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Abstract—Terrain classification is important for outdoor path
planning, mapping, and navigation. We developed a reservoir-
based spiking neural network (r-SNN) to classify three terrain
types (i.e. grass, dirt, and road) in a botanical garden. It included
a recurrent layer and a supervised layer. The input spike trains
to the recurrent layer were generated from linear accelerometer
and gyroscope sensor signals as well as camera frames from an
Android smartphone that controlled a ground robot. Compared
to a Support Vector Machine (SVM) model and a 3-layer (3L)
logistic regression model, our r-SNN method generated better
prediction accuracy without reliance on a time window of data.
Using both images and sensors as input, the test accuracy of the r-
SNN was over 95%, which was significantly better than the SVM
and the 3L logistic regression. Because the r-SNN is compatible
with neuromorphic hardware, our proposed method could be
part of a biologically-inspired power-efficient autonomous robot
navigation system.

I. INTRODUCTION

Outdoor robots face many dynamic challenges that are
uncommon in indoor scenarios. In particular, uneven terrain
and a wide variety of surfaces found outdoors can lead to
unpredictability. Different terrain types have an effect on robot
movement and power usage. For any outdoor autonomous
navigation system, the robot should have long-term path plan-
ning strategies that consider trade-offs for traversing smooth
surfaces, which may result in longer routes, versus direct
routes that traverse over rough terrain, which may take more
energy [1]. Moreover, field robots need to operate over long
periods of time far from power sources. In these cases,
accurate terrain classification may be beneficial for navigation.

Neuromorphic architectures have potential for controlling
outdoor robotics under tight power constraints. Unlike the
traditional Von Neumann architecture, a neuromorphic ar-
chitecture consumes less power due to massive parallelism
and event-driven processing [2], [3]. Spiking neural networks
(SNN) can take advantage of neuromorphic hardware, because
each neuron computes its state independently, making the SNN
parallel, and spikes are asynchronous events.

Navigation requires the effective use of a map. SLAM
algorithms [4] and GPS can provide solutions for navigation
[5]. However, these maps do not include terrain information,
which is critical for planning trajectories. Therefore, accurate
terrain classification can be an important addition to generate
cost maps and help with real-time localization [6]–[10].

To address these challenges, this paper introduces a
reservoir-based spiking neural network (r-SNN) for terrain
classification, which could be further integrated with other
spiking navigation strategies to create a neuromorphic system
for outdoor autonomous navigation.

II. METHODS

A. Android Smartphone Solution

1) Android-Based Robotics Platform: Experiments were
conducted using an Android-Based Robotics (ABR) Platform
(see Figure 1). The GPS, accelerometer, gyroscope and visual
information were directly obtained from an Android smart-
phone. A motor controller and IOIO-OTG microcontroller
were mounted on the back of the platform. Communication
between the phone and the robot platform was achieved
through a Bluetooth connection with the IOIO-OTG. For robot
specifications, see [11]. The testing environment was a 19-
acre botanical garden which contained different terrain types
(i.e., grass, dirt, and road), different inclinations, and different
obstacles (e.g., trees, benches, pedestrians, etc.).

2) Terrain Data Collection: The ABR robot was pro-
grammed to run at a constant speed over grass, dirt, and road
terrains, labeled as 0, 1, 2 respectively, in the botanical garden.
The data collection process was conducted under different
lighting conditions during the daytime for 42 trials. Each trial
lasted between 1 and 5 minutes. The 3-dimensional gyroscope
and linear accelerometer data were collected at 100 Hz via the
smartphone (see Figure 2a), and camera frames were captured
at 20 Hz with a resolution of 176×144 pixels (see Figure 2b).

Fig. 1. A six-wheel Android-based ground robot (ABR) used for terrain
classification experiments.
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Fig. 2. a) A sample trial with the original 3D linear accelerometer and gyroscope signals. b) Sample camera frames from the smartphone during data collection,
with a resolution of 176×144 pixels. Each frame was cropped to keep only the bottom-center 5×5 pixels as terrain visual information.

Fig. 3. The terrain classification process with the r-SNN method.

