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Abstract

The goals of cognitive robotics are to better understand cognition through the construction of
physical artifacts, and to create practical systems that demonstrate cognitive capabilities. |
believe for cognitive robotics to move forward, a balanced approach that emphasizes the inter-
action of brain, body, and environment is necessary. In general, cognitive robots and cognitive
architectures focus too much on brain control, and overlook the contributions of morphology to
intelligent behavior. On the other hand, the behavior based robotics approach is unbalanced in
the opposite direction. For cognitive robotics to move forward, these disparate research com-
munities need to come into balance. The materials, morphology, sensors, actuators, and the
nervous system should be balanced and coordinated in their action. In their book, ‘‘How the
body shapes the way we think: A new view of intelligence’’ (MIT Press, 2007), Pfeifer and
Bongard have suggested that intelligent agents should follow a set of design principles that high-
light the importance of embodiment and physical interaction with the environment. In the pres-
ent paper, | apply each of these principles to biologically inspired cognitive robotics and suggest
how the field can shift toward better cognitive architectures by adherence to these principles.
© 2012 Elsevier B.V. All rights reserved.

Introduction

In the field of cognitive robotics, physical artifacts are con-
structed to demonstrate a level of cognition. The term cog-
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nitive is difficult to define because it has different meaning
to different people. In this paper, | will focus on comparing
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decision-making, learning and memory. This allows artificial
agents to be compared to a working model. Therefore,
throughout the paper the term ‘‘cognition’’ could be re-
placed by ‘‘biologically inspired cognition’’. Also, through-
out the paper | will use the term ‘‘nervous system’’ to
describe the system that guides the agent behavior.
Although many of the examples given are based on neuro-
biologically inspired systems, this does not mean to imply
that a neurobiologically inspired architecture is the only
method for constructing a cognitive robot. But, the neuro-
biologically inspired approach does allow the mechanism
to be compared with empirical data. Despite these restric-
tions, the arguments below may be applied to cognitive
robotics in general.

The field of cognitive robots goes by many names: brain-
based devices, cognitive robots, neurorobots, neuromorphic
robots, etc. The common goal is twofold: Firstly, developing
a system that demonstrates some level of cognitive ability
can lead to a better understanding of cognition in general.
This idea has been dubbed ‘‘synthetic methodology’’ or
*synthetic neural modeling’’ and the notion goes back to
Grey Walter’s Turtles, Braitenberg’s vehicles and the Darwin
series of automata (Braitenberg, 1986; Edelman et al., 1992;
Grey Walter, 1953). The synthetic method has even older
roots in psychology and cybernetics (Cordeschi, 2002; Craik,
1967). In general, understanding through building is the goal.
Secondly, building a robot or artifact that follows a cognitive
model could lead to a system that demonstrates capabilities
commonly found in the animal kingdom, but rarely found in
artificial systems. While this second goal may have important
implications for practical applications, cognitive robotics
have not been as successful in achieving this goal as origi-
nally hoped. One of the aims of this paper is to discuss some
of the reasons why this is the case.

In their book, ‘‘How the body shapes the way we think: A
new view of intelligence’’, Pfeifer and Bongard put forth an
embodied approach to cognition (Pfeifer & Bongard, 2007).
Because of this position, many of the robots that they have
designed demonstrate ‘‘intelligent’’ behavior with limited
or non-existent neural processing (Bongard, Zykov, & Lip-
son, 2006; lida & Pfeifer, 2004).

In many ways, the field of cognitive robotics and my own
work on brain-based devices and neurorobotics might be re-
garded as the antithesis of Pfiefer and Bongard’s position.
Our designs are heavy on top-down control and neural pro-
cessing and light on interaction with the environment. | will
discuss why this is the case in detail below. Although they
may underemphasize them, cognitive robots do adhere to
many of Pfeifer and Bongard’s principles. It is my belief that
cognitive robots and architectures should attempt to follow
these principles.

