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Abstract— The brain’s neuromodulatory systems play a key role 
in regulating decision-making and responding to environmental 
challenges. Attending to the appropriate sensory signal, filtering 
out noise, changing moods, and selecting behavior are all 
influenced by these systems. We introduce a neural network for 
action selection that is based on principles of neuromodulatory 
systems. The algorithm, which was tested on an autonomous 
robot, demonstrates valuable features such as fluid switching of 
behavior, gating in important sensory events, and separating 
signal from noise. 
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I.  INTRODUCTION 
A general purpose algorithm, based on principles of the 

brain’s neuromodulatory systems, is presented for action 
selection in robots. Neuromodulatory systems are present in all 
vertebrates and are critical for an animal to quickly assess the 
context of sensory input and take action [1]. Neuromodulators 
signal environmental changes to the nervous system and alter 
neuronal responses such that the organism can respond quickly 
and accurately to these changes.  

Rather than present a neurobiologically detailed model of 
how the nervous system achieves this function through 
neuromodulation (see for example [2]), a general-purpose, but 
minimal model of neuromodulatory function is developed, 
which can be applied to robot control.  

Although there have been great advances in autonomous 
robotics [3-6], the controllers of these machines are still very 
much tailored to specific missions and do not have the 
behavioral repertoire normally associated with that of biological 
organisms. Behavior-based robots neither learn from their 
experience nor adapt to environmental change [7]. Probabilistic 
robot controllers need an accurate model of their sensors and 
actuators [8]. Evolutionary robots are constrained by a fitness 
function specified by the designer [9]. Robots, which are 
controlled by reinforcement learning or machine learning, are 

driven by reward expectation and do not address attention, 
novelty, and risk assessment [10]. 

A design based on principles of the neuromodulatory 
systems would provide a framework that would allow agents to 
operate autonomously, optimally explore their environment, 
and be decisive when environmental conditions call for action.  

The vertebrate neuromodulatory systems play a key role in 
regulating decision-making and responding to environmental 
challenges [1]. In particular, the serotonergic (5-HT) system 
underlies control of stress, social interactions, and risk-taking 
behavior [11, 12]. The dopaminergic (DA) system has been 
implicated in the prediction of rewards and incentive salience or 
“wanting” [13, 14]. In a theory put forth recently by Boureau 
and Dayan [15], the serotonergic (5-HT) and dopaminergic 
(DA) systems oppose each other with respect to predicting 
punishment (5-HT) versus predicting reward (DA) along one 
dimension (labeled valence), and inhibition (5-HT) versus 
invigoration (DA) along another dimension (labeled action). 
Serotonin influences the amount of risk one is willing to take, 
the speed at which decisions are made, the impulsiveness of 
such decisions, and the suppression of actions when they are 
thought to lead toward a punishment or cost [16]. 

The cholinergic (ACh) and noradrenergic (NE) systems are 
thought to play important roles in attention and judging 
uncertainty [17]. Removal of ACh projections to the cortex 
impairs the ability to increase attentional effort [18].  NE 
neurons are sensitive to novel and salient objects in the 
environment [19] and task relevant stimuli that cannot be fully 
predicted, such as recognizing an unreliable or oddball stimulus 
[20]. Each of these neuromodulators triggers the brain’s 
attention system, and depending on the immediacy of an 
environmental cue, can result in the organism concentrating on 
the highest priority challenge. 

The nervous system responds to these high priority events 
through phasic neuromodulation, where sensory information 
and competition through inhibition is amplified relative to 
recurrent or associational information [1, 21, 22]. The result of 
this change in the relative weighting of information is to Supported by the National Science Foundation (Award Nos.: EMT/BSSE-
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sharpen responses to environmental input, increase the signal to 
noise ratio, and drive decisive responses in neural networks. 

In the remainder of the paper, a minimal neural model is 
presented that captures the aspects of neuromodulation 
described above with the goal of developing a biologically 
inspired controller for robots. To demonstrate its capabilities, 
the algorithm will be used to control an autonomous robot in an 
office setting.  

