (Tenenbaum & Griffiths 2001), online Expectation-
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Maximization (Vallabha et al. 2007), or some other algorithm.  The key property is that 

the incremental algorithm chooses the more probable value, based on the unambiguous 

data it observes over time.  So, we can predict the parameter value children will converge 

on in the following way: the parameter value whose unambiguous data have a higher 

probability in the intake set will be the value the child converges on over time.  

 

5.1. A learning procedure example 

As a concrete example based on the Naïve Parameter Learner algorithm of Yang 

(2002), suppose the child is trying to determine whether the language has extrametricality 

(Em-Some vs. Em-None). The child will encounter a series of data points from the input, 

one at a time.  Many of these data points will be ambiguous, but some will be 

unambiguous for Em-Some (say, 2.4% of them) and some for Em-None (say, 4.8% of 

them).  Every time an Em-Some data point is encountered, the probability of Em-Some is 

increased some amount while Em-None is decreased (say, .01); every time an Em-None 

data point is encountered, the reverse is true.  Suppose the child initially assigns equal 

probability to Em-None and Em-Some (.50 each).  After an Em-Some data point, 

probability is shifted, and p(Em-None) = 0.49 while p(Em-Some) = 0.51.  After an Em-

None data point, p(Em-None) = 0.50 while p(Em-Some) = 0.50.  After another Em-None 

data point, p(Em-None) = 0.51 while p(Em-Some) = 0.49.  After 48 Em-None data points 

and 24 Em-Some data points (the number we would expect to find in 1000 input data 

points), p(Em-None) = 0.75 and p(Em-Some) = 0.25.  So, the probability of Em-None 

steadily increases, due to the higher probability of its unambiguous data points.  Given 
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enough input, the child will eventually converge on Em-None (usually after crossing 

some threshold deemed close enough to 1.0).  Thus, in this scenario, the difference in the 

probability of encountering unambiguous data for the two parameter values is what 

determines the winning value for this incremental algorithm. 

 

5.2.  An example of the “moving target” status of unambiguous data    

We have seen that a data point’s status as unambiguous depends on what the child 

already knows about the metrical phonology system. So, the parameters that are set 

influence the data the child perceives as unambiguous for the unset parameters.  This 

means that the probabilities of the unambiguous data that the child perceives can change 

as the child learns more of the English parameter values.  The initial probabilities are not 

necessarily the same as the probabilities after the first parameter value is set; those are 

not necessarily the same as the probabilities after the second parameter value is set, and 

so on.  The way the probabilities will change depends on which parameter value is set.  

The order in which parameters are set will thus determine the unambiguous data 

probabilities at any given point in the acquisition of the metrical phonology system.  

These probabilities may either favor or disfavor the correct parameter value for a given 

parameter, depending on what parameter values are set previously.  So, the order in 

which parameters are set may determine if they are in fact set correctly, an idea noted in 

Dresher (1999).   

As an example, consider Tables 2 and 3, which show the probability of encountering 

unambiguous data for each available parameter value at different points during 



 
33 

acquisition for a find-all-parses child.  Each probability represents the likelihood that a 

given data point the child encounters will be perceived as unambiguous for a given 

parameter value.  These are estimated by calculating the quantity of unambiguous data 

points in the available corpus given the child’s current knowledge state (e.g. 2151 tokens) 

and dividing by the total number of data points in the available corpus (540505 tokens). 

Table 2 shows the probabilities before any parameters are set, while table 3 shows the 

probabilities after QS is set.  In both tables, the probabilities are quite small, since much 

of the input is ambiguous when the child is in either of these knowledge states (i.e. 

initially having no parameters set, then knowing only that the language is quantity 

sensitive).  Still, for most parameter values, some unambiguous data does exist initially.  

This answers the first question of unambiguous data existence for this particular 

acquisition sc scenario – unambiguous data do indeed exist (or at least, data perceived as 

unambiguous exist).  The second question of existence is whether unambiguous data exist 

in the correct relative quantities – that is, do the unambiguous data probabilities favor the 

correct parameter value for English?  If we look at the probabilities in table 2, we see that  

initially the unambiguous data probabilities do favor the correct value for some 

parameters: QS, Ft-Dir-Rt, B, and Ft-Hd-Left.  However, they do not favor the correct 

value for extrametricality, Em-Some.  After QS is set however, the child will perceive 

different data as unambiguous (Table 3).  Happily for the English child, the Em-Some 

and Em-None probabilities have changed so that Em-Some is now favored.  So, the 

correct extrametricality value can indeed be learned from the data, but only if a certain 

parameter-setting order is obeyed.  In this case, QS must be set before Em-Some. 
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Note that setting a parameter can have two effects: (1) altering the probabilities of 

encountering unambiguous data for other parameter values, and (2) opening up sub-

parameters in the system.  Before QS is set in Table 2, p(Em-None) is much higher than 

p(Em-Some) (.0284 vs. 0.0000259).  After QS is set in Table 3, the reverse is true: p(Em-

Some) is more than twice p(Em-None) (.0485 vs. .0240). In addition, a sub-parameter 

under quantity sensitivity is now available for how the child should treat VC syllables 

(QS-VC-L vs. QS-VC-H).  Before the child has set the QS value, the sub-parameter is not 

relevant; after the QS value is set, the sub-parameter is relevant and so the child will start 

learning from the unambiguous data  for those sub-parameter values. 