In the remainder of the paper, | will discuss how each of
Pfeifer and Bongard’s principles for designing intelligent
agents can apply to brain-based or neuromorphic robots.
Many readers may not agree Pfeifer and Bongard’s point of
view. For example, Clark and Grush take the position that
cognitive phenomena involves offline-reasoning, vicarious
environmental exploration and an internal representation
(Clark & Grush, 1999). However, | believe there is value in
examining these principles, which arise from behavior based
robotics (Arkin, 1998; Brooks, 1991), and seeing how they
might be implied to biologically inspired cognitive robotics.

| suggest that we in the Biologically Inspired Cognitive Archi-
tectures (BICA) community should embrace many of these
design principles when developing our systems. | will apolo-
gize in advance for not referencing many pertinent robots
and systems in the present paper. In general, | will focus
on systems that | know at a deep level because either | have
had a hand in their design or because | have seen a particular
robot in person and discussed the robot with its designers.

Design principles for cognitive robots

Pfeifer and Bongard introduced eight design principles for
intelligent agents (Pfeifer & Bongard, 2007). | will follow
each of these in turn, and discuss them in light of biologi-
cally inspired cognitive robot design.

Agent design principle 1: the three-constituents
principle

An intelligent agent should have (1) a defined ecological
niche, (2) a defined behavior or task, and (3) an agent
design.

The first two constituents define the agent’s behavioral
task. For example, the niche and behavior of many of our
robots has been a controlled laboratory setting. However,
much of cognitive science and behavioral neuroscience is
conducted in experiments where humans and other animals
behave under controlled settings in darkened rooms. There-
fore, cognitive robots, which are built to test theories of
biological cognition, are often tested in conditions that mi-
mic these experimental paradigms. For example, cognitive
robots have replicated standard experimental paradigms
such as operant conditioning, fear conditioning, and skill
acquisition to better understand learning and memory
(Krichmar & Edelman, 2002; McKinstry, Seth, Edelman, &
Krichmar, 2008). We have tested our robots in the Morris
water maze or the Plus maze to understand how different
neural areas contribute to different types of memory (Flei-
scher, Gally, Edelman, & Krichmar, 2007; Krichmar, Nitz,
Gally, & Edelman, 2005).

The main reason for this is to compare the cognitive ro-
bot’s behavior with biological cognition. This can’t be
stressed enough. If we are to claim that our robots are cogni-
tive, then we need to test them under conditions by which
cognitive scientists test their subjects. However, the flip side
of this is that it does not make for exciting robot behavior and
it can potentially reveal limitations in the cognitive robot ap-
proach. The community needs to demonstrate that cognitive
robots can transition to the real world just as humans or ani-
mals do when they are outside a laboratory setting.

Some roboticists have been able to demonstrate that
their neuromorphic systems are effective outside of labora-
tory settings. For example, the RatSLAM project has devel-
oped accurate cognitive maps of offices and cities based on
a hippocampal inspired architecture (Wyeth & Milford,
2009), and our group has shown that a brain-based device
can compete on the soccer field (Fleischer et al., 2006).

The third constituent, agent design, is dealt with in
cognitive or neuromorphic robots by necessity. If one is
testing visual object recognition, then the robot will typi-
cally have a vision system, or if one is testing somatosensory
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Fig. 1 Visual binding and categorization in a Brain-Based

Device (BBD). (A) Experimental setup. Initially, an auditory cue
signaled the brain-based device to orient towards a specific
object category. After learning, the BBD oriented towards the
object through vision alone. (B) Physical instantiation of the
visual binding experiment. Adapted from Seth et al. (2004).

processing in the brain, then the robot might have whiskers.
In a visual object recognition task (Fig. 1), we constructed a
brain-based device that learned to attend to an object class
in which feature binding was necessary for successful per-
formance (Seth, McKinstry, Edelman, & Krichmar, 2004).
Therefore, the agent not only needed to have a vision sys-

A B

tem that responded to features in its environment, but it
also needed to demonstrate object recognition through a
behavioral report (i.e., orienting and approaching behav-
ior). In a somatosensory object recognition experiment
(Fig. 2), we designed a whiskered robot that demonstrated
its ability to discriminate different textures by freezing then
escaping when it recognized a texture that was previously
associated with a noxious stimulus (McKinstry et al.,
2008). These types of tasks allow the behaviors of the robot
to be compared with that of an animal model. Unfortu-
nately, this approach can lead to ‘‘one-trick ponies’’, that
is, the robot and its nervous system are designed for one
specific function and cannot generalize to complete
behaviors.

Agent design principle 2: the complete agent

When designing agents, one must consider the complete
agent behaving in the real world.

