Brain-Based Devices for the
Study of Nervous Systems
and the Development of
Intelligent Machines

Abstract The simultaneous study of brain function at all levels of
organization is difficult to undertake with curtent experimental tools.
Present day electrophysiology only allows the recording of at most
hundreds of neurons while an animal is performing a behavioral task.
Because of this limitation and the sheer complexity of the nervous
system, computational modeling has become essential in developing
theories of brain function. Accordingly, our group has constructed
a series of brain-based devices (BBDs), that is, physical devices with
simulated nervous systems that guide behavior, to serve as a heuristic
for testing theoties of brain function. Unlike animal models, BBDs
permit analysis of activity at all levels of the nervous system as the
device behaves in its environment. Although the principal focus

of developing BBDs has been to test theories of brain function,
this type of modeling may also provide a basis for robotic design
and practical applications.
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Elucidation of brain mechanisms undetlying behavior requires simultaneous measurements across
multiple levels. The heuristic value of synthetic modeling using brain-based devices (BBDs), which
will be described here, is supported by the fact that these types of measurements are difficult to
obtain and compare in living animals. Given the construction of BBDs, we are able to observe their
overall behavior while simultaneously recording the state of their simulated nervous systems at all
levels. Since our purpose is to test theories of real nervous systems in order to artive at a better
understanding of brain function, we base the BBD’s design on principles of neural anatomy and

physiology.

We argue that a BBD should be constrained by the following design principles:

1. The device needs to engage in a behavioral task.

2. The device’s behavior must be controlled by a simulated nervous system having a design that

reflects the brain’s architecture and dynamics.

3. The device needs to be situated in the real wotld [6, 7].

4. The behavior of the device and the activity of its simulated nervous system must allow

comparisons with empirical data.
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Because of these constraints, BBD simulations tend to require large-scale networks of
neuronal elements that reflect the brain’s anatomy and physiology, high-performance computing
to run the network in real time, and the engineering of specialized physical devices to embody
the network.

BBDs ate not programmed by instructions like computers, but instead, like biological systems,
they operate according to selectional principles that allow them to adapt to the environment [11].
This design, which possesses neuroanatomical structure and large-scale neural dynamics, differs
fundamentally from that of robots. Robotic approaches using classical artificial intelligence are based
on data representation, rule-driven algorithms, and the manipulation of formal symbol systems [24,
25]. Artificial intelligence has been somewhat successful in emulating logical aspects of human
behavior, but has been less successful in dealing with perception, categorization, and movement in
the world, which is a strength of synthetic neural models and BBDs [28, 29]. Purely reactive or
behavior-based robots carry out actions that are controlled through atbitration of several primitive
behavioral repertoires without neural architectures [2, 4]. Evolutionary robotics, in which control
systems are selected after each trial or lifetime according to a fitness function [26], can evolve
complex behaviors with very simple systems, but also do not emphasize neuronal responses. A
recent hybrid between evolutionary algorithms and artificial neural network learning rules was
designed to mutate learning rules between trials, allowing learning during the lifetime of the
robot [14]. Typically, however, the artificial neural networks controlling the evolutionary robot’s
behavior are small (on the order of tens of artificial “neural units”) and do not reflect
neuroanatomical organization.

2 Examples of Brain-Based Devices

All BBDs that we have constructed contain the following attributes:

1. A morphology, or body plan, that allows for active exploration in a real environment

2. A brain simulation embedding detailed neuroanatomy, based on vertebrate nervous systems to
control the BBD’s behavior and shape its memory

3. A value system that signals the salience of environmental cues to the BBD’s nervous system,
causing change in the nervous system that results in modification of the device’s behavior.

These features result in a system that generalizes signals from the environment into perceptual
categories and adapts its behavior so that it becomes increasingly successful in coping with its
environment. These BBDs are designated the Darwin series of automata. Various Darwin automata
over the last 12 years have been shown to develop perceptual categorization, invariant visual object
recognition, integration of scenes containing multiple visual shapes with overlapping features, fusion
of different sensory modalities, and learning in the form of operant conditioning [1, 13, 19-22, 33].