 

[Put Table 2 approximately here: Initial probabilities of unambiguous data.] 

[Put Table 3 approximately here: Probabilities of unambiguous data after QS is set.] 

 

 We can thus see explicitly how the order of parameter-setting can matter – setting 

one parameter value can easily influence the setting of subsequent parameters.  From the 

example in tables 2 and 3, we see that an English child who sets quantity sensitivity to 

QS will subsequently set extrametricality to Em-Some.  Conversely, an English child 

who sets extrametricality first will choose Em-None, which is incorrect for English. 

 

5.3. Parameter-setting orders: potential solutions 

Given the difficulty of this acquisition problem, success is by no means guaranteed. 

The worst case is that learning from unambiguous data is not viable: no parameter-setting 
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order will allow the child to converge on the English grammar.  An unambiguous data 

learning bias is no help as unambiguous data for each parameter do not exist in the 

correct relative quantities at any point during acquisition. In a better case, learning from 

unambiguous data is viable, as there are parameter-setting orders available that will lead 

to English. As long as a probabilistic learning child sets the parameters in a viable 

parameter-setting order, that child will converge on the English parameter values.   

To determine which (if any) parameter-setting orders lead to the English grammar, an 

exhaustive search was conducted of all 24,943,680 possible parameter-setting orders 

using the procedure in (13).  

 

(13) Procedure for discovering viable parameter-setting orders 

(a) Calculate probabilities of encountering unambiguous data for each parameter 

value, given the current knowledge of the metrical phonology system. This step 

will produce probabilities like those in tables 2 and 3. 

(b) Choose one parameter to set.  The value chosen will be the one with the higher 

probability in the data set, since this is the one a probabilistic learner will 

eventually converge on over time (e.g. QS over QI in Table 2). 

(c) Repeat (a)-(b) until all parameters are set. 

(d) If the final parameter values chosen are all the English values, this is a viable 

parameter-setting order. 

(e) Repeat for all possible parameter-setting orders. 
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6. Results: An unambiguously good strategy with some frequency 

It turns out that there are in fact some viable parameter-setting orders that will lead a 

child using unambiguous data to the English grammar if data tokens are used as input, i.e. 

hearing the same word again counts as another data point (Table 4).  Though there are 

some orders that do not work (Table 5), learning from unambiguous data in English 

child-directed speech can still lead a child to English. More specifically, a child using 

cues has 500 viable orders while a child using parsing has 66 viable orders that will yield 

acquisition success.  Given the complex parametric system and the ambiguous, noisy data 

set, this is no small feat.  

 

[Put Table 4 approximately here: Examples of viable parameter-setting orders.] 

[Put Table 5 approximately here: Examples of non-viable parameter-setting orders.] 

 

However, acquisition does not succeed if data types are used as input, i.e. the 

frequency of the word does not matter (as has been suggested for some acquisition tasks 

(Bybee 1995, Bybee & Hopper 2001)).  In this case, there are no viable orders because 

unambiguous data do not exist in the correct relevant quantities at any point during 

acquisition.  The problem turns out to lie with specific sub-parameters, depending on 

which identification method is used. If cues are used, the probabilities favor QS-VC-L 

once QS is set and no subsequent knowledge of the English values causes the 

probabilities to favor QS-VC-H.  If parsing is used, the probabilities favor B-Mor once 

the system is known to be B, and no subsequent knowledge of the English values causes 
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the distribution to favor B-Syl.  All other parameters have unambiguous data probabilities 

favoring the English values at some point during acquisition.  

So what does this mean for the acquirability of this parametric system for English?  If 

children learn from data tokens, then the system is acquirable from unambiguous data.  

More specifically, if a child using the unambiguous data learning bias sets the parameters 

in one of the viable orders, that child will converge on English.  For instance, taking the 

first viable order for a cues child in table 4, the child first chooses to set the quantity 

sensitivity parameter.  Unambiguous data probablities favor the QS value over the QI 

value.  The child then chooses to set the quantity sensitivity sub-parameter, and 

unambiguous data probabilities favor the QS-VC-H value over the QS-VC-L.  This 

process continues until all parameters are set.  Setting the parameters in some order that is 

not viable (such as those in table 5) will lead to the wrong values for English. 

If, instead, children heed only the different data types in the input, this suggests 

English children will not be able to acquire the English grammar from the English data.   

A few explanations are possible.  First, if children do disregard frequency, this parametric 

system is not acquirable and so not a viable knowledge representation.  A contrasting 

idea is that children are in fact sensitive to frequency, so the problem that occurs when 

learning from data types is not relevant.  A third, more nuanced idea, is that perhaps the 

full system is not acquirable until children have knowledge of the interaction with the 

morphology system, if they disregard frequency. Kehoe (1998) finds that English 

children up to 28 months may still be deciding on values such as QS-VC-H vs. QS-VC-L, 

and it is likely children of this age do have some knowledge of morphology. Perhaps 
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knowledge of the morphological system allows them to make finer distinctions in the 

input, and so to allow for exceptions.  This may be useful as some currently problematic 

words that are only analyzable as the non-English value (e.g. B-Mor) may be recognized 

as compound words, e.g. snowman, which have their own particular rules of stress.  