II. METHODS 

A. Robot Control 
Experiments were run on an iRobot Create equipped with 

an URG-04-LX laser range finder (Hokuyo Automatic Co. 
LTD.) and a System 76 netbook running the Ubuntu Linux 
operating system for computation (see Figure 1). The Matlab 
Toolbox for iRobot Create  
(http://www.usna.edu/Users/weapsys/esposito/roomba.matlab/) 
was used to interface with the robot. The neural simulation and 
robot control algorithm for iRobot Create was written in 
Matlab (MathWorks) and can be downloaded at: 
http://www.socsci.uci.edu/~jkrichma/krichmar_ijcnn2012_roo
mba_network.m 

 
Figure 1. Experiments were run on an iRobot Create with a laser range finder 
and netbook for onboard computation. The action selection algorithm 
arbitrated between four behavior states. A. Wall Following. B. Open Field. C. 
Explore Object. D. Find Home. 

Robot control was achieved through processing events and 
states. States were pre-canned behaviors and events were 
driven by sensory signals. An event could cause a switching of 
behavior states. The neural simulation, which is described 
below, arbitrated between incoming events and decided when 
to switch states.  

The robot handled four events: 1) Laser change. A large 
change between laser scans in front of the robot triggered this 
event. Specifically, a laser change event occurred when there 
was 100 cm of change in the middle 100 degrees of laser scans. 
2) Battery low. A random event proportionally related to the 
drop in battery level since its last charge. The more the battery 
level had dropped, the more likely the event would occur. 3) 
Bump detected. This event was triggered by the robot’s bump 
sensors or if the laser detected an object closer than 33 cm. 4) 
Dock beam. This event was triggered if the robot detected the 
iRobot Create Dock Beam, which meant that the robot was 

within 500 cm of its docking station. 

The robot switched between four behavior states: 1) Wall 
Following (Figure 1A). Wall following to the right or left was 
randomly chosen upon entering this state. Using its laser range 
finder, the robot would attempt to stay between 40 and 60 cm 
of a wall or other large object. If a collision with an object was 
detected, the robot rotated away from the wall (e.g., if 
following the right wall, the robot would rotate left). 2) Open 
Field (Figure 1B). The robot would drive toward the most open 
area of the environment, as judged by the laser range finder. If 
a collision with an object was detected, the robot would rotate 
clockwise. 3). Explore Object (Figure 1C). The robot would 
move toward the area of the environment that changed the 
most between laser scans. If a collision with an object was 
detected, the robot would rotate clockwise. 4) Find Home 
(Figure 1D). In this state, the robot would enter the iRobot 
Create’s cover and dock mode. This caused the robot to 
perform a random search and an attempt to dock if a buoy from 
the iRobot Create’s dock beam was detected. If the beam was 
detected, the robot approached the dock. If the robot got within 
the dock’s force field or ten seconds passed without detecting a 
dock beam, the robot would back up and rotate 180 degrees. If 
the robot was within the force field, the battery level was set to 
fully charged.  

B. Neural Simulation  
Neuromodulatory systems receive sensory information and 

drive behavior by innervating downstream neural systems. 
Much of the information these systems receive is sub-cortical 
and their targets are subcortical as well [23-25]. The general 
framework of the present architecture is that sensory events 
can trigger neuromodulatory systems, which in turn drive 
behavior states. Although the architecture given in Figure 2 is 
specific to the present problem space, any combination of 
events and behavioral states could potentially be arbitrated by 
the present model of neuromodulatory systems.  

In the present paper, the neural simulation consisted of four 
event neurons, each of which corresponded to one of the four 
events described above, four state neurons, each of which 
corresponded to one of the four states described above, and 
neuromodulatory neurons. There was one dopaminergic neuron 
(DA), one serotonergic neuron (5-HT), and four ACh/NE 
neurons, each of which corresponded to one of the four events 
described above. Figure 2 shows the connectivity of the 
network.  

Initial simulations were carried out to set the weights and 
parameters given in the equations below. Weights were chosen 
such that the network demonstrated stable activity, and such 
that a phasic burst of neuromodulatory activity could 
efficiently drive action selection [1, 2]. State neurons 
connected to other state neurons with both excitatory (weight = 
0.5) and inhibitory (weight = -1.0) connections. 
Neuromodulatory neurons selectively connected to state 
neurons with weights set at 5, event neurons selectively 
connected to neuromodulatory neurons with weights set at 1, 
event neurons connected to the corresponding ACh/NE 
neurons with weights set at 1, and each event neuron connected 
to all the state neurons with weights set at 1. 
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In the present simulation, laser changes signaled novelty or 
something potentially rewarding in the environment worth 
taking a risk to investigate, and thus triggered dopaminergic 
neurons (LaserChangeDA in Figure 2). A low battery or a 
dock beam signaled a need for low risk or harm aversive 
behavior, and thus triggered serotonergic neurons 
(LowBattery5-HT and DockBeam5-HT in Figure 2). A 
bump could signal either something interesting or noxious in 
the environment. Therefore, the bump event triggered DA in 
some simulations and 5-HT in others, as will be explained 
below. Future versions of the simulation architecture will 
investigate adaptive switching between DA and 5-HT for 
shared events. DA neurons triggered curiosity-seeking 
behaviors, such as OpenField and ExploreObject. 5-HT 
neurons triggered harm aversive behaviors, such as 
WallFollow and FindHome.   