In this section we describe two recent BBDs in the series, Darwin VII and Darwin VIII, with the
aim of conveying the principles underlying these devices and the power of the BBD approach in
testing theories of the brain.

2.1 Darwin VIl—Perceptual Categorization and Operant Conditioning in a BBD
The behavior of Darwin VII showed that a synthetic brain-based device operating on biological
principles and without prespecified instructions can carry out perceptual categorization and
conditioned responses (for more details regarding Darwin VII experiments and methodology,
see [19, 20]). Darwin VII’s task was similar to a foraging task in which it learned to approach and
sample positive-value blocks and avoided regative-value blocks. The arbitrarily assigned value was initially
derived from the zaste, or conductivity, of the metal blocks. After conditioning, Darwin VII assessed a
block’s value based on the block’s visual and auditory cues. The successful performance of the device
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rested on the selectional modulation of its neuronal activity by behavior interacting with constraints
provided by its value system. The development of categorical responses required exploration of the
environment and sensory-motor adaptation through specific and highly individual changes in
connection strengths.

We observed Darwin VII’s overall behavior while at the same time recording the state of every
neuronal unit and synaptic connection in its simulated nervous system. By collecting these neuronal
data, we were able to demonstrate the development of neuronal groups during categorization and
recognition, to show that reliable classification of responses to visual stimuli could be based on the
sampling of a small subpopulation of neuronal units, and to relate learning responses to functional
changes in synaptic efficacy.

Darwin VII consists of a mobile base equipped with a CCD camera for vision, microphones for
hearing, conductivity sensors for taste, and effectors for movement of its base, of its head, and of a
gripping manipulator having one degree of freedom (Figure 1).

2.1.1 Darwin VII’s Neural Architecture and Dynamics

Darwin VII’s behavior is guided by a nervous system modeled after the vertebrate system, but
obviously with far fewer neurons and simpler architecture. Six major systems make up the simulated
brain: an auditory system, a visual system, a taste system, sets of motor neurons capable of triggering
behavior, a visual tracking system, and a value system. The complete nervous system contained

Figure |. Darwin VIl consists of a mobile base (developed by Nomadic Technologies Inc., Mountain View, CA) equipped
with several sensors and effectors and a neural simulation running on a remote computer workstation. It contains a radio
modem to transmit status and auditory information to the computer workstation carrying out the neural simulation and
to receive motor commands from the simulation. Video output from a CCD camera mounted on Darwin VIl is sent to
the workstation via RF transmission. RF input and output to Darwin VII allows for untethered exploration. The CCD
camera, two microphones on either side of the camera, and sensors embedded in the gripper that measure the surface
conductivity of stimuli provide sensory input to the neuronal simulation. Eight infrared (IR) sensors are mounted at
45° intervals around the mobile platform. The IR sensors are responsive to the boundaries of the environment and were
used to trigger reflexes for obstacle avoidance. All behavioral activity other than obstacle avoidance is triggered by signals
received from the neural simulation. (From [19].)

Artificial Life Volume 11, Number 1-2 65



J. L. Krichmar and G. M. Edelman Brain-Based Devices for the Study of Nervous Systems

18 neuronal areas, 19,556 neuronal units, and approximately 450,000 synaptic connections between
neuronal units. Figure 2 shows a high-level diagram of the simulated nervous system and its
neuroanatomical structure.