 

6.1.  Representing the knowledge of viable parameter-setting orders 

The viable parameter-setting orders represent the knowledge an English child needs 

for acquisition success, if the child learns from data tokens.  However, it is unlikely 

English children have a listing of viable parameter-setting orders (either 500 or 66) 

innately available in their minds, and simply choose one at random to learn English.  It 

turns out, quite fortunately, that the viable orders for both the cues and parsing methods 

can be captured by very small sets of order constraints (Table 6). 

 

[Put Table 6 approximately here: English order constraints for viable parameter-setting 

orders.] 

 

For cues, there are three constraints such that one parameter value must be set before 

some other parameter value. For instance, the first constraint in Table 6 states that the 

child must determine that VC syllables are treated as Heavy (QS-VC-H) before 

determining that the rightmost syllable is extrametrical (Em-Right).  The second 

constraint states that the child must determine that the rightmost syllable is extrametrical 

(Em-Right) before determining that a metrical foot’s size is determined by the number of 
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syllables it contains (B-Syl).  The last constraint states that the child must determine that 

metrical feet are two units in size (B-2) before determining that a metrical foot’s size is 

determined by the number of syllables it contains (B-Syl). 

For parsing, there are three groups such that the first one must be set before the 

second one, and the second one must be set before the third one.  Looking again to Table 

6, the child must determine that the language is quantity sensitive (QS), that metrical feet 

are of some arbitrary bounded size (B), and that metrical feet are headed on the left (Ft-

Hd-Left) before determining any of the other parameters of the English grammar.  Then, 

the child must determine that metrical feet are constructed starting from the right edge of 

the word (Ft-Dir-Rt) and VC syllables are treated as Heavy (QS-VC-H).  Finally, the 

child can determine that the rightmost syllable is extrametrical (Em-Some, Em-Right) 

and metrical feet are two syllables in size (B-2, B-Syl). 

 

6.2. Comparing the parameter-setting order constraints 

Note that the order constraints presented in Table 6 are derived from successful 

acquisition of the English data itself, rather than from logical consideration of the 

complexity of the signals for unambiguous data, which is the approach taken in Dresher 

(1999)’s cue learner. There is some overlap with Dresher’s order constraints, however, 

depending on the method used to identify unambiguous data.  For instance, the order 

constraints the cues learner here must follow are a subset of the constraints proposed by 

Dresher (1999) for all languages.  The parsing learner considered here, on the other hand, 

requires some order constraints incompatible with the strict ordering Dresher advocates.  
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For example, Em-Some must be set before Ft-Dir-Rt for Dresher, while Ft-Dir-Rt must 

be set before Em-Some for the find-all-parses learner here. 

The order constraints presented here are meant to apply to children learning English 

from English child-directed speech, and may not necessarily apply to children learning 

other languages.  Indeed, it is an empirical question for each language whether the 

acquisition of the parametric system is possible, what order constraints are required if so, 

and if those order constraints are the same ones as were found for English. There are 

ways in which to derive order constraints from properties of the acquisition system and 

the child’s previous experience with the language, which will be discussed in section 7.2.  

The main point is that if languages differ on the necessary order constraints, it may be 

that the differing order constraints can be derived from some other source that is also 

variable across languages.  In contrast, ordering constraints that are constant across 

languages (and not derivable through other means) may represent true innate biases 

children must have in order to acquire the correct parametric system of their language.  In 

general, however they may come to be known by the child, order constraints represent 

knowledge the child needs to succeed at acquisition for this parametric system.   

 

6.3.  Results summary 

The main result we find is that the English parametric metrical phonology system is 

acquirable using data perceived as unambiguous, provided children are sensitive to data 

frequency and are constrained in the orders in which they set their parameters.  This 

result is pleasantly surprising given the complexity of the system, as well as the 
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ambiguity and the noisiness of the data. For English, children can identify unambiguous 

data points, and importantly, identify them in the correct relative quantities. This supports 

the viability of using an unambiguous data bias for acquisition of parametric systems, 

since a child selectively learning in this manner can in fact reach the target grammar.  It 

also supports the viability of the parametric system under these acquisition conditions. 

 

7. Discussion 

7.1 Order constraints: Why? 

In the results, we saw that a child who has a selective learning bias additionally 

requires prior knowledge about what order to set parameters in.  One might wonder why 

this should be.  In the discussion of the data in section 3, we reviewed its noisy nature – 

specifically, that 27% of the data tokens are incompatible with the target grammar.  Still, 

this leaves 73% that are in fact compatible.   

However, the data difficulties are more insidious for an unambiguous data learner.  