In one sense, by building a robot and placing it in a phys-
ical environment, even if highly constrained, the system fol-
lows the complete agent principle. Many unplanned
consequences emerge through interaction with the environ-
ment. For example, the act of moving through the environ-
ment and observing the world as a continuous stream of
information can lead to invariant object recognition without
the need for complex transformations (Krichmar & Edel-
man, 2002; Seth et al., 2004). Introducing saliency in the
environment can lead to attentional signaling. For example,
the robot CARL was designed to extract value from objects
in its environment (Cox & Krichmar, 2009). Two out of four
objects were salient to CARL and CARL learned the appro-
priate action for each (see Fig. 3). Unexpectedly, a strong
attentional bias toward salient objects emerged through
its experience in the real world, which could be observed
both in CARL’s behavior and in CARL’s simulated brain.

On the other hand, designing a robot to test one specific
aspect of cognitive behavior violates the complete agent
behavior. As mentioned earlier, the community needs to
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Fig. 2

(A) Darwin IX, a brain-based device (BBD) with whisker arrays. The arrangement of a whisker array is shown in the inset.

Each array has 7 whiskers arranged in a row of 5 and a column of 3.The whiskers were made of two polyamide strips, placed back to
back, that emitted a signal proportional to the bending of the strip. (B) Experimental setup for Darwin IX. The BBD explored a walled
enclosure with textures Texture A and Texture B on the walls. Located on the floor adjacent to Texture A patterns were ‘foot-shock’
pads made of reflective construction paper. Darwin IX learned to either freeze or avoid the area where Texture A was experienced.

Adapted from McKinstry et al. (2008).
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CARL robot in colored panel task. The panels could flash any of 6 different colors. One color, green, signaled positive value.
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Another color, red, signaled negative value. The remaining colors were neutral. Signals were transmitted from the panel to a
receiver on the bottom of CARL. (A) CARL during an approach or ‘Find’ response. The panels on the right show strong neuronal
activity in its simulated green visual area, the dopaminergic system (VTA), and the Find motor neurons. (B) CARL during a withdrawal
or ‘Flee’ response. The panels on the right show strong neuronal activity in its simulated red visual area, the serotonergic system
(Raphe), and the Flee motor neurons. See Cox and Krichmar (2009) for more details.

show that their systems can have a suite of behaviors.
Although cognitive scienctists and behavioral neuroscien-
tists typically test their subjects in one task, it is understood
that the subjects have a complete range of behaviors. In my
own experience, there are two cases where our systems
might have been considered complete agents. One was in
RoboCup where we developed a robot to play soccer in
the Segway Soccer exhibition league (Fig. 4). Although
games such as these are limited by their rules, the robot
did have to demonstrate a suite of behaviors (passing,
shooting, navigating, positioning, strategic decisions, etc.)
to be successful on the playing field (Fleischer et al.,
2006). The other was a recently developed action selection
system for robots based on principles of neuromodulation
(Krichmar, 2012). Although simplistic in its design, this sys-
tem can filter environmental events, and respond appropri-

ately to the most urgent events. It is general purpose and
can be tailored to the agent’s niche and design (i.e., sen-
sors, actuators, environment).

Agent design principle 3: cheap design

The construction and design of agents that are built to ex-
ploit properties of the ecological niche will be much easier
or ‘‘cheaper’’.

The importance of this design principle can be observed
when comparing the biped locomotion of passive dynamic
walking robots to sophisticated humanoid robots, such as
Honda’s Asimo or Aldebaran’s NAO. Passive dynamic walking
robots exploit gravity, friction, and the forces generated by
their swinging limbs (Collins, Ruina, Tedrake, & Wisse,
2005). As a result, they require very little energy or control

Fig. 4

(A) The Segway Soccer devices. On the left, a modified Segway HT scooter for the human player. On the right, a brain-based

device (BBD) based on the Segway platform. (A) Active capture devices, (B) laser rangefinder, (C) pan-tilt unit and camera, (D)
kicking assembly, (E) passive capture ring, (F) voice command module, and (G) crash bars. (B) The Segway Soccer BBD moves
downfield through a cluttered playing field toward its opponent’s goal. Adapted from Fleischer et al. (2006).
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to move. These robots demonstrate what Pfeifer and Bon-
gard call ‘‘morphological computation’’ in which processes
are performed by the body and its exploitation of the envi-
ronment, rather than by a central control system. In con-
trast, robots such as Asimo need complex control systems
and long-lasting batteries to achieve the same result. | once
visited Andy Ruina’s Biorobotics and Locomotion laboratory
at Cornell University and he shared with me that although
he was not a biologist, he knew he had a good design when
the mechanics looked natural and the energy expenditure
was minimal. Exploiting the environment and energy mini-
mization are hallmarks of biological systems.