A neuronal unit in Darwin VII is simulated by a mean-firing-rate model; the activity of each unit
corresponds roughly to the average activity of a group of neurons (approximately 100 neurons) over
a time period of approximately 100 ms. The mean-firing-rate model was chosen because it captures
many of the attributes of real neurons at a level of resolution consistent with electrophysiological
measurements, while being sufficiently simple to allow computation in real time. In the model,
updates were based on a simulation cycle: the period of time during which the current sensory
input is processed, the activities of all neuronal units are computed, the connection strengths of all
plastic connections are computed, and motor output is generated (see [19] for details). Each
simulation cycle in Darwin VII took approximately 200 ms of real time, which is sufficiently fast in
that the device does not wait for commands from the nervous system and can respond to stimuli
without delays.

The strength of connections between two units can change based on the activity of the sending
unit, called the presynaptic neuronal unit, and the receiving unit, called the postsynaptic unit. If the
sending and receiving units are simultaneously strongly active, the connection between them is
strengthened. If the sending and receiving units are simultaneously weakly active, the connection is
weakened. Some connections are also affected by the value system. The connection strength between
these units was amplified when the value system was active.

Activation of the simulated value system (area "a/ue, Figure 2) signaled the occurrence of salient
sensory events and contributed to the modulation, at that time, of connection strengths of all active
synapses in the value-dependent pathways. For example, tasting a block picked up by Darwin VII’s
gripper is a salient event affecting subsequent behavior that is reinforced or weakened through
synaptic change. The 1/a/ue area is thus analogous to an ascending neuromodulatory value or reward
system [31, 35].

In experiments where individual variation was examined, each Darwin VII subject shared the
same physical device, but had an instantiation in which the simulated nervous system was unique due
to different random initializations in both the connectivity between individual neuronal units and the
initial connection strengths between those units. Because the connectivity between neuronal units
was constrained by a common set of projections, large-scale connectivity (i.e., projections between
neural areas) was similar between subjects.