Just because 73% are compatible does not mean that 73% are unambiguous.  In fact, we 

saw in section 5 that only a small percentage of the available data are unambiguous for a 

given parameter value (and of course, none are likely to be unambiguous for all 

parameter values simultaneously (Clark 1994, among others)).  The data unambiguous 

for a given parameter value depend on the knowledge the child has about the rest of the 

grammar.  It may even be the case that at a certain point in the learning trajectory, no data 

are unambiguous for the correct value.  Thus, what order constraints do is force children 

into knowledge states where they perceive unambiguous data in favorable probabilities 
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for acquiring the target grammar.  If the child sets a parameter out of order, then the 

unambiguous English data probabilities will favor the incorrect parameter value.  This is 

because the child’s knowledge at that time will cause the child to identify unambiguous 

data more often for the incorrect parameter value than for the correct one. 

Of course, since this seems to be a problem endemic to an unambiguous data learner, 

we might ask if order constraints could be discarded if the child learned from all the 

available data instead. Interestingly, results with simulations of unconstrained 

probabilistic learners (Pearl, to appear) show decided failure to converge on English 

given English child-directed speech, no matter what order parameters are set in.  

Two factors likely contribute to the failure of unbiased learners.  First, unbiased 

learners are implicitly driven by unambiguous data. In probabilistic models in general, 

unambiguous data will have more impact on the child’s beliefs because such data are 

more informative, by definition.  Even if ambiguous data have some influence, 

unambiguous data will have more influence.  So, while unbiased probabilistic learners are 

not preferentially learning from unambiguous data, they are still be strongly influenced 

by the unambiguous data in the input. This means that noise that occurs in the 

unambiguous data afflicts unbiased learners as well. 

 Second, it turns out that the English child-directed speech data are actually slightly 

more compatible with other grammars in the hypothesis space.  The more compatible 

grammars are on average compatible with 1.5% more data types and 0.5% more tokens 

than the English grammar, with the best grammar compatible with 8.2% more types and 

3.5% more tokens than the English grammar. This suggests that an unbiased probabilistic 
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learner – any unbiased learner, no matter how sophisticated – is naturally led to those 

other grammars.  So, some kind of bias is needed to drive a probabilistic learner to the 

English grammar for this parametric system, given English child-directed speech.  The 

unambiguous data bias presented here is one such bias. 

 

7.2 Order constraints as derived knowledge 

A child learning from unambiguous data requires parameter-setting order constraints 

to converge on the English grammar. This requires a certain amount of explicit prior 

knowledge – specifically, what those order constraints are.  It turns out that some order 

constraints may be derivable from more general properties of the acquisition system, so 

that the child would naturally follow these order constraints without needing to know 

them outright.  The three properties we will consider will be data saliency, data quantity, 

and default values.  There may in fact be more, but these three come to mind as being 

fairly general properties of the acquisition system. 

Data saliency refers to the inherent “noticeability” of the information – data that are 

better signals might be noticed more easily by the child.  For metrical phonology, the 

presence of stress may be more salient than absence of stress for simple acoustic reasons: 

a stressed syllable is more prominent than an unstressed syllable, and so might be more 

readily attended to.  Evidence from morphological rules also suggests that presence of 

stress is psychologically more salient: there are rules restricting affix attachment to words 

with stress on a specific syllable (e.g. –al for final stress words: remove + al = removal), 

but there do not seem to be corresponding rules for words without stress on the 
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appropriate syllable (Bill Idsardi, pers.comm.).  With respect to the metrical phonology 

parameters considered in this study, data saliency may lead to later learning of parameters 

that require the child to notice the absence of stress on particular syllables (specifically, 

the extrametricality parameters: Em-Some, Em-Right, Em-Left).   

Data quantity refers simply to the amount of perceived unambiguous data available in 

the input.   Parameters with more unambiguous data available are likely to be set before 

parameters with less, simply because there is more data for them and so the probability of 

encountering unambiguous data for these parameters is higher.  This is very naturally 

cashed out in any probabilistic model. 

Default values are initial assumptions the child will make about a parameter’s value 

(e.g. bounded metrical foot size is determined by syllables (B-Syl), rather than by moras 

(B-Mor)). These could result from considering which is the simpler hypothesis for a 

parameter, e.g. assuming B-Syl over B-Mor since the word is already being analyzed by 

syllables.  Order constraints involving parameters with default values may disappear 

(depending on the order constraint) if the default value is the correct value for the target 

language (see 7.3.1 for specific examples of this). In addition, the child may bring biases 

for parameter values from prior experience with the language. While obviously these 

biases are acquired from the language itself, they function as prior knowledge by the time 

the child would be acquiring the parametric system discussed here.  Note that under this 

view, metrical phonology acquisition is partitioned into two stages.  The first stage 

includes acquisition of rhythmic properties of the language, but not of the parametric 

system. In the second stage, the parametric system is acquired, and the child may draw on 
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knowledge gained during the first stage.  For metrical phonology, infant research has 

shown that children know some of the rhythmic properties of their language even before 

word segmentation is reliable.  Jusczyk et al. (1993) demonstrate that English infants 

have a preference for strong-weak syllable clusters (Ft-Hd-Left) over weak-strong 

syllable clusters (Ft-Hd-Rt).  Kehoe (1998) also suggests 22-month-olds know this about 

English.  Turk et al. (1995) show that English infants are sensitive to syllable weight for 

stress contours (QS).  Kehoe (1998) also suggests 22-month-olds seem to have this 

knowledge about English. So, due to an English child’s prior experience with English, we 

might expect Ft-Hd-Left and QS to be set earlier than other parameters. 