Despite this basic principle in biological organisms, cog-
nitive robots and their ilk rarely display cheap design. They
typically require extensive computation, have very large
power budgets, and tend not exploit properties of their
niche. Some do exploit aspects of the environment; the
invariant object recognition in an autonomously mobile ro-
bot described above is one specific example. But, in gen-
eral, the complete cognitive agent is not designed with
this in mind. An interesting exception is Barbara Webb’s
work with cricket phonotaxis (Webb & Scutt, 2000). In this
system, a combination of a biologically plausible spiking
neural network and the appropriate layout of auditory sen-
sors led to a simple, yet elegant solution to phonotaxis.

From my own personal experience, our Segway Soccer
team at The Neurosciences Institute solved a difficult senso-
rimotor problem with a very cheap design. On a fairly large
playing field it was nearly impossible for our robot to catch a
moving soccer ball given that it was large, cumbersome, and
had a slow camera frame rate. Soccer balls would bounce
off our robot before it had a chance to respond. Our team
tested a variety of options to solve the problem of trapping
a ball against the robot’s body. Finally, we settled upon
some cheap tubing that was fastened around the robot’s
body like a hula-hoop at just the right height (see Fig. 4).
Any ball that was passed to the Segway robot was trapped
by the tubing, giving the robot time to use its camera and
proximity sensors to place the ball in its kicking apparatus.
In a sense, this is what human players do when playing soc-
cer. They use soft compliant materials angled appropriately
to soften the impact of a ball coming toward them.

By putting more emphasis on designs that exploit the
environment, we can offload some of the control from the
cognitive robot’s central nervous system onto the body it-
self. This should allow the robot to be more responsive to
the environment and be more fluid its actions. In addition,
it may free up the nervous system to put more emphasis on
planning and prediction rather than reflexive movements.

Agent design principle 4: redundancy or
degeneracy

Agents should be designed such that different subsystems
function on the basis of different processes and there is
overlap of functionality between subsystems. In this princi-
ple, Pfeifer and Bongard use the term ‘‘redundancy’’ to
stress the importance of partially overlapping subsystems.
| prefer the term ‘‘degeneracy’’ which is the ability of ele-
ments that are structurally different to perform the same
function or yield the same output (Edelman & Gally,
2001). Degeneracy shows up throughout biology; from

low-level processes such as the genetic code and protein
folding to system-level processes such as behavioral reper-
toires or language.

A nice example of degeneracy at multiple levels is the
Darwin X and Xl brain-based devices, which were designed
to demonstrate spatial and episodic memory (Fleischer &
Krichmar, 2007; Fleischer et al., 2007; Krichmar et al.,
2005). Darwin X solved a dry-variant of the Morris water
maze and Darwin Xl solved a place learning version of a
standard plus maze (see Fig. 5). Both Darwins had an exten-
sive model of the medial temporal lobe and its surrounding
cortical regions. As these brain-based devices explored their
environment, hippocampal place cells emerged.

Degeneracy occurred at the neuronal level

Because we were able to track every neuron in its simulated
nervous system, we were able to trace the neuronal activity
that led to hippocampal place activity. Although the CA1
place activity was similar on different trials when the
brain-based device passed through the same location on
the same heading, the neuronal activity leading to that neu-
ron’s place activity on a given trial differed dramatically.

Degeneracy occurred at the system level

Darwin Xl received sensory input from its camera (vision),
whiskers (somatosensory), compass (head direction), and la-
ser range finder (depth/distance). Darwin Xl’s spatial mem-
ory was multimodal and degenerate. Even when one or more
of its sensory modalities were lesioned, Darwin XI’s behavior
and place cell activity remained stable.

