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Abstract 

Novelty is central for survival of biological and design of artificial agents. On one hand, 
cognitive and neuro- sciences accumulated large corpus of experimental data addressing 
diverse mechanisms of novelty detection, response and adaptation. Increasing evidence 
supporting the Predictive Coding Theory5 suggests an approach for integrating these diverse 
empirical findings of novelty research into coherent framework. On the other hand, AI and deep-
learning-based machine learning systems in particular, have been mostly developed under the 
closed world assumption: Their performance is routinely tested using data that is in-distribution 
relative to training data, which resulted in fragility of these systems in face of open-world 
novelty. We propose an integrated approach to novelty processing in biological and AI systems, 
review supporting neurocognitive research and sketch a roadmap for designing novelty-aware 
AI systems based on Predictive Coding Theory.  

1. Introduction 

For successful operation in stochastic partially observable open world settings, natural 
and artificial agents have to be equipped with ability to detect, respond and adapt to novel 
stimuli and situations. Biological organisms possess genetically pre-programmed ability to 
detect, respond and adapt to novelty. Even honeybees with a one million-neuron brain can 
master zero-shot transfer tasks, while phylogenetically higher animal species use novelties as 
opportunities to learn rich models of the environment. Indeed, human brains are exquisitely 
attuned to detect all kinds of novelties that evoke a broad range of responses. These responses 
are subjectively experienced as being surprised, astonished, dazzled, puzzled, baffled, stumped 
and flabbergasted, to name just a few of the nuanced epistemic emotions associated with 
novelty.1 The multitude of such responses reflects complex underlying (meta-)cognitive 
machinery that detects the novelties, controls attention, memory and learning and prepares an 
organism for adaptive responses. For example, surprise draws attention to and calls for 
reexamining percepts, recollections and spatial-temporal context; being puzzled or baffled call 
for revisiting one’s understanding of the situation; being flabbergasted makes one realize 
substantial lack of some particular knowledge, which calls for extensive exploration and 
learning.   

Such flexible, novelty-driven learning that updates and adapts internal models to novel 
circumstances is a hallmark of natural intelligence.1 This is in contrast to current state-of-the-art 
machine learning (ML) based AI systems that tend to be fragile in face of novelty. Examples of 
such fragility to novelty in AI include in ML models, poor performance on samples drawn from 
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out-of-distribution (OOD) data and in reinforcement learning and planning agents interacting 
with open world environments, inability to cope with unexpected and novel world states. It has 
been suggested that a key factor contributing to such failures is shortcut learning,2 which 
exploits spurious correlations in datasets instead of learning patterns intended by the 
researchers. This is enabled by the common ML practice to both train and test on in-distribution 
data. More broadly, the causes of such fragility lie in the routinely used closed-world 
assumption. 

In the ML papers that actually addresses open-world or open-set tasks, novelty assumes 
one of the following forms: 1) discrete anomalous observations or events, 2) change in the 
environment or context, 3) change in task. These forms of novelty have been tackled using the 
1) framework for out-of-distribution (OOD) sample detection, 2) change detection methods and 
domain adaptation, and  3) transfer, continual and meta- learning for novel tasks.3 These 
methods emerged as solutions to various empirically discovered limitations of ML models 
applied to specific engineering problems and thus are lacking in more general organizing 
principle.  

We believe the research into cognitive and neuronal mechanisms of novelty detection 
and response can provide invaluable insights for developing such general organizing principles 
for novelty-aware AI systems capable of fast learning without the degradation of previously 
acquired memories and knowledge. Moreover, such insights might offer a way for designing 
radically autonomous AI agents.4 

The rest of the paper is organized as follows. In Section 2 we present an exposition of 
the proposed metacognitive novelty detection cascade. Section 3 reviews some relevant 
cognitive and neuro-cognitive research, while section 4 offers a formalization of the notion of 
novelty and discussed novelty detection, response and adaptation mechanisms as an 
instantiation of the general framework of novelty theory5 based on the Bayesian Brain 
hypothesis and Predictive Coding theory.6,7  

2. Novelty metacognition in predictive coding models 

Our perspective on novelty processing is based on an extension of the Bayesian Brain 

hypothesis.8 The hypothesis posits that the brain not only learns a perception model Mf( ) for 
inferring world state estimates ŝ from observations o, but it is also equipped with an internal, 

generative, model Mg( ) of the environment, which specifies a model for generating sensory 
observation predictions ô from hidden state estimates ŝ via the learned distribution p(ô|ŝ). The 
true hidden states in the environment are assumed to be drawn from a prior distribution p(s), 
while the sensory observations are drawn from an observation distribution conditional on the 
hidden state, p(o|s).9 

 
a) 

 

b) 

 
Figure 1. a) Generative World Model according to the Bayesian Brain hypothesis; b) 

predictive coding implementation.  
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Then the hidden world state is estimated using Bayes rule: p(s|o) ~ p(ô |ŝ)p(ŝ)/p(ô). 