 

7.3 Deriving constraints for cues and parsing 

7.3.1 A cues learner 

Recall from table 6 that an unambiguous learner using cues must follow three order 

constraints.  First, the child must discover that VC syllables are Heavy (QS-VC-H) before 

discovering the rightmost syllable is extrametrical (Em-Right).  This could fall out from 

data saliency, since Em-Right requires the child to notice the absence of stress on the 

rightmost syllable. In contrast, QS-VC-H requires the child to notice the presence of 

stress in a particular pattern (see table 1 for the QS-VC-H cue pattern).   

Second, the child must discover the rightmost syllable is extrametrical (Em-Right) 

before discovering metrical feet are counted by syllables (B-Syl).  This is because the B-

Mor value is favored by the unambiguous data probabilities until Em-Right is set.  If we 

look to data quantity, Em-Right has over 20 times as much data as B-Syl, so the child is 
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20 times as likely to encounter Em-Right data.  In this way, the child could learn Em-

Right before B-Syl.  As another alternative, B-Syl could be viewed as the default value 

since words are already delimited by syllables (rather than moras). So, if the child 

initially assumed B-Syl for English, this would be correct and it would not matter when 

Em-Right was set.   

Third, the child must discover that metrical feet are two units long (B-2) before 

discovering metrical feet are counted by syllables (B-Syl).  This is again because B-Mor 

is favored by the unambiguous data probabilities until B-2 is set.  If we look to data 

quantity, a partial ordering is available that can help.  Once Em-Right is set, 

unambiguous B-2 data is 4 times as probable as unambiguous B-Syl data.  Em-Right is 

over 270 times as probable as B-2 and B-Syl, so data quantity could lead it to be set first.  

Then, B-2 would be set, followed by B-Syl.  An alternative is again having B-Syl as the 

default hypothesis, so that it is initially set correctly. 

Strikingly, we see that all the order constraints a cue learner requires can potentially 

be derived from properties of the acquisition system, so they do not need to be explicitly 

known by the child beforehand.  The English child using cues to identify unambiguous 

data can use data saliency, data quantity, and default values to follow a viable parameter-

setting order that will lead to the English grammar. 

 

7.3.2 A parsing learner  

Recall from table 6 that there are three groups that are ordered with respect to each 

other.  The parameters in the first group (QS, Ft-Hd-Left, B) must be set before those in 
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the second group (Ft-Dir-Rt, QS-VC-H), which must in turn be set before those in the 

third group (Em-Some, Em-Right, B-2, B-Syl).   

Data saliency can account for the presence of the extrametricality parameters in the 

last group (Em-Some, Em-Right) – they require the child to notice the absence of stress, 

and so have less salient data.  Thus, they could feasibly be learned later than other 

parameter values.  Prior experience with the language may give the child a head start on 

Ft-Hd-Left and QS for reasons discussed in section 7.2, and so these parameters’ 

appearance in the first group could also be plausibly derived.  Default values, 

unfortunately, cannot be used with a parsing learner for reasons discussed already (see  

section 4.3).  However, even supposing that they could, only B-Syl seems to be a natural 

initial hypothesis.  It is not clear there is a simple principled explanation for why a learner 

might initially assume metrical feet are of a specific arbitrary size (Bounded), VC 

syllables are Heavy in a quantity sensitive system (QS-VC-H), metrical foot construction 

begins from the right edge of the word (Ft-Dir-Rt), or metrical feet are two units long (B-

2).  Unfortunately, data quantity will not separate the remaining parameters into the 

necessary groups (B before QS-VC-H and Ft-Dir-Rt; all of those before B-2).  A parsing 

learner would need this partial ordering explicitly known beforehand. 

So, in order to follow a viable parameter-setting order, a find-all-parses child can rely 

in part on data saliency, data quantity, and prior knowledge of the rhythmic properties of 

English.  However, some specific order information is still required to be known 

beforehand in order for the child to succeed at acquiring English. 

 



 
48 

7.3.3 Cues vs. parsing for identifying unambiguous data 

Comparing the two methods of identifying unambiguous data, we once again see a 

complementary set of requirements.  A cues learner must know what the cues are in order 

to find unambiguous data, but does not need any explicitly listed order constraints to 

converge on English.  A find-all-parses learner does not need prior knowledge to identify 

unambiguous data, but requires certain partial parameter-setting orders to be known 

beforehand.  Thus, there are both benefits and drawbacks to each of these 

implementations of the unambiguous data learning bias. 

It would of course be very useful to combine cues and parsing to capitalize on their 

complementary strengths and mitigate their complementary weaknesses.  One way might 

be to have the child conduct a limited parse over portions of words, rather than entire 

words.  This is similar in spirit to the partial parsing seen in Fodor & Sakas (2004)’s 

Waiting Structural Triggers Learner – there, it is ambiguity that triggers a partial parse 

(of the initial portion of the structure, in those examples).  For the metrical phonology 

case here, the partial parse could be undertaken simply because only a portion of the data 

point is available (perhaps due to time, attention, or other mental resources available on 

the part of the child).  Since cues are usually pieces of highly informative surface 

structure that are smaller than the entire word, a child doing limited parsing may be able 

to derive cue-like structures.  Thus, the cues would not need to be specified beforehand 

and the limited parsing may be less resource-intensive than the full parsing examined in 

this study. As an explicit example, consider a child encountering an unstressed VV 
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syllable, and positing that this syllable is at the end of the word (perhaps based on the 

prosody of the speaker, or transitional probability of the syllables, or both).   