Degeneracy at the individual level

Nine different Darwin X subjects, which consisted of the
same physical device but slightly different nervous systems
due to variations in synaptic connection probabilities,
solved the same spatial navigation task, but in unique ways.
Some subjects bounced off the *‘red’’ wall to the hidden
platform, some bounced off the ‘*blue’’ wall, others went
directly toward the platform location. The proficiency of
each subject differed as well. Experience in the real world
has a strong shaping effect on brain and behavior. For these
reasons and similar to an animal experiment, we always run
multiple subjects on a behavioral task. In every experiment |
have worked on, no two brain-based devices or neurorobots
have been alike, even when the nervous system and device
were identical (Krichmar & Edelman, 2002).

Agent design principle 5: sensory-motor
coordination

Embodied agents induce structured sensory stimulation
through sensorimotor coordination by being situated in the
environment and by manipulating the environment. For
example, figure-ground separation can be achieved if a hand
happens to push an object, resulting in the object moving
with respect to its background (Fitzpatrick & Metta, 2003).

When our team at The Neurosciences Institute designed
the visuomotor control for the Segway Soccer playing robot,
we had to find a way to efficiently perform visual tracking
and moving downfield with a heavy and somewhat sluggish
two-wheeled Segway platform. Our approach was to devel-
op a nimble pan and tilt system for its camera that quickly
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Fig. 5 (A) Experimental setup for Darwin X, a dry variant of the Morris water maze spatial memory task. (B) Physical instantiation

of the spatial memory task. (C) Experimental setup for Darwin XI, a standard plus maze for place learning. (D) Physical instantiation
of the plus maze. Adapted from Fleischer et al. (2007) and Krichmar et al. (2005).

saccaded to and foveated on salient objects on the playing
field. The body followed where the camera pointed but at a
slower rate. Specifically, if the camera was panned to the
right, the Segway platform turned to the right in an attempt
to center the camera. If the camera was tilted up because
the object was further away, the Segway platform moved
faster. As the Segway platform approached the object, its
camera tilted downward causing the Segway platform to
slow. The result was smooth, natural looking visual tracking
with coordinated head and body movements (see Fig. 4 and
http://www.vesicle.nsi.edu/nomad/segway/). This simple,
yet elegant solution to visuomotor control was also imple-
mented on our CARL robot for its operant conditioning tasks
(Cox & Krichmar, 2009). The result is very natural looking
and visitors to our lab tend to anthropomorphize CARL’s
behavior as it orients either toward a positive value object
or away from a negative value object (see Fig. 3 and
http://www.socsci.uci.edu/~jkrichma/CARL/robots.html).

Agent design principle 6: ecological balance

In a given task environment, there should be a balance be-
tween the complexity of the agent’s sensory, motor, and
neural systems. Moreover, there should be a balance be-
tween the morphology and its environment.

Of all of Pfeifer and Bongard’s principles, designers of
cognitive robots may violate this one the most. Most cogni-

tive robots have very complex central processing or nervous
systems, and a fairly simple robot. My work on the Darwin
series of automata and the CARL robot tends to be guilty
of violating this principle. Despite this imbalance, the
embodiment has driven brain processing and led to results
that would be difficult to imagine emerging in a computer
simulation.

On the other hand, the behavior-based robotics commu-
nity tends to be out of balance in the opposite direction.
Many of the robot examples given by Pfeifer and Bongard
have little or no neural processing. The field of evolutionary
robotics evolves very simple neural controllers that bear lit-
tle resemblance to real nervous systems (Floreano & Keller,
2010). The field of affective robotics is not necessarily
interested in cognitive architectures or mechanisms, but in-
stead are more interested people’s responses to interactive
robots with anthropomorphic designs and materials (Brea-
zeal, 2004). Thus, these systems cannot demonstrate the
executive control, planning, and learning typically associ-
ated with cognitive behavior.

| believe for cognitive robotics to move forward these
disparate research communities need to come into balance.
The materials, morphology, sensors, actuators, and the ner-
vous system have to balanced and coordinated in their
action.

There is another lingering issue, which has to do with
‘*How the body shapes the way we think’’. Since the body
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is handling much of the computation in an intelligent agent,
and cognitive processes are extremely slow to respond, so
slow that it is a survival risk for the organism, then what
is the brain good for? | believe the main functions of the
central nervous system are predicting and planning for the
future, and adaptation when the result does not meet
expectations. The brain has numerous internal models that
check the results of the agent’s actions and make updates
when there is a mismatch (Hickok, Houde, & Rong, 2011;
Shadmehr & Krakauer, 2008). This is not a novel idea, but
with respect to cognitive robotics and designing intelligent
agents, it needs to be taken into consideration. The neural
controller for the agent should be monitoring the body and
peripheral nervous system of its body, and the agent’s body
itself needs to be capable of handling computation without
direct neural control.