2.1.2 Darwin VII’'s Environment

Darwin VIIs environment consisted of an enclosed area with black walls and a floor covered with
opaque black plastic panels, on which we distributed stimulus blocks (6 ¢cm metallic cubes) in
various arrangements (Figure 1). The top surfaces of the blocks were covered with black-and-
white patterns; the other surfaces of the blocks were featureless and black. All experiments
described here were carried out with multiple exemplars of two basic patterns: blobs (several white
patches 2—3 cm in diameter) and s#jpes (width 0.6 cm, evenly spaced). Stripes on blocks in the
gripper could be viewed in either horizontal or vertical orientations, yielding a total of three
stimulus classes of visual patterns to be discriminated (blob, horizontal, and vertical). A flashlight
mounted on Darwin VII and aligned with its gripper caused the blocks, which contained a
photodetector, to emit a beeping tone when Darwin VII was in the vicinity. The sides of the
stimulus blocks were metallic and could be rendered either strongly conductive (appetitive or
“good taste”) or weakly conductive (aversive or “bad taste”). Gripping of stimulus blocks activated
the appropriate taste neuronal units (either area Taste,,, or Taste,,) to a level sufficient to drive
the motor areas above a behavioral threshold. In the experiments, strongly conductive blocks with
a striped pattern and a 3.9 kHz tone were chosen arbitrarily to be positive value exemplars,
whereas weakly conductive blocks with a blob pattern and a 3.3 kHz tone represented negative
value exemplars.
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Figure 2. Schematic of the regional and functional neuroanatomy of Darwin VII. There are six major systems that make
up the simulated nervous system: an auditory system, a visual system, a taste system, sets of motor neurons capable of
triggering behavior, a visual tracking system, and a value system. In the version used in the present experiments, the
simulated nervous system contained |8 neuronal areas, 19,556 neuronal units, and approximately 450,000 synaptic
connections. A neuronal unit corresponded to the mean activity of a small group of real neurons over approximately
100 ms. The boxes in the diagram represent neural areas, and the numbers in the boxes denote the number of neuronal
units in each area. Arrows denote synaptic projections between neural areas. The 64 %64 gray level pixel image captured
by the CCD camera was relayed to a retinal area Retina and transmitted via topographic connections to a primary visual
area Vis. There were three subpartitions in Vis, selective for bloblike features, for short horizontal line segments, and for
short vertical line segments (Vis B, Vis H, and Vis V). Responses within Vis closely followed stimulus onset and projected
non-topographically via activity-dependent plastic connections to a secondary visual area, analogous to the
inferotemporal cortex (IT). The frequency and amplitude information captured by Darwin VIIs left and right
microphones was relayed to simulated cochlear areas (LCoch and RCoch, respectively) and transmitted via mapped
tonotopic and activity-dependent plastic connections to a primary auditory area Aud. No attempt was made in this study
to use the difference between the two cochlear regions for sound localization. The activity of each cochlear neuronal unit
was broadly tuned to a preferred frequency and scaled according to the signal amplitude. Aud and IT contained local
excitatory and inhibitory interactions producing firing patterns that were characterized by focal regions of excitation
surrounded by inhibition. Aud and IT sent plastic projections to the value system (Value) and to the motor areas Moty
and Mot,,.. These two neuronal areas were capable of triggering two distinct behaviors, appetitive and aversive.
Appetitive or aversive responses were triggered if the difference in instantaneous activity between the motor areas
Mot,, and Mot,,. exceeded a behavioral threshold. Picking up and sampling the conductivity across the surface of
stimulus objects, as measured by sensors in Darwin VII's gripper, is innate in Darwin VII's behavior. In all the
experiments, strongly conductive blocks activated Taste,,, and weakly conductive blocks activated Tasteq.. The taste
system sent information to the motor areas (Mot,,, and Mot,,.) and the value system (Value). The Value area projected
diffusely with long-lasting value-dependent activity to the auditory, visual, and motor behavior neuronal units. The visual
tracking system controlled navigational movements, in particular the approach to objects identified by brightness contrast
with respect to the background. To achieve tracking behavior, the retinal area Retina projected to the area Collic
(“colliculus”). The activity in Collic was converted into wheel motor commands such that a bright object on the left (right)
caused a turn towards the left (right). (Adapted from [19].)
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The three visual categories and two auditory categories described above are not labeled or known
a priori by Darwin VII. Therefore, Darwin VII must learn these perceptual categories based on
expetience-dependent plasticity in the connections between its primary sensoty areas (LCoch/RCoch
for auditory and 177 for visual in Figure 2) and its association areas (Axd and IT in Figure 2).
Categorical memory in Darwin VII is elicited by patterns of activity in its association areas. The
patterns that emerge in response to stimuli used in the experiments described here are a small subset
of the possible activity patterns.

2.1.3 Darwin VII’'s Behavior

Basic modes of behavior built into Darwin VII included IR-sensor-dependent obstacle avoidance,
visual exploration, visual approach and tracking, gripping and tasting, and two main classes of innate
behavioral reflex responses (appetitive and aversive). With the exception of obstacle avoidance,
selection among the above behaviors was under control of the simulated nervous system. Obstacle
avoidance was initiated by the infrared proximity sensors around the device’s base. Activation of an
IR proximity detector by a wall, for example, triggered a reflexive movement away from the obstacle.
The tracking system allows Darwin VII to orient towards visual stimuli. The activity of the area Collic
(analogous to the superior colliculus) dictates where Darwin VII directs its camera gaze. Tracking in
Darwin VII is achieved by signals to Darwin VII’s wheels based on the vector summation of the
activity of the neuronal units in Co//ze. Each neuronal unit in Collic has a receptive field that matches
its preferred direction, and the area has a topographic arrangement such that if activity is
predominately on the left side of Collic, signals to Darwin VII’s wheels are issued that evoke a
turn towards the left. Appetitive and aversive responses were triggered when the difference in ac-
tivity between the motor areas Moz, and Mot,, exceeded a behavioral threshold (B = 0.3).
These responses could be activated by taste (the unconditioned stimulus, US, triggering an un-
conditioned response, UR) or by auditory or visual stimuli (the conditioned stimulus, CS, triggering
a conditioned response, CR).