While the Bayesian Brain hypothesis can be implemented in a variety of ways, 
neurocognitive research has provided growing evidence that neuronal responses in many areas 
of mammalian neocortex are consistent with the predictive coding theory (PCT6). In PCT cortical 
neurons employ prediction error ε as the feed-forward signal used in inferring world state 
estimates ŝ. Effectively, such prediction errors are used for updating the state estimate and, 
following Kalman filter formalism, can be thought of as innovations. Note that Kalman filter-
inspired predictive coding model can also track the variance of the prediction that can be used 

for setting a variable threshold for signaling novelty. To make the model Mf( ) compatible with 
neurocognitive research, it can be instantiated to infer state estimates ŝ as schemas, and 
depend not only on current observation, but also prior state estimates ŝt-1, ŝt-2,.. stored in 

episodic memory: Mf(ot,ŝt-1,..|  ). The predictive coding model is readily extendible to a 
hierarchical version where prediction error is calculated not only for predictions of sensory 
observations, but also for higher-level representations, such as schemas. 

The prediction error depends on observations ot and how well the generative model 

Mg(ŝt,ŝt-1,..|  ) can predict future inputs ôt+1, which in turn depends on both the state estimates 

ŝt,ŝt-1,.. and model parameters . The state estimate ŝt is updated from prediction errors and 

possibly previous state estimates ŝt-1,.., using the perception model Mf( ). In effect, prediction 

error is a function not only of observation o, but also of model parameters {,  } and state 
estimates ŝt,ŝt-1,... Thus, in order to discover the true source of the prediction error, one has to 
examine all of these factors. We propose that the novelty processing in the brain proceeds in a 
cascade that examines these potential sources of error in sequential manner so that each stage 
engages greater resources. The diagram in figure 2 depicts key components of such a cascade. 
Below we sketch the operation of the cascade. 

 

 
Figure 2. Proposed Novelty Processing Cascade. Red pentagons depict (meta-)cognitive control 
regulated by neuromodulatory systems of the brain and associated with epistemic emotions. Red 
arrows indicate either novelty response escalation (up-right), or iterative feedback (leftward-facing). 
The broken line arrows indicate quenching of novelty response (abort, postpone etc), which is 
associated with negative metacognitive feelings. Blue blocks are the core cognitive and meta-cognitive 
operations for novelty processing, yellow diamonds depict prediction error evaluation. The green ovals 
are novelty resolution outcomes and are associated with positive meta-cognitive feelings.    
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The novelty processing cascade (see figure 2) is triggered by the prediction error 
calculated in various neocortical areas.  If the prediction error exceeds a certain threshold, 
which is a function of the uncertainty of prediction (e.g. for the Gaussian model the threshold 
can be specified as set at some distance from the mean in terms of standard deviation) that 
triggers the surprise response.10  In addition, the prediction error may be modulated by task-
specific attention (see the Vigilance pentagon of stage one)  in such a manner that only task-
relevant (i.e. high-reward) stimuli are contributing to the prediction error. This way, behaviorally 
irrelevant novel stimuli would not contribute to the surprise (albeit consider salient unexpected 
but irrelevant stimuli that can trigger orienting resposne; c.f.11). 

Once surprise (a.k.a. orienting response) is triggered, the novelty processing cascade 
attempts to eliminate the prediction error by initially attempting to resolve lower level 
discrepancies using limited means, but on failure elevating processing level that may engage 
greater brain resources. Thus, the initial attempt to minimize prediction error is constrained to 
updating the inference process for re-evaluating the state ŝt (updating the inference process 
may involve adjusting attention allocation, resetting context etc).  If this fails to eliminate 
surprise, the novelty response is elevated to what we call “puzzlement.” Puzzlement is aimed at 
improving model parameters (c.f. meta-update in meta-learning) and may involve covert and 
overt exploratory actions, such as scanning inputs and memory, seeking additional information 
and parameter updates using newly acquired information. If the puzzlement stage fails to 
identify and resolve causes of prediction error due to model parameter uncertainty, the novelty 
processing is elevated to the level of being “flabbergasted” (sometimes called “dazzled” in the 
literature1). At this stage the agent realizes fundamental lack of knowledge and understanding 
and in case of positive motivational factors proceeds with revising the world model M in depth 
that may include substantial reorganization (c.f. architecture search in ML). 