 

(14)  Data point encountered (# = word boundary): …VV # 

 

Suppose the child also realizes that the system is quantity sensitive (QS), so syllables 

classified as Heavy should receive stress.  Since a VV syllable will be classified as 

Heavy, the lack of stress on this syllable will only be acceptable if the Em-Right value is 

used to parse this data point.  So, this data point would signal the necessity of having the 

rightmost syllable as extrametrical.  Thus, by conducting a limited parse over a subpart of 

this word, the child can derive the cue for Em-Right – a stressless Heavy syllable at the 

right edge of the word.  Many of the cues in Table 1 can be derived in a similar manner. 

Assuming that a child using cues derived from limited parsing could succeed at 

acquiring English, this learning method would potentially have the desired combined 

strength: (1) less necessarily prior knowledge since the cues are derived, and (2) less 

resource-intensive identification of unambiguous data, since the parse is over only a 

subpart of the data point.  This prediction remains to be explored. 

 

7.4 Predictions for the acquisition trajectory 

If children are learning this parametric system from unambiguous data (identified by 

either cues or parsing), we would expect them to follow the parameter-setting order 

constraints laid out in table 6.  For instance, whether the child is using cues or parsing, we 
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would predict quantity sensitivity (QS) to be known before extrametricality (Em-Some, 

Em-Right).  Though it is not currently clear when the knowledge of extrametricality is 

acquired for English-speaking children, previous research on infants (Turk et al. 1995) 

and on young children (Kehoe 1998) suggests that the bias for quantity sensitivity may 

already be in place quite early.  In addition, we would predict errors persisting longer for 

the parameters that are set later, e.g. children may make errors on extrametricality even 

while they demonstrate knowledge of quantity sensitivity. 

 

8. Conclusion 

 The results obtained from the case study here suggest that a selective learning 

strategy, in the form of an unambiguous data bias, causes a parametric system of metrical 

phonology to be acquirable. This provides support for this system as a representation of 

children’s knowledge.  One crucial aspect of such a bias is that data are unambiguous 

relative to the child’s perspective, and the child has incomplete knowledge of the full 

adult grammar during the acquisition process.  Thus, the informativity of the data point 

will change depending on the child’s current knowledge of the system. For English 

metrical phonology, this seems to provide the flexibility a child needs to succeed.  

However, this success does rest on the child being sensitive to the frequency of the data 

types encountered.  If children learn only from data types and not from tokens, then the 

full parametric system is not in fact acquirable.  Still, if children are indeed sensitive to 

frequency, we have also generated predictions for their acquisition trajectory that can be 

verified with experimental studies.  Open research questions do of course remain for 
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several of the ideas considered here: (a) the success of the unambiguous data bias for 

other languages and other parametric systems, (b) other methods of implementing a 

selective learning bias (e.g. see Yang (2005) for learning only from systematic data) and 

the success of such biases, (c) a detailed account of the acquisition of both the core 

parametric system and the irregular data patterns (see Yang (2002) for acquisition of 

English past tense morphology, which has similar irregularities), and (d) the acquirability 

of other knowledge representations, such as constraint-ranking systems (Tesar & 

Smolensky 2000) and FSA-style grammars (Heinz 2007).  The domain of metrical 

phonology seems a very fruitful domain in which to answer these questions. 
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Appendix. Child-directed speech data and adult-directed speech data 

The child-directed speech data comprising the corpus used as input were taken from 

the Brent (Brent & Siskind 2001) and Bernstein (Bernstein Ratner 1984) corpora in 

CHILDES (MacWhinney 2000).  The token and type distributions of this corpus are 

shown below in Table A1. For each n-syllable word class, the frequency of each stress 

pattern is shown.  Stressed syllables are represented as 1, while unstressed syllables are 

represented as 0, e.g. the pattern ‘01’ represents an unstressed syllable followed by a 

stressed syllable.  Stress patterns absent from the table have a token and type frequency 

of 0 in this corpus. 

 

[put Table A1 approximately here: Child-directed speech data.] 

 

It is reasonable to ask if the child-directed speech data differ with respect to stress 

contour from adult-directed speech data.  Figures A1 and A2 show comparisons by 

tokens and types respectively for the child-directed speech corpus above to the North 

American English portion of the CALLFRIEND corpus (Canavan & Zipperlen 1996) 

available from TalkBank (http://talkbank.org/).  The CALLFRIEND corpus contains 

transcripts of phone calls between English speakers in the United States, and the North 

American English portion consists of 82485 tokens and 4720 types.   

We can first notice that there seems to be reasonable overlap in terms of how many 

words of n syllables comprise the corpus, if we count tokens.  In addition, the 2-syllable 

words tend to have similar distributions in terms of what stress contours are represented 
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in them.  However, the other word distributions are significantly different, especially 

when comparing data types.  This suggests the use of specifically child-directed speech is 

important for testing acquirability.  