B. Reservoir-based Spiking Neural Network

Since our terrain classification algorithm might include both
image and sensor input data, sequence memory and feature
selection for both data types could be challenging for a
feed-forward network. However, a recurrent neural network
(RNN), where connections between internal neurons form a
directed cycle, could use its internal state as the memory to
process arbitrary sequences of inputs. RNNs have been used
for a variety of applications, such as motion prediction, health
monitoring, speech recognition, and time series forecasting
[12]–[15]. This recurrence can be tractably harnessed using
a reservoir-based approach, such as Liquid State Machines
(LSM) [16]. In the LSM, the recurrent weights in the RNN
are randomly generated and only the RNN readout is trained.

We developed a reservoir-based SNN (abbreviated to “r-
SNN”) method for terrain classification (see Figure 3 for the
flow diagram). The readout from the recurrent layer (referred
to here as RNN) was trained using a surrogate gradient
approach that can learn using precise spike times in the LSM
[17]. The ability of the r-SNN to classify terrains is com-
pared with two conventional approaches, the Support Vector
Machine (SVM) and the 3-layer (3L) logistic regression.

1) Spiking Neuron Model: The spiking neuron model
for the recurrent and supervised layers consisted of leaky
integrate-and-fire (LIF) neurons with current-based synaptic

input. For each postsynaptic neuron i at each time step t,
if it was not within the refractory period, the postsynaptic
membrane potential (Ui) was updated via the differential
equation

dUi

dt
=
Urest − Ui

τmem
+ Isyni (t), (1)

where Urest was the resting membrane potential, τmem was
the membrane time constant, and Isyni (t) was the synaptic
input current. Isyni (t) jumped by summation of the weight
wij upon spike arrival from each presynaptic neuron j (i.e.,
when Sj(t) = 1), with the equation shown below

d

dt
Isyni (t) = −I

syn
i (t)

τsyn
+

∑
j∈pre

wijSj(t). (2)

When Ui reached the threshold θmem and the neuron i was not
in the refractory period, a spike was triggered (i.e., Si(t) = 1).
The neuron then remained refractory for nref time steps.

2) Supervised Learning Rule: Inspired by SuperSpike [18],
during the supervised training process in which weight adap-
tation was requested (see Section II-E), the synaptic weight
wij was updated at each time step according to a nonlinear
Hebbian rule with individual presynaptic traces εj ,

∆wij = η · [εj ⊗ (Ŝi − σ(Ui))] · σ(Ui) · (1− σ(Ui)), (3)

where η was the learning rate, Ŝi was the target postsynaptic
spiking behavior, and ε was a linear filter on the presynaptic
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spike activities. The portion (Ŝi−σ(Ui)) represented the error
signal. The presynaptic traces ε evolved according to

dεj
dt

= − εj
τsyn

+ Sj(t). (4)

With a small synaptic time constant τsyn, this first-order filter
was sufficient to evaluate the temporal convolution with the
error signal in the expression of the presynaptic traces.

C. Spike Generation of Input Data for the Reservoir

To convert gyroscope and linear accelerometer sensor sig-
nals from the smartphone into spike trains, we used the same
spike train encoding as in the the Dynamic Vision Sensor
(DVS) [19]. Six pairs of “plus” and “minus” spike trains
for 3D signals of both sensors were converted into ON and
OFF events, resulting in a total of 12 neurons for the sensor
input data. For each axis of each sensor every time step, if
the increase or decrease amount in the signal was above a
threshold (i.e., 2 for the linear accelerometer and 0.5 for the
gyroscope), an ON or OFF spike was generated, respectively.

Image data were converted from RGB (red, green, blue) to
HSV (hue, saturation, value) and normalized between 0 and
1 for each channel. Each frame was cropped to keep only
the bottom-center 5×5 pixels, which was enough to show the
current terrain visual information without interference from
distractors in the scene (e.g., other terrain types, trees, benches,
pedestrians, or buildings). Each HSV channel was averaged
across all 25 pixels in the image. There were 11 neurons for
each HSV channel (i.e., a total of 33 neurons). Each neuron’s
activity was based on a Gaussian tuning curve. The means of
the Gaussians were spread evenly 0 to 1 with σ = 0.5. The
maximum activity for each tuning curve was α = 1/(σ

√
2π).

