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 Human behavior is often consistent with the predictions of Bayesian ideal learners (e.g., 
Xu &Tenenbaum, 2007; Griffiths &Tenenbaum, 2005), which aim to explain why humans 
behave as they do, given the task and data they encounter.  However, these models typically 
avoid answering how the observed behavior is produced, given human limitations on memory 
and processing.  Here, we ask how such limitations might affect the results of identifying words 
in continuous speech, using a corpus of English child-directed speech (Bernstein-Ratner, 1984).  
Simulations with different algorithms suggest that results depend non-trivially on how the 
learner's limitations are implemented.  Also, though these learners do not segment realistic 
speech as well as the most successful ideal learner, they outperform other purely statistical 
learning strategies, such as syllable transitional probability (Saffran et al, 1996; see Gambell 
&Yang (2006)).  
 We begin with the Bayesian model of word segmentation in Goldwater, Griffiths, and 
Johnson (2006) (GGJ), which provides an ideal learning analysis of how statistical information, 
a language-independent cue preferred by infants early in development (Thiessen & Saffran, 
2003), could be used to begin identifying words in continuous speech.  GGJ develop two model 
variants: in the unigram model, the learner assumes word context is not important; in the 
bigram model, context is used to guide segmentation decisions.  GGJ demonstrate that ideal 
learners biased to heed context are more successful at word segmentation, since learners 
ignoring context tend to identify words that often occur together as one word, thereby 
committing undersegmentation.  
 The ideal learner can access the entire corpus simultaneously, equivalent to an infant 
remembering several weeks’ worth of utterances in detail. To simulate limited memory 
resources, we present three online algorithms, where the learner segments one utterance and 
then moves on to the next one: Dynamic Programming Maximization (DPM), Dynamic 
Programming Sampling (DPS), and Decayed Markov Chain Monte Carlo (DMCMC). DPM 
and DPS also limit the hypotheses the learner can keep in mind, while DMCMC implements a 
recency effect. 
 Results of our simulations indicate that the performance of all the learners stabilizes 
rapidly, within about 2000 utterances (see Fig. 1 for examples).  Table 1 gives the final 
performance of all learners.  We find that adding limitations to a learner who assumes context 
is unimportant (a unigram learner) can actually improve performance by reducing the 
undersegmentation found in the ideal unigram learner (in fact, DPS and DPM exhibit slight 
oversegmentation).  The different online learners show varying behavior when context is taken 
into account: DPM shows improved segmentation (like the ideal learner), while DPS and 
DMCMC fare worse than when ignoring context. Still, while no online models outperform the 
ideal bigram learner, all outperform the syllable transitional probability learner. 
 Our results show that a simple intuition (infants have memory limitations) can be 
cashed out multiple ways, and what learning biases are most successful depends on how these 
limitations are implemented. More practically, if infants require a seed pool of words to 
identify language-dependent strategies, these online language-independent strategies may 
provide a pool reliable enough to do so. 
 



 
Figure 1. Performance of DPM and DMCMC unigram models over the corpus as a whole, divided into 
groups of 500 utterances (x-axis = utterance number, y-axis = score percentage).  Precision (P) 
represents how often the learner is correct when believing something is a word; recall (R) represents 
how often the learner finds a word it should have found.  Lexicon precision (LP) is measured over the 
lexicon inferred from the segmentation, which represents the vocabulary items identified by the learner.
  
 Precision Recall F-Score Lex-Precision 
Gambell & Yang (2006), testing Saffran et al. (1996) 
Syllable Transitional Probability 41.6 23.3 29.9  
Unigram Models (No Context) 
GGJ – Ideal 61.7 47.1 53.4 55.1 
DPM 64.5 69.3 66.8 59.5 
DPS 58.6 65.5 61.9 51.8 
DMCMC 70.7 64.7 67.6 56.7 
Bigram Models (Context) 
GGJ – Ideal 74.6 68.4 71.4 63.3 
DPM 66.0 70.8 68.3 64.4 
DPS 32.7 48.4 39.0 34.1 
DMCMC 52.7 44.5 48.3 22.5 
Table 1. Performance of different learning models on the second half of the corpus (to factor out 
learning curve differences). Precision and recall over word tokens are shown, as well as the F-score 
which combines these two scores into one score for easy comparison. Lexicon precision is included 
where available to indicate the accuracy of the seed pool of words identified. 
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