  
Figure 2. Architecture of the neural simulation. Arrows denote connections 
between neurons. The dashed lines denote connections that are not present in 
all experiments. For clarity, connections between state neurons are omitted.  

A simulation cycle, t, occurred approximately once per 
second, which was roughly the time needed to read the robot’s 
sensors, update the neural simulation, and send a motor 
command to the robot. The main limitation for cycle duration 
was Matlab handling of I/O. Future versions of the software 
will be written in C/C++ to speed up I/O and shorten 
simulation cycles.  

Event neurons were binary and set to 1 when an event 
occurred, and 0 otherwise. All other neurons were governed by 
the following activation function, which kept neural activity 
between 0 and 1: 

€ 

n(t) =
1

1+ e−gI ( t )
 (1) 

Where g was the gain of the function and I was the input to 
the neuron. Given the initial weights, gains and the baseline 
input in equation 2 were set such that the range of excitatory 
and inhibitory inputs to the neuron would cover the full range 
of the sigmoid curve. Therefore, the gain was set to 2 for state 
and neuromodulatory neurons, and 5 for ACh/NE neurons. 
Input to the neuron was based on pre-synaptic neural activity, 
previous neural activity, and neuromodulation: 

€ 

I j (t) = b + c(t)ni(t)wij (t) + pn j (t −1) + nm(t)
i
∑  (2) 

Where b was the baseline input set to -1.0 for DA and 5-HT 
neurons, -0.5 for ACh/NE neurons, and -1.0+rand (0.0,0.5) for 
state neurons, c(t) was set to the sum of DA and 5-HT neuron 

activity for inhibitory connections, otherwise c(t) was set to 1.0 
[1]. p was the persistence set to 0.25 for all neurons and nm(t) 
was the neuromodulatory input into state neurons: 

€ 

nmi(t) = nk (t)wki(t)AChNE j (t)e j (t)w ji(t)
k
∑

j
∑  (3) 

Where nmi(t) is the neuromodulatory input into state 
neuron i, nk(t), is the activity of either the DA or 5-HT neuron, 
wki(t) is the weight from neuromodulatory neuron k to state 
neuron i, AChNEj(t) and ej(t) are the activities of ACh/NE and 
event neurons corresponding to event j, and wji(t) is the weight 
from event neuron j to state neuron i. 

Short-term plasticity dictated the activity of the 
neuromodulatory neurons. Because cholinergic and 
noradrenergic neurons respond to novelty, short-term plasticity 
was such that ACh/NE neurons responded vigorously to rare 
events and quiescent to frequent events. Because dopaminergic 
and serotonergic neurons are sensitive to appetitive and 
aversive events, respectively, short-term plasticity for DA and 
5-HT were set such that they were sensitized to salient events.  

To capture this plasticity, Event to 5-HT, DA, and ACh/NE 
weights were set based on the following update rule: 

wij (t) =
pwij (t −1) if ei =1

wij (t −1)+
1−wij (t −1)

τ
otherwise

"

#
$

%$
 (4) 

Where i is the index of the event neuron, j is the index of 
the 5-HT, DA, or ACh/NE neuron, p is the amount of change 
in response to an event, and τ, which was set to 50, was a time 
constant that governed the rate at which weights returned to 
their original value. Weights from event neurons to 5-HT and 
DA neurons were facilitating, meaning that each event caused 
the weight to increase (p = 1.1). Weights from event neurons to 
ACh/NE neurons were depressing, meaning that each event 
caused the weight to decrease (p = 0.1). These rates were set 
based on the expected occurrence of events during a five-
minute session of running the robot.  

Action selection occurred after the neural activities and 
weight updates were calculated. A new behavior state was 
selected if the maximally active state neuron had activity 
greater than 0.67, which was set such that new actions would 
be selected roughly 2 to 3 times per minute.  