 

[put Figure A1 approximately here: Distribution comparison by data tokens.] 

[put Figure A2 approximately here: Distribution comparison by data types.] 

 

Endnotes 

1 Again, note that other implementations of parsing (Sakas 2003, Fodor & Sakas 

2004) may not have the strengths and weaknesses detailed here for find-all-parses 

parsing.  Instead, they resemble cues more in their ability to identify useful data easily 

and learn from subparts of a data point.  However, these implementations also resemble 

cues in their inability to identify data as unambiguous with absolute certainty.  Often, 

such methods will learn from ambiguous data, guessing when there is uncertainty. 

2 See Sakas & Fodor (2001), who acknowledge these problems and propose ways to 

solve them in scenarios where the adult language data does not contain non-trivial 

quantities of irregular data. 

3 However, it may be possible to sidestep this problem with a different instantiation of 

parsing, specifically a probabilistic parser that favors default values and probabilistically 

uses them for parsing (see Yang (2002) and Fodor & Sakas (2004) for examples of 

probabilistic parsing for learning).  The learner would still be able to occasionally parse 

the unambiguous data encountered for the non-default value – it would simply use this 
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value with low probability.  Note that this instantiation will not necessarily find truly 

unambiguous data since not all parameter value combinations are tried on each data 

point. 
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Table 1. Cues for metrical phonology parameter values.  Some cues may depend on the 

child’s current knowledge state, represented in italics.  For example, the cue for QS 

depends on what is known about extrametricality (Em-None/Em-Some/Em unknown). 

Parameter Cue 

QI Unstressed internal VV syllable (…VV…) 

QS Em-None or Em unknown: 2 syllable word with 2 stresses (VV VC) 

Em-Some: 3 syllable word, with 2 adjacent syllables stressed  

(VC VV VC) 

QS-VC-L Unstressed internal VC syllable (…VC…) 

QS-VC-H Em-None or Em unknown: 2 syllable word with 2 stresses, one or more 

are VC syllables (VV VC) 

Em-Some: 3 syllable word, with 2 adjacent syllables stressed, one or 

more are VC syllables (VC VV VC) 

Em-None Both edge syllables are stressed (V…VC) 

Em-Some Union of Em-Left and Em-Right cues 

Em-Left Leftmost syllable is Heavy and unstressed (H…) 

Em-Right Rightmost syllable is Heavy and unstressed (…H) 

Ft-Dir-Left QI or Q-unknown, Em-None/Left or Em unknown: 2 stressed adjacent 

syllables at right edge (…VC V) 

QI or Q-unknown, Em-Right:  2 stressed adjacent syllables followed by 

unstressed syllable at right edge (…VC V VV) 

QS, Em-None/Left or Em unknown: stressed H syllable followed by 
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stressed L syllable at right edge (…H L) 

QS, Em-Right: stressed H syllable followed by stressed L syllable 

followed by unstressed syllable at right edge (…H L H) 

Ft-Dir-Rt QI or Q-unknown, Em-None/Right or Em unknown: 2 stressed adjacent 

syllables at left edge (VC V…) 

QI or Q-unknown, Em-Left:  unstressed syllable followed by 2 stressed 

adjacent syllables at left edge (VC V VV…) 

QS, Em-None/Right or Em unknown: stressed L syllable followed by 

stressed H syllable at eft edge (L H…) 

QS, Em-Left: unstressed syllable followed by stressed L syllable 

followed by stressed H at left edge (H L H…) 

Unb QI or Q-unknown: 3+ unstressed syllables in a row (…VC VV VC…) 

QS: 3+ unstressed Light syllables in a row (…L  L  L) 

B Union of B-2 and B-3 cues 

B-2 QI or Q-unknown: 3+ syllables in a row, every other one stressed  

(… VC VV VC…) 

QS: 3+ Light syllables in a row, every other one stressed (…L L L…) 

B-3 QI or Q-unknown: 4+ syllables in a row, every third one stressed  

(…V VC VV V…)  

QS: 4+ Light syllables in a row, every third one stressed (…L L L L…) 

B-Syl QI or Q-unknown: Union of QI B-2 and QI B-3 cues 

QS, B-2: 2 adjacent syllables, one stressed Heavy and one unstressed 
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Light (…H L…) 

QS, B-3: 3 adjacent syllables, 2 unstressed Light preceding a stressed 

Heavy or following a stressed Heavy (…H L L…), (…L L H…) 

B-Mor Em-None or Em-unknown: 2 syllable word with both syllables Heavy 

and stressed (H H) 

Em-Some: 3 syllable word with 2 adjacent syllables Heavy and stressed  

(L H H) 

Ft-Hd-Left Em-None or Em-unknown: Leftmost syllable is stressed (VC…) 

Em-Left: 2nd from leftmost syllable is stressed (VV VC…) 

Ft-Hd-Rt Em-None of Em-unknown: Rightmost syllable is stressed (…VC) 

Em-Right: 2nd from rightmost syllable is stressed (…VC VV) 
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Table 2. Initial probabilities of unambiguous data.  Probabilities are quite small, since 

much data is ambiguous to the child at this point. 