2.1.4 Darwin VII’s Conditioning

In a series of conditioning experiments, Darwin VII was trained to associate the taste value of objects
with their visual and auditory characteristics. Seven individually different Darwin VII subjects
participated in the experiments, in which each subject encountered at least 10 appetitive and
10 aversive blocks. Appetitive and aversive responses were triggered initially by taste, but after training
or conditioning, these responses could be triggeted by auditory or visual stimuli. After conditioning,
Darwin VII continued to grip and taste appetitive blocks, but learned to back away without picking
up aversive blocks, avoiding these blocks over 90% of the time (see Figure 3). Thus, during the
conditioning experiments, in which many stimuli were encountered over an extended period of
time, Darwin VII developed perceptual categories that modified its behavioral responses in an
adaptive fashion.

Furthermore, we were able to carry out second-order conditioning experiments with Darwin VIL
After associating the initially neutral visual pattern with an innate value-loaded taste, the visual
pattern was paired with a tone that emitted from the block. Darwin VII successfully learned this
association, and it avoided blocks with a tone predictive of bad taste and approached blocks with a
tone predictive of good taste over 90% of the time (see [19] for details).

While performance improved with training, it never reached perfection, and occasional mistakes
were made. Some of these mistakes were due to sensor noise, but some were due to experiential
differences that naturally occur when sampling a noisy, unpredictable real-world environment (e.g;,
no two views of a striped block will be exactly alike). This unpredictability is a general property of
selectionist systems, that is, systems consisting of a population of variant repertoires that are
differentially amplified, thus yielding responses to unpredicted or novel events [10]. The unpredict-
ability of behavioral responses in Darwin VII coupled with the variability of a complex environment
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Figure 3. Percentage of conditioned responses (CR) during learning trials for both visual and auditory conditioning as a
function of stimulus block encounters (seven subjects). The responses of aversive and appetitive stimulus encounters
were pooled together.

allowed the device to learn after making mistakes, to generalize over sensory inputs, and to deal with

novel situations.

2.1.5 Darwin VII’s Perceptual Categorization
The development of perceptual categories was essential for success in conditioning tasks. Darwin
VID’s nervous system has three features that are critical for perceptual categorization:

1. Connectivity from a topographically mapped primary area with transient activity to a
non-topographically-mapped higher area with more persistent activity (e.g,, see I’zs—IT in Figure 2)

2. Sensory input that is continuous and temporally correlated with self-generated movement

3. Activity-dependent learning in which competitive mechanisms categorize sensory information
and select for appropriate behavioral repertoires.

These features allow Darwin VII to achieve invariant object recognition, that is, to recognize an
object despite changes in orientation, size, and position in its visual field. Invariant object recognition
is a system property that emerges dynamically from competitive neuronal group interactions within
and between neural areas.

Darwin VII never displayed identical patterns of neural activity, even during repetitions of the
same behavior (see Figure 4). The adaptive behaviors tend to remain similar, however, despite
variation in system properties resulting from multiple interactions across circuitry, plastic synaptic
connections, fluctuating value systems, and variable object encounters. In this respect, Darwin VII is
an example of a degenerate system: different circuits and dynamics can yield similar behavior [12,
39]. Experiments comparing the development of responses to strongly biased samples of appetitive
or aversive stimuli demonstrate, however, that even with identical starting architectures, changes in
experiential sequences can have profound effects on subsequent behavior. While this has been
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Figure 4. Comparison of patterns of activity in the area IT for the three visual stimuli across different Darwin VIl subjects.
The first two contour plots on the left show, for two representative subjects, the borders of neuronal group activity in
response to blobs (red lines), horizontal stripes (green lines), and vertical stripes (blue lines). The contours on the far
right show the activity for two different subjects in the same plot, in response to vertical stimuli for subject 4 (dark blue)
and for subject 5 (light blue). Across all subjects tested (n = 7), the mean overlap of activity within each subject but
between stimuli was 26.6% (o = 0.10). The mean overlap of activity between different subjects was 22.1% (o = 0.09) in
response to blob patterns, 26.9% (0 = 0.1 1) in response to horizontal striped patterns, and 20.0% (o = 0.10) in response
to vertical striped patterns. (Adapted from [19].)

documented phenomenologically with living organisms, the experiments described here may suggest
possible mechanisms underlying such epigenetic biases.