III. RESULTS 
The robot was run in a series of experiments in an office 

having several desks, chairs, a door and a window (Figure 1). 
Each experiment lasted approximately 5 minutes. Some 
simulations were slightly longer to allow the robot to complete 
a behavioral state at the end of a trial. The robot was run under 
three experimental conditions: 1) Bumps were treated as 
potentially harmful by connecting Bump event neurons to the 
5-HT neuron. 2) Bumps were treated as novel and interesting 
by connecting Bump event neurons to the DA neuron. 3) The 
second condition was repeated with the ACh/NE neurons 
always active. This condition tested the effectiveness of the 
ACh/NE neuromodulation on action selection. All conditions 
were run five times. 
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Figure 3. State and neural responses during representative trials. Neural activity ranged from quiescent (dark blue) to maximally active (bright red). The x-
axis shows the simulation cycles, which took roughly 1 second per cycle. A. Bump event neurons connected to the 5-HT neuron. B. Bump event neurons 
connected to the DA neuron. C. Bump event neurons connected to the DA neurons and ACh/NE neurons were set to be maximally active.
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A. Action Selection and Neuronal Response 
Figure 3 shows representative trials from the three 

experimental conditions. The top chart shows the behavioral 
states over time. The activity of event neurons, state neurons, 
and neuromodulatory neurons are shown underneath the 
behavioral state chart. Neuronal response is color coded from 
dark blue (0 or quiescent) to bright red (1 or maximally 
active). 

1) Harm aversive responses 
Figure 3A shows an experiment in which the neural 

simulation had a connection from Bump events to the 5-HT 
neuron. Because connections from Event neurons to the 5-HT 
neuron were plastic and facilitative (Eqn. 4), each event 
caused an increase in serotonergic activity during the trial. 
This resulted in the robot having a tendency to stay in the 
harm aversive states, such as WallFollow or FindHome. Note 
that when the robot was in the FindHome state, neurons were 
not updated because the robot was running the pre-canned 
iRobot Create Cover and Dock algorithm. 

The ACh/NE neurons responded to change or uncertainty 
in the environment. This was achieved through the plastic, 
depressive connections from Event neurons to ACh/NE 
neurons (Eqn. 4). ACh/NE filtered out events that occurred 
frequently and responded strongly to unexpected events. For 
example, the battery event occurred throughout the trial. 
ACh/NE responded to the event initially (cycle 10 in Figure 
3A) resulting in a switch to the FindHome state. However, the 
system ignored the event until cycle 230, when a battery event 
occurred after a long absence. The spike in ACh/NE activity 
resulted in a spike in State neuron activity for WallFollow and 
FindHome, resulting in the robot selecting the FindHome 
behavioral state. Close examination of Figure 3 shows how 
this gating of important or novel events can result in swift and 
decisive action selection. In contrast, uninteresting or frequent 
events are automatically ignored. 

2) Curiosity and risk-taking responses 
Changing the connection from the Bump event such that it 

triggered DA activity caused the robot to spend more time 
exploring objects and moving toward the center of the 
environment (Figure 3B). DA activity was much higher in the 
Figure 3B trial than in the Figure 3A trial. This resulted in the 
robot choosing the curiosity seeking OpenField and 
ExploreObject states more often. ACh/NE activity had the 
same gating effect as before. For example, a rare laser event at 
cycle 350 resulted in a spike of activity in the ACh/NE and 
ExploreObject neurons causing the robot to select the 
ExploreObject behavioral state (Figure 3B). In contrast, the 
ACh/NE neurons habituated to the constant Bump events from 
cycles 100 to 200 causing the robot to ignore these events for 
the most part. 
 

 
Figure 4. Behavioral state selection. Boxplots on the left show the number of 
transitions to a state. Red lines denote the median, blue box denotes 25th to 
75th percentile, and whiskers show the remaining data. Charts on the right 
show the proportion of time spent in a behavioral state. Each condition had 
five trials. A. Bump event neurons connected to the 5-HT neuron. B. Bump 
event neurons connected to the DA neuron. C. Bump event neurons connected 
to the DA neuron when ACh/NE neurons were always maximally active. 

B. Behavioral Performance 
1) Harm aversive behavior 

When there was more serotonergic activity, the robot 
tended to select harm aversive behaviors such as WallFollow 
and FindHome (Figure 4A). The increase in serotonergic 
activity was due to connections from the Battery, Beam, and 
Bump event neurons to the 5-HT neuron. There was a 
significant increase in the amount of time spent in WallFollow 
and FindHome by robots in this condition compared to when 
Bump events triggered DA activity (p < 0.01, Wilcoxon rank 
sum test, and compare Figure 4A to 4B). Wall following and 
staying near the nest is typical of rodents when in an 
unfamiliar environment or when they are highly anxious [26, 
27].  