Agent design principle 7: parallel, loosely coupled
processes

Intelligence is emergent from a large number of parallel
processes, which are coordinated through embodied inter-
action with the environment.

The old way of thinking in cognitive science was ‘‘sense,
think, and act’’, and this carried over to Artificial Intelli-
gence robots. This way of thinking has changed in the com-
puter science world in part due to the ubiquity of real-time
and embedded systems. Most current computing devices,
from phones to desktops, from onboard automotive com-
puters to entertainment systems have parallel processes
to handle asynchronous events. Designers of robotic systems
typically use multitasking approaches to monitor the world
concurrently. This allows them to interact with the environ-
ment asynchronously through multiple sensors and actua-
tion systems. In this way, embedded systems are event-
driven and multitasking. Similarly, biological organisms are
event driven, multimodal, and have attention systems that
are finely tuned to respond to novel information.

However, we tend to study cognitive science in a serial-
ized fashion by focusing on one particular system at a time,
be it a type of memory or a specific perceptual effect. The
Cognitive Architecture community needs to move away
from studying one system at a time, and rather study the
complete agent, which responds to multiple, asynchronous
events in a timely manner. One way to enforce parallel,
loosely coupled processes might be through building physi-
cal systems having multimodal sensory systems, and embed-
ding them in a dynamic and unforgiving environment (i.e.,
one that won’t wait for the agent to think long and then
act) that forces them to handle multiple processes
concurrently.

Agent design principle 8: value

Intelligent agents are equipped with a value system that
constitutes a basic assumption of what is good and bad for
an agent.

Every brain-based device and neurorobot | have worked
on had an innate value system that told the agent something
was of intrinsic value and that triggered the appropriate
reflexive behavior. The agent then learned which objects
were predictive of value and tried to maximize the acquisi-

tion of good value and minimize the acquisition of bad va-
lue. Typically, these value-based robots employed models
of the dopaminergic reward system to shape behavior.

Over the last few years we have expanded the simulation
of value systems to include multiple neuromodulatory sys-
tems found in the vertebrate (Krichmar, 2008). Besides
the dopaminergic reward system, there is the serotonergic
system that is involved in harm aversion or the expected
cost of an action (Cools, Roberts, & Robbins, 2008), there
is the noradrenergic system that handles oddball or unex-
pected events (Yu & Dayan, 2005), and there is the cholin-
ergic system that both increases and decreases the
allocation of attentional resources (Baxter & Chiba, 1999).
All of these systems are nuanced and they all interact with
each other through direct and indirect pathways. All of
these systems respond strongly to novelty, send broad sig-
nals to large areas of the cortex, and cause a change in net-
work dynamics resulting in decisive action. Our first attempt
at incorporating the interaction of multiple neuro modula-
tory systems into a cognitive robot controller has resulted
in dynamic behavior that appears very much like a rodent
exploring its environment (Krichmar, 2012).

One problem that remains unsolved in cognitive robotics
is that these artificial value systems are dissociated from
the agent’s body. Real pain, hunger, thirst, and fatigue
drive a true value system. Without this connection to bodily
dependent drives, an artificial value system does not signal
the immediacy of the agent’s need and lacks to some degree
the ability to shape the agent’s behavior.

Conclusions

In the present paper, | have taken Pfeifer and Bongard’s
eight design principles thought to be necessary for an intel-
ligent agent (Pfeifer & Bongard, 2007) and used them as a
means to gauge the brain-based device, neurorobot, and
cognitive robot approaches. Table 1 summarizes how well
| believe the cognitive robotics community is following
these principles and notes areas in which there is room for
improvement. Although my views were based mostly on
my own experiences, | feel this summary applies to the cog-
nitive robotics community as a whole.

Note that up until this point | have spent very little time
discussing the actual brain processing that leads to cogni-
tion. In no way am | arguing that this is unimportant. It is
essential that an intelligent agent have some brain control.
I would further argue that a necessary condition for studying
cognition and building a cognitive artifact is that its artifi-
cial brain must resemble its real counterpart (Krichmar &
Edelman, 2005; Krichmar & Wagatsuma, 2011). However,
this alone is not sufficient; we need to bring the brain, body,
and environment into balance in our designs.