Thus, epistemic emotions of novelty, mediated by the neuromodulatory mechanisms 
(figure 2, red pentagons), trigger meta-cognitive processing aimed at resolving the sources of 
prediction error (blue blocks); the prediction error is reevaluated repeatedly (yellow diamonds), 
until resolution is achieved resulting in positive meta-cognitive emotions (green ovals). Novelty 
processing escalation leading to the subsequent stage in the cascade, is resource-intensive, 
hence escalation is not always possible. This can lead to aborted novelty processing (broken 
line arrows), which subjectively is experienced as negative metacognitive feelings.1  

Note that while surprise is a fast epistemic emotion consistent with “System 1” (fast and 
reflexive) operation, puzzlement and flabbergasted states are more consistent with slower 
operation of “System 2” (slow and deliberative) as they engage metacognitive structures.12  

3. Neuro-cognitive mechanisms for processing novelty 

In this section we review some evidence from cognitive and neuro- sciences supporting 
the proposed novelty processing cascade. 

Representations of world model M in the brain encompass both semantic knowledge, or 
schemas, stored in neocortex, and episodic memories whose substrate is hippocampal 
formation. Indeed, people do not process and store every detail of events they have 
experienced, instead they use “schemata” – abstract knowledge structures. These schemata 
are based on expectations of the way things “should be” based on experience.13  In machine 
learning (ML) context schemata can be defined as collections of objects bound together by a 
common context.14  

Within schema theory, “novelty” can be defined as anything that breaks with these 
expectations.15 This definition suggests that novelty is based on each person’s past experience 
(as schemata are based on one’s experiences)1 and the world state estimate they are currently 
applying to their perceptions. Novelty can be a feature of objects themselves, but it can also be 
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a feature of new capabilities, or attributes of known objects. Novelty can also be a result of 
unexpected spatial elements (relationships, configurations, or environments), and unexpected 
temporal elements (actions, interaction, goals) of existing known objects. Therefore, within this 
paradigm, novelty describes an attribute we can apply to a stimulus that doesn’t have a pre-
existing representation.15 

Cognitive psychology research refers to diverse novelty types, three of which have been 
studied extensively: absolute, associative, and contextual (a.k.a. relative) novelty.16,17 
Absolute novelty is the discovery of a brand-new class (of object, action, rule, etc.) and is 
something that has never been seen before, and hence requires learning a new schema. 
Contextual novelty is based on recent experience and arises from a mismatch between the 
components of a scene and activated schema and may require switching to a different schema. 
Associative novelty is detected when familiar objects are presented in novel configuration and 
thus may require rearranging familiar schemas (see figure 3). 

 

a) 

 
Temporal contextual novelty 

 
b) 
 

 
 

Spatial-relational contextual novelty 

c) 

 
 
Associative novelty 

d)  
 

 
 
Absolute (stimulus) novelty 

Figure 3. Examples of visual novelties used in neuro-cognitive resaerch. While 
contextual novelties (a,b) trigger surprise, they can be resolved by updating satate/schema. 
Associative novelties may require learning new associations and modifying schemas (c). 
Absolute novelty requires instantiating entirely new schemas or paradigms (d).   

In these settings, Kafkas15 defined context in terms of “spatio-temporal or other 
information, that when repeatedly paired with a stimulus, or stimulus type, creates a 
representation.” And contextual novelty as referring to “a familiar object in a new place (in space 
or temporal sequence – auth.).” Figure 3a shows a simple example of this type of novelty in the 
temporal domain (left) where a series of circles may have a random square interspersed within 
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or a series of words (in this case mammals) has one that doesn’t fit the pattern. The square 
itself is not a novel object but its inclusion in this set is not expected and therefore novel within 
context. Panel 3b shows an example of contextual spatial novelty - a plane flying in front of a 
mountain is not novel, however the orientation of the plan is. Panel 3c shows an example of 
associative novelty, where familiar objects are combined in a novel configuration, while panel 3d 
shows an example of absolute (a.k.a stimulus) novelty. 