2) Curiosity and risk-taking behavior 
The robot was more likely to explore its environment 

through OpenField and ExploreObject behaviors when its 
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dopaminergic system was active (Figure 4B). The increase in 
dopaminergic activity, during this condition, was due to 
connections from the Laser, and Bump event neurons to the 
DA neuron. There was a significant increase in the amount of 
time spent in the OpenField state by robots in this condition (p 
< 0.001, Wilcoxon rank sum test, and compare Figure 4A to 
4B). As rodents become more familiar with their surroundings, 
they will tend to move toward the center of the environment 
and will explore novel objects [26]. Moreover, dopamine 
activity has been shown to be involved in novelty seeking [25, 
28] and incentive salience [13].  

3) Distracted behavior 
In agreement with empirical findings, an impaired 

ACh/NE system resulted in distracted behavior [29]. In the 
trial shown in Figure 3C, the ACh/NE neurons were always 
set to 1. The result was more action selection and the inability 
to ignore unimportant events. Figure 4C illustrates that there 
was a significant increase in switching to OpenField and 
ExploreObject states, as well as the WallFollow and 
FindHome states (note the change in the y-axis scale) when 
ACh/NE was impaired (p < 0.01, Wilcoxon rank sum test). In 
general, an overactive ACh/NE system results in the robot 
responding to nearly every event with the corresponding 
behavioral state. 

IV. DISCUSSION 
An algorithm was introduced for action selection and 

decision-making based on principles of neuromodulatory 
signaling in the brain. Similar to classic robot control 
algorithms, such as subsumption architecture [30] and 
behavior-based schemas [31], the algorithm presented here 
automatically arbitrates between actions based on current 
sensory input. However, the present algorithm has the ability 
to adapt to changes in the environment by: 1) increasing 
sensitivity to sensory inputs, 2) responding to unexpected or 
rare events, and 3) habituating or ignoring uninteresting 
events.  

A. Increasing Sensitivity and Shifting Behavior  
By changing the internal meaning of a sensory event (e.g., 

bump triggers DA instead of 5-HT), the robot switches from 
harm aversive to curious behavior (compare Figure 4A to 4B). 
This behavioral shift is brought about by an increased 
sensitivity of a specific neuromodulatory system to 
environmental events. The increased sensitivity triggers 
activity in the appropriate state neurons causing a new 
behavior to be selected. Similar to a biological system, this 
shift is swift and decisive [1, 23]. In the present work, the 
designer of the algorithm chose the connectivity based on the 
desired robot function. In the future, it will be of interest to 
have this switch in connectivity occur automatically due to 
experience dependent learning.  

Similar to the robot behavior shown here, rodents switch 
from risk averse to exploratory behavior as they become 
familiar with an environment [26]. Interestingly, these systems 
affect similar functionality in humans. For instance, variation 
of the serotonergic system influences social anxiety [32]. 
Variations in the dopaminergic system have been shown to 
affect risk-taking during gambling, the ability to filter out 

noise, and cognitive flexibility [33, 34].  

B. Responding to Unexpected Events 
Comparable to biological nervous systems, the simulated 

ACh/NE neurons responded to unexpected events with a 
sharp, phasic burst of activity causing the appropriate 
neuromodulatory and state neurons to respond [1, 23]. For 
example, the neural responses to a rare event such as the beam 
event (see cycle 270 of Figure 3A) caused the ACh/NE system 
to gate in this event to the system such that it could be handled 
properly. 

The ACh/NE system is known to be critical for 
appropriately allocating attention [17, 18]. When the ACh/NE 
system was impaired in the algorithm, the robot lost its ability 
to filter out noise and responded to any incoming sensory 
event (Figure 3C and 4C). Such distracted behavior, when 
these systems are impaired, is in agreement with empirical 
findings [29]. 

C. Ignoring Uninteresting Events 
In addition to gating in important events, the ACh/NE 

system filtered out unimportant sensory events. The 
cholinergic and noradrenergic neurons respond strongly to 
novel and salient objects in the environment [17, 19]. The 
algorithm demonstrated this selectivity. For example, since the 
robot was operating in a crowded office, the bump event was 
being triggered constantly (see Figure 3). Initially, the robot 
acknowledged this event, but over time, the robot learned to 
ignore this event so that it could respond appropriately to 
other, more meaningful events. The ACh/NE system was 
necessary for this filtering as could be seen in Figure 3C 
where the robot responded to these frequent bump events 
resulting in constant switching of behavior when the ACh/NE 
system was impaired.  