Quantity Sensitivity Extrametricality 

QI 

0.00398 

QS  

0.0205 

Em-None 

0.0284 

Em-Some 

0.0000259 

Feet Directionality Boundedness 

Ft-Dir-Left 

0.000 

Ft-Dir-Rt  

0.00000925 

Unb 

0.00000370 

B 

0.00435 

Feet Headedness  

Ft-Hd-Left      

0.00148 

Ft-Hd-Rt  

0.000 
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Table 3. Probabilities of unambiguous data after QS is set. Probabilities for many 

parameter values have shifted, especially those for the extrametricality parameters. The 

learner also explores the QS sub-parameter that decides how to treat VC syllables. 

QS VC Syllables Extrametricality 

QS-VC-L  

0.00265 

QS-VC-H 

0.00309 

Em-None 

0.0240 

Em-Some  

0.0485 

Feet Directionality Boundedness 

Ft-Dir-Left 

0.000 

Ft-Dir-Rt 

0.00000555 

Unb 

0.00000370 

B 

0.00125 

Feet Headedness  

Ft-Hd-Left 

0.000588 

Ft-Hd-Rt 

0.0000204 
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Table 4. Examples of viable parameter-setting orders when learning from data tokens. 

Orders are read left to right, with the parameter values to the left being set before 

parameter values to the right.   

Cues 

(1) QS, QS-VC-H, B, B-2, Ft-Hd-Left, Ft-Dir-Rt, Em-Some, Em-Right, B-Syl 

(2) B, B-2, Ft-Hd-Left, Ft-Dir-Rt, QS, QS-VC-H, Em-Some, Em-Right, B-Syl 

(3) Ft-Hd-Left, Ft-Dir-Rt, QS, QS-VC-H, B, Em-Some, Em-Rt, B-2, B-Syl 

Parsing 

(1) B, QS, Ft-Hd-Left, Ft-Dir-Rt , QS-VC-H, B-Syl, Em-Some, Em-Right, B-2 

(2) Ft-Hd-Left, QS, QS-VC-H, B, Ft-Dir-Rt,, Em-Some, Em-Right, B-Syl, B-2 

(3) QS, B, Ft-Hd-Left, QS-VC-H, Ft-Dir-Rt, B-Syl, Em-Some, Em-Rt, B-2 
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Table 5. Examples of non-viable parameter-setting orders. Orders are read left to right, 

with the parameter values to the left being set before parameter values to the right. 

Incorrect parameter values are in bold italics.  All orders continuing on from these 

incorrect values will converge on incorrect grammars. 

Cues 

(1) QS, QS-VC-H, B, B-2, B-Mor, … 

(2) B, B-2, Ft-Hd-Left, B-Mor, … 

(3) Em-None, … 

(4) Ft-Hd-Left, Em-None, … 

Parsing 

(1) QS, QS-VC-H, B, B-Syl, B-2, Em-Some, Em-Right, Ft-Hd-Rt… 

(2) B, B-Syl, B-2, Em-None, … 

(3) Em-None, … 

(4) Ft-Hd-Left, Ft-Dir-Left, … 
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Table 6. English order constraints for viable parameter-setting orders.  

Cues: Follow these constraints, other parameters freely ordered 

(1) QS-VC-H before Em-Right 

(2) Em-Right before B-Syl 

(3) B-2 before B-Syl 

Parsing: Group 1 before Group 2, Group 2 before Group 3 

Group 1: QS, B, Ft-Hd-Left 

Group 2: Ft-Dir-Rt, QS-VC-H 

Group 3: Em-Some, Em-Right, B-2, B-Syl 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
68 

Table A1. Child-directed speech data.  

Total: (540505 tokens / 8093 types) 

Words with the same number of syllables: (tokens / types) 

1-syl: (449312 / 4474) 2-syl: (85268 / 2898) 3-syl: (4749 / 476) 

Stress Pattern Frequency 

1: (373838 / 4420) 

0: (75474 / 54) 

Stress Pattern Frequency 

11: (11213 / 401) 

10: (66568 / 2236) 

01: (7487 / 261) 

Stress Pattern Frequency 

110: (572 / 109) 

101: (3049 / 272) 

100: (689 / 60) 

011: (6 / 5) 

010: (433/ 30) 

4-syl: (1008 / 214) 5-syl: (163 / 26) 

Stress Pattern Frequency 

1101: (1 / 1)                  0110: (2 / 1) 

1100: (20 / 8)                0101: (18 / 14) 

1010: (910 / 161)          0100: (50 /26) 

1001: (7 / 3) 

Stress Pattern Frequency 

11010: (1 / 1)                    01100: (1 / 1) 

10101: (54 / 1)                  01010: (67 / 8) 

10100: (39 / 15)                01000: (2 / 1) 

6-syl: (4 / 4) 7-syl: (1 / 1) 

Stress Pattern Frequency 

100100: (2 / 2)              010010: (1 / 1) 

100010: (1 / 1) 

Stress Pattern Frequency 

1010100: (1 / 1) 
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Figure A1. Distribution comparison by data tokens. 
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Figure A2. Distribution comparison by data types. 

 

 

 

 