Given these novelty types, novelty processing along the cascade of figure 2 then would 
proceed as follows. Within a goal directed task, the first step is vigilance – the monitoring of 
percepts within the current contextual paradigm defined by a task at hand. When there is a 
strong expectation violation by an oddball percept that falls outside predicted uncertainty 
tolerance, the result is surprise. This could be due to an absolute, associative or contextual 
novelty, all being schema discrepant. This unexpected stimulus causes an attention shift and 
the initial reaction would be a fast reflexive fast System 1 cognitive response that tries to quickly 
resolve the discrepancy through heuristic reasoning to quickly categorize the discrepancy and 
react appropriately. The unexpected stimuli can be resolved by registering the out-of-context 
deviant and updating/resetting working memory (ŝ) with a new modified contextual 
model/schema that incorporates the new information within the current paradigm. However, 
when this simple contextual updating fails, then the resultant response becomes puzzlement. 
Puzzlement is a higher-level metacognitive response when the observer realizes that what they 
think they know is incorrect and not easily resolved. These are likely due to absolute or 
associative novelties as a simple updating of context of the current model does not resolve the 
discrepancy. Here new information needs to be assimilated by modified schemas and 
incorporated into the world model, the model itself is updated (updates parameters) and insights 
are gained. This model expands the potential understanding of the world and results in fewer 
surprises in the future. 

If, however, the novelty is truly absolute and does not elicit any stored schemas, 
updating the model can’t resolve the prediction error, resulting in the person becoming 
flabbergasted. A completely new type of schema needs to be constructed, as a paradigm shift is 
required (what we might call “Paradigmatic Novelty”). This takes intense slow System 2 
reasoning and potentially extensive exploration and learning to resolve the prediction error. The 
world model M must be re-learned so that it can encompass the predictive capabilities of the old 
model while adding a new level of understanding that can also predict the new information.  

Cognitive and neurocognitive research have documented diverse effects of different 
novelty types on attention allocation, memory encoding, retrieval, and schema formation. For 
example, surprise-evoking novel stimuli compete with stimulus saliency18 and have immediate 
effect on attention resulting in improved perception.19 Cholinergic neuromodulatory system in 
basal forebrain (nucleus basalis of Meynert) is central to control of attention allocation,20 but 
dopamine (D1 receptors) contributions to attention control have also been reported.21  

Memory mechanisms are essential for novelty processing, as absolute novelty 
corresponds to experience that is not already contained in memory. Indeed, the novelty 
encoding hypothesis argues that novel information undergoes enhanced encoding in memory 
and thus leads to improved recognition performance.10 Brain imaging studies show that novel 
stimuli (absolute novelty) elicit activations in hippocampal formation, medial dorsal nucleus of 
thalamus, and the anterior/inferior parts of cingulate cortex.22 Animal studies further revealed 
the neuromodulatory mechanisms of memorization of novel stimuli, suggesting that novelty is 
detected by the hippocampus and through its connections to the ventral tegmental area, the 
detection of novelty can elicit dopamine release in the hippocampus, facilitating LTP at the 
activated synapses23,24. 

Furthermore, learning schemas is also affected by novelty manipulations. Tse and 
colleagues demonstrated that new information in mammals is learned extremely quickly if it 
matches a preexisting schema.25 Such preexisting schemas could consolidate associative 
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memories as one-shot learning. The hippocampus (HPC) was necessary for learning schemas 
and any new information matching a schema. Plasticity in the medial prefrontal cortex (mPFC) 
increased when information was consistent with a familiar schema.26 J. Krichmar et al.27 recently 
demonstrated how a neural network model of mPFC develops representations of schemas and 
modulates indexing patterns in hippocampus to form schema-specific task representations. 
Neuromodulatory mechanisms were critical for rapid learning of information consistent with a 
familiar schema.  

4. Towards agents with cascaded novelty processing 

In this section we begin to formalize the proposed novelty processing cascade using the 
General Novelty Framework (GTF) of T. Boult et al.5 instantiated using Bayesian Brain8 and 
Predictive Coding Theory (PCT)6,7 hypotheses. Table 1 below details mapping of the GTF 
concepts to the concepts compatible with PCT.  