D. Related Work 
While there have been many models of action selection, 

the present work addresses how principles of neuromodulation 
could control autonomous robot behavior. Briefly, some 
related work is reviewed here. In the field of autonomous 
agents, “affect” has been used to shape the behavior of both 
simulated and robotic agents. For example, Blanchard and 
Cañamero examined trade-offs between exploration and 
exploitation based on the notions of well-being and affect [35]. 
They define “affect” as the immediate or instinctive evaluation 
of a situation (positiveness or negativeness). In their 
experiments, the robot’s well-being was related to the agent’s 
internal value judgment of its distance to a box, and its affect 
was related to the agent’s evaluation of safety based on its 
familiarity with the objects it was sensing. The robot’s 
behavior was dictated by a dynamical system and the affect 
term modulates the robot’s motivation to continue. Similar to 
affect is the notion of comfort or safety, which has also been 
proposed to influence exploration behavior in robots [36]. 
Affect has been used in evolutionary algorithms to develop 
exploration/exploitation strategies in dynamic choice trials 
[37], and affect has been embedded into the reinforcement-
learning algorithm where reward is based on the happiness and 
sadness of the agent [38]. In the autonomous agent models 
discussed above, brain-inspired terms such as anticipation, 
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affect, emotions, hormones, and modulation are simulated to 
facilitate action selection and exploration/exploitation trade-
offs. However, these models do not specifically address the 
mechanism by which the nervous system gives rise to 
behaviors, such as action selection, exploration, and 
exploitation. The framework presented here, provides a neural 
description of how neuromodulation of neural circuitry could 
account for such adaptive behavior. A possible advantage of 
the present approach is that it provides a model that can be 
directly tested against animal models; both in its behavioral 
response and in its neuronal response. This synergy between 
empirical and simulated data, which can lead to improvements 
in the model and predictions in the modeled organism, is a 
goal of computational neuroscience. 

In the field of computational neuroscience, theoretical 
models have been proposed on neuromodulation, but they 
have not considered all of the neuromodulatory systems and 
their interactions with cortical and subcortical areas. The 
phasic response of the dopamine system has been proposed to 
signal temporal difference error [14]. Following this idea, the 
phasic response of dopamine has been modeled to shape 
action selection and reward anticipation behavior in 
neurorobots [39-42]. Our previous model took into 
consideration the phasic aspects of dopaminergic and 
serotonergic neuromodulation [2]. This model postulated, 
similar to a model of noradrenergic neuromodulation [23], that 
phasic neuromodulation causes an organism to be more 
decisive, whereas a lack of phasic response would result in 
more arbitrary action selection. However, to our knowledge, 
few if any researchers have developed a model that includes 
the cholinergic, noradrenergic, and serotonergic systems in 
one robot controller. 

V. CONCLUSION AND FUTURE DIRECTIONS 
A biologically inspired algorithm was introduced for 

action selection and controlling robot behavior. The algorithm 
shows several important features for autonomous robot control 
in general, such as, fluid switching of behavior, gating in 
important sensory events, and separating signal from noise. 
The basic algorithm and architecture (Figure 2) can be tailored 
to many robot control problems. In the future, an algorithm to 
adaptively gate shared events, such as the Bump event, 
between different modulators will be developed. One possible 
implementation would be to set a comfort level for the agent 
such that when the agent is anxious, a bump is noxious and 
triggers 5-HT, and when the agent is curious, a bump could be 
considered something to explore. Mice have been known to 
switch between these comfort levels when exploring 
environments [26]. 

The present architecture did not take into consideration 
long-term memory and goal-directed signals from cortical 
areas. In the future, the architecture will be expanded such that 
predictive signals from the frontal cortex could modulate the 
neuromodulators and train the neuromodulators to predict 
events and take actions before those events occur. The 
prefrontal cortex and anterior cingulate cortex are known to 
have strong projections to all the neuromodulatory systems 
[23, 43]. In addition, future versions of the architecture will 
have a layer that can build up a memory of events and their 

location. In general, the present architecture can be thought of 
an action selection module that can fluidly switch between 
behavioral states and could be added onto many different 
control systems. 
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