If activity was above 0.4α, the neuron spiked.
The frequencies of the sensor signals and camera frames

were different (i.e., 100 Hz and 20 Hz respectively). Therefore
when both sensor signals and image frame were fed into the
recurrent layer, the same image frame would be repeated for
each time step until the next frame was collected.

D. Recurrent Layer for Terrain Feature Extraction

The gyroscope signals, the linear accelerometer signals, and
the cropped screenshots were encoded directly into spikes, as
described above. These input spikes were fed into the recurrent
layer. The sensor and image neurons were fully connected
with the recurrent neurons. The recurrent neurons were also
fully connected with one another. For this recurrent layer,
the synaptic input current was a summation of both input
weights and recurrent weights when spikes were received. The
readout spikes from the recurrent layer were further fed into
the supervised layer for terrain classification (see Section II-E).

There were Nin = 70 recurrent neurons, which received
Next input spike trains from the sensors and/or images (i.e.,
Next = 12, 33, 45 respectively). Both input and recurrent
weights were randomly drawn from a Gaussian distribution
with zero mean. The standard deviation was 0.5/Next for input
weights or 0.05/Nin for the recurrent weights, which was
small enough to prevent bias on certain connections while

assuring randomness. Therefore recurrent neurons were both
excitatory and inhibitory. In Equation 1, Urest and the initial
Ui were both 0, whereas τmem was tuned to 66.7. In Equation
2, the initial Isyni (t) was 0, whereas τsyn was tuned to 1.
Furthermore, θmem was (1 − γ), with γ as the threshold
Gaussian noise with mean at 0 and a standard deviation of
0.1. nref was zero, meaning there was no refractory period.

E. Supervised Layer for Terrain Classification

The supervised layer took as input the 70 readout spike
trains from the recurrent neurons and generated spike activities
for the three terrain prediction output neurons that represented
grass, dirt, and road. The output weights were updated every
time step (see Equation 3) for 100 training epochs and
remained constant for testing. During the training process, the
target postsynaptic spiking behavior was obtained from three
spikes trains that represented actual terrain information at each
time step. For the supervised layer, the synaptic input current
evolved with summation of output weights upon spike arrival.
The postsynaptic neurons were the three terrain prediction
neurons. A terrain class was predicted by the output neuron
with the highest activity at that time step.

Before the first training epoch, the output weights were all
initialized as 0.001/Nin = 1e−5 so that all the readout spikes
could excite the three terrain output neurons. In Equation 1,
Urest was 0 and τmem was tuned to 100, but Ui was initialized
as -0.5 for each epoch. In Equations 2 and 4, τsyn was tuned
to 10, whereas Isyni (t = 0) was initialized as zero at the
beginning of each training epoch and of testing. θmem and
nref were the same as in Section II-D. In Equation 3, η was
tuned to 9e−9. The sigmoid function was tuned to σ(x) =
1/(1 + exp [−3.44 · (x− 0.975)]).

III. RESULTS

A. Terrain Prediction Results for the r-SNN

The r-SNN method achieved over 90% of testing accuracy in
predicting different terrain types, with either linear accelerom-
eter and gyroscope sensors, or image inputs, or both sensor
and image inputs (see Table I). Figures 4 and 5 show results
using both images and sensors for an 8-minute testing period.
From the 70 recurrent neurons (see Figure 4), the supervised
layer generated output spikes for terrain classification. After
100 training epochs, the test prediction consistently matched
the true terrain with little delay or noise (see Figure 5).

B. Optimal Settings for Two Conventional Approaches

For the SVM model and the 3L logistic regression model,
we split the original sensor and image signals into data
chunks with a time window of 500 milliseconds. The optimal
performance on the SVM model was achieved by using the
SVC package in the Scikit-learn library with the RBF kernel
[20]. The SVM applied the nine features: (1) number of sign
changes, (2) number of traverses over mean, (3) standard
deviation, (4) autocorrelation at lag k=1, (5) maximum, (6)
minimum, (7) Euclidean norm, (8) mean, and (9) median. Its
best test accuracy was achieved after 430 training epochs.
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Fig. 4. Readout spikes from all the recurrent neurons using both image and
sensor (the linear accelerometer and gyroscope) inputs. The horizontal axis
labels partial testing period of 8 min, with sensor signals collected at 100 Hz
and camera frames collected at 20 Hz. These 70 readout spike trains were
further fed into the supervised testing part for terrain classification.