 

Concept General Novelty 
Framework5 

Agent-centric 
Probabilistic Grounding 

World State 
and its 

distribution 

𝑤𝑡 ∈ 𝑊 pw=p(𝑤𝑡) 

𝐻(𝑊) = −∑𝑝𝑤 log 𝑝𝑤 

Observations 
and observation 

distribution 

𝑥𝑡 ∈ 𝑂 𝑝𝑥 = − ∑ 𝑝(𝑥𝑡+1|𝑎𝑡 , 𝑤𝑡)p(𝑎𝑡|𝑤𝑡)p(𝑤𝑡)
𝑤𝑡,𝑎𝑡

 

𝐻(𝑂) = −∑𝑝𝑥  log⁡𝑝𝑥   

Experience/ history 
tensor, parameterized 
as World Model M(𝜑) 

𝐸𝑇 = (𝐸𝑓,𝑡 , 𝐸𝑤,𝑡) 𝑀𝑇(𝜑) = 𝑝(𝜑|𝐸𝑇), 
𝐸𝑇 = {𝑥≤𝑡, 𝑧≤𝑡 , 𝑎≤𝑡}𝑇 

Agent’s state z (world 
state s + agent state) 
recognition function 

𝑧𝑡+1, 𝑎𝑡+1 = 𝑓𝑡(𝑥𝑡, 𝑧𝑡) 𝑝𝑡(𝑧𝑡+1|𝑥𝑡 , 𝑧≤𝑡) 
𝜋𝑡(𝑎𝑡+1|𝑧≤𝑡), 𝑎𝑡 ∈ 𝐴 

Dissimilarity 
operator 

(world, 
perceptual) 

𝐷𝑦,𝑇(𝑦
′, 𝑦; 𝐸𝑡) > 𝛿𝑦 

where 
𝑦 ∈ {𝑤, 𝑥} 

𝑝(𝑥𝑡|𝑧𝑡; 𝜑) < 𝛿𝑧 
contextual: 
𝑝(𝑥𝑡,𝑠′|𝑧≤𝑡,𝑠\𝑠′; 𝜑) < 𝛿𝑧𝑡,𝑠 

Regret 
(world, 

perceptual, agent) 

𝑅𝑦,𝑇: (𝑂, 𝐴) →  

𝑦 ∈ {𝑤, 𝑥, 𝑓} 

𝑅𝜋,𝑇:  𝑉(𝜋∗) − 𝑉(𝜋) 

where 𝜋∗ is the optimal novelty 
policy 

 

Table 1. Instantiation of a PCT novelty agent using the General Novelty Framework.5 
 
The probabilistic model of a PCT-based novelty agent suggests criteria for triggering 

surprise, puzzlement and flabbergasted signals: Surprise is modelled as a prediction error 
exceeding threshold that depends on predicted uncertainty. High uncertainty warrants high 
surprise threshold and vice versa.  

The puzzlement metric, Pzz, herein defined as a function of uncertainty of state z, can 
be formulated using Bayesian Surprise formula as follows: 
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𝑃𝑧𝑧 = 𝐾𝐿[𝑝(𝑧𝑡|𝑥𝑠)||p(𝑧t)] , 
where KL is Kulback-Leibler divergence between the pdfs of state zt before and after Bayesian 
update of the state with an observation xs.  

Likewise, the metric for flabbergasted state, Fbb, can be defined as: 
𝐹𝑏𝑏 = 𝐾𝐿[𝑝(𝜑|𝑥𝑠)||p(𝜑)] , 

where KL divergence is calculated between pdfs of parameters 𝜑 before and after Bayesian 
parameter update with an observation xs. 

In future work we are planning to present instantiations of our novelty-aware agent for 
several task domains. We will attempt to demonstrate that AI systems designed using the 
cascaded novelty processing principle can be trained to identify sources of and respond to 
novelty in a robust manner. 

5. Conclusions  

Since novelty is a relationship between an intelligent agent that interacts with a 
dynamical environment, it depends not only on the history of the environmental states, but also 
agent observation, learning history and memory retention. Biological agents are endowed with 
complex neuronal mechanisms for detecting novelty and learning from it. Novel stimuli and 
experiences have great impact on attention, memory and schemas of these agents. Humans 
use a multi-stage cascade for processing novelties so that different levels of such cascade are 
evoked depending on the agent’s ability to observe and represent world states in an effective, 
task-dependent manner, flexibility of their learning mechanisms and memory capacity and 
retention limits. We suggest tapping into such mechanisms for AI agent design to improve their 
“awareness” of and robustness to novelty. 
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