Where are we failing?

In general, the community is failing to make systems that
perform more than one function at a time. Most of these
systems exist in sterile, highly controlled laboratory set-
tings. Most of these systems rely too much on neural control
driving the body and behavior instead of the other way
around. | would also add from a neuroscience standpoint,



80

J.L. Krichmar

Table 1 How well cognitive robots follow Pfeifer and Bongard’s agent design principles.

Design principle Adherence to principle Room for improvement

Three constituents principle Yes, in laboratory settings Need to demonstrate cognitive capabilities outside the lab

Complete agent Yes, when embodied Need more general-purpose systems

No, because too specialized

Cheap design Very rare Cognitive robots depend too much on top-down brain
processing. They need to be designed to exploit the
environment and listen to their body

Degeneracy Yes Cognitive robots should be designed with degeneracy in
mind. Observers should take note of how their system
displays degeneracy

Sensory-motor coordination Yes Cognitive robots usually follow this principle, but it could be
exploited by designing more interesting behaviors

Ecological balance No Need to put more emphasis on the body handling processing

Parallel, loosely coupled systems Yes, in practice
No, in the analysis and study

Value Yes, in artificial value systems

(i.e. morphological computation) to offload top-down brain
control

Most cognitive robotic systems follow this principle in their
design. But, the behaviors they exhibit do not exploit
parallelism and concurrency

For value to have true meaning, it needs to directly affect
the agent’s body

most of these systems are focused on cortical processing,
and tend to ignore critical subcortical processes. However,
this is a reflection of neuroscience community in general,
and not just the modelers.

We need to put more emphasis on the morphology of our
cognitive robotic systems. Brains do not work in isolation;
they are closely coupled with the body acting in its environ-
ment. The brain is embodied and the body is embedded in
the environment. However, it goes beyond that. Biological
organisms perform morphological computation, that is, cer-
tain processes are performed by the body that would other-
wise be performed by the brain (Pfeifer & Bongard, 2007).
This would allow the central nervous system, which is
slower and requires more processing, to predict, plan, and
adapt by comparing its internal models with current infor-
mation from the body (Hickok et al., 2011; Shadmehr &
Krakauer, 2008).

Why is this important?

Putting the brain, body, and environment into balance is
critical for several reasons. First, having this balance would
allow the brain processing of the agent to be more closely
coupled with the body of the agent, and in turn its interac-
tion with the environment. In biological organisms, the ner-
vous system, which includes the spinal cord, subcortical
regions, and the cortex is in close interaction with not only
a wide array of external sensors, but also internal sensors
that are monitoring all aspects of the body (Damasio,
1994). In a sense it is very difficult to separate the brain from
the body. In fact, it is nonsensical since the brain is techni-
cally part of the body! Second, having this balance will allow
the body to handle many of the reflexive, rapid movements
and responses to environmental events, and allow the cen-
tral nervous system to handle what has been traditionally
been called cognitive. That is, planning, executive control,
predicting future outcomes, decision-making, and adapting

to improve future actions. Third, cognition requires action
and feedback from its body. The action may be outward,
or it may be internalized. However, the end result is a future
action. Planning for a future action requires some sense of
the effect the action will have on the body. If it is a forward
model, there is a prediction of what the agent should sense
after an action. If it is an inverse model, there is a prediction
of the body state after an action. Even high-level planning
over a long time period needs to be grounded at some level
to physical action. Fourth, having this balance should allow
for the construction of more flexible and general-purpose
agents. These complete agents could then demonstrate a
wide range of capabilities over a broader set of environ-
ments. Such an agent might be more comparable with a bio-
logical organism, might be considered truly cognitive, and
may have some societal benefits as well.

Following up on that final point, the BICA community
needs to demonstrate that cognitive robots are practical.
Although | have personally gained a better understanding
of how the brain works by building these artifacts, it may
not be enough. It is not just that the BICA community has
to show that these systems are practical to gain legitimacy;
they also need to show that something is to be gained by
taking a cognitive approach. Recent technological advances
in affordable computation, sophisticated sensors, and rapid
prototyping give us an immediate window of opportunity.
Building artifacts that demonstrate a wide range of cogni-
tive behaviors in real, physical environments would be a
step in that direction. To do so will require having the brain
and body in register.
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