Fig. 5. Supervised layer output for both images and sensors (the linear
accelerometer and gyroscope) for an 8-minute testing period. The upper
subplot shows true terrain types and final test predictions using adapted output
weights after 100 training epochs. The lower subplot shows the test prediction
spikes using adapted output weights after each training epoch.

The optimal performance on the 3L logistic regression
model required the following five features: (1) 20-percentile,
(2) 50-percentile, (3) 80-percentile, (4) mean, (5) standard
deviation. Its best test accuracy was achieved after 520 training
epochs by using the mean squared error as the loss function, or
after 820 training epochs with the cross-entropy loss function.

C. Model Performance Comparison

For comparison among three approaches on terrain classi-
fication, we applied the standard 80/20 rule for training and
testing. The input data were generated from linear accelerom-
eter and gyroscope sensor signals and/or cropped screenshots.

Table I shows the test error rates among three approaches
under three input conditions. Using both image and sensor
data instead of using one of them improved the accuracy
and robustness of each model. The r-SNN method was more
accurate than SVM and 3L logistic regression. The r-SNN may
be the most efficient considering its usage of only 70 recurrent

neurons, adaptation of only the output weights, and no need
of splitting data into time chunks.

The r-SNN is compatible with low-power neuromorphic ar-
chitectures, whose energy cost is often dominated by synaptic
operations (SynOps), akin to multiply accumulate operations
(MACs) in digital computers for artificial networks [21], [22].
For our entire training and test process with terrain classified
every 500 milliseconds, the r-SNN would require roughly 109

SynOps on a neuromorphic hardware, which is equal to or
smaller than the operations taken by the 3L logistic regression
and the SVM (i.e., roughly 109 ∼ 1010 MACs for each) on a
standard computer. Based on the fact that a SynOp consumes
many fold less energy than a MAC [21], [23], [24], the r-SNN
is a promising approach to reduce power consumption.

TABLE I
TEST ERROR RATES ON THREE MODELS FOR TERRAIN CLASSIFICATION.

r-SNN SVM 3L Logistic Regression
mse xent

Images only 5.2% 13.9% 11.5% 16.2%
Sensors only 8.1% 14.5% 13.7% 59.6%
Images + Sensors 3.5% 8.8% 10.2% 34.3%

IV. CONCLUSION

Unlike feed-forward networks, the recurrent layer processes
both the sensor and image input data to extract abstract terrain
features at each time step, with no need of remembering data
chunks within a time window or carefully selecting feature
components. The reservoir computing paradigm lowers the
computational cost during supervised training, because only
the output weights are plastic [16]. Moreover, having spiking
neurons in the reservoir allows the model to be event-driven
and highly parallel. Further performance gains can be achieved
by implementing the present algorithm on neuromorphic hard-
ware that utilizes spike-based strategies.

The r-SNN has several advantages for classification tasks
such as discriminating terrains. First, it had the highest test
prediction accuracy compared to the SVM and 3L logistic
regression, regardless of whether images or sensors were the
input (see Table I). Secondly, it had the lowest computational
cost due to a small reservoir of spiking neurons and adaptation
of only the output weights. Third, compared to the difficulty in
selecting the terrain features and time window length for the
two conventional approaches, the r-SNN reservoir can easily
integrate the image and/or sensor data and generate an abstract
representation of terrain features.

The trained r-SNN model is compatible with a ground robot
for real-time terrain classification. The r-SNN can be used to
augment a SLAM or GPS map with metadata pertaining to
the cost of traversal. For example, the r-SNN can supplement
a road following algorithm to signal when the robot veers off
the road. The different terrains can be used as a cost function,
based on terrain smoothness for path planning [5]. Finally, the
r-SNN presented here can be used in to develop a complete
neuromorphic robot navigation system capable of operating
over long durations with minimal power consumption [1], [25].
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