Differences in an individual’s perceptual history can have a profound effect on the organization
and response of the nervous system. Using Darwin VII, we performed experiments concerned with
experience-dependent effects on categorization during the development of perceptual categories as
well as after such development [21]. In these experiments, Darwin VII started with an identical
simulated nervous system operating on the same physical platform, ensuring that any differences
would only be due to experiential history. One set of experiments investigated the effect of variations
in stimulus order and frequency on early development. The experiments began with a visually naive
Darwin VII exploring an environment that was partially divided into two subareas with disparate
distributions of stimuli. The number of neuronal units in IT selectively responding to a given
stimulus (whether blob, horizontal stripe, or vertical stripe) increased with an increase in the
frequency of presentation of that stimulus class [19, 21]. These findings are similar to the results of
neuronal recordings in the monkey inferotemporal cortex in that more neurons responded to
familiar than to unfamiliar objects in recognition tasks [18].

Another set of experiments investigated the effect of stimulus frequency on a BBD that
had previous visual experience. The experience consisted of exemplars of the three stimulus classes
presented in equal proportion until categorization was achieved with high accuracy. This “adult”
Darwin VII was then presented with exemplars of only two out of the three stimulus classes. In
contrast to the previous experiments on early development, after extensive experience, the number
of neuronal units in IT responding to more frequently sampled stimuli did not change significantly,
suggesting that responses in I'T had become saturated with respect to the familiar stimuli. However,
in the experiments in which Darwin VII responded to the less frequently sampled stimulus, the
number of IT neuronal units was significantly less than that in the controls (Table 1). In essence,
Darwin VII had forgotten these perceptual categories.

2.2 Darwin VIll—Visual Binding through Reentrant Connectivity

and Synchronization
A more recent BBD, Darwin VIII, demonstrated the ability to bind the attributes of stimuli in a
scene to form coherent perceptual categories [22, 33]. Thus, Darwin VIII solves the so-called
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Table |. Role of history in perceptual categorization. After visual categories had been developed (eight presentations of
each stimulus class), the activity in IT stayed relatively constant for stimuli presented in higher proportions, but decreased
for stimuli presented in lower proportions. Each row in the table shows the median neural activity in IT in response to
stimuli for a control group (eight additional presentations of blob, horizontal, and vertical stimuli) and three experimental
groups in which eight additional stimuli from two out of the three classes were presented. There were |0 trials for each
group, with identical initial conditions in the simulated nervous system. The asterisks denote a significant difference (p <
0.05) in medians between the control group and an experimental group using the Wilcoxon rank sum test of medians.
(Adapted from [19].)

Effect of stimulus presentation frequency on IT activity
after development of visual categorization

Stripes Horizontal Vertical
Test stimuli Control only and blob and blob
Blob 88.8 72.9% 89.9 91.6
Horizontal 54 55.6 57.7 31.5%
Vertical 24.2 24.4 17.9* 238

* p < 0.05; Wilcoxon rank sum test.

binding problem, that is, it shows how different brain areas and modalities can yield a coherent
perceptual response in the absence of any superordinate control. We had previously presented a
computational model to account for visual binding, This model emphasized the interaction between
neural areas, and showed that reentrant connections between different visual areas were sufficient for
recognizing and selecting multiple objects in a scene [38]. The model included nine simulated cortical
areas of the visual system, as well as a value system. It was trained to prefer a particular visual object
via simulated saccades, and its performance showed that binding and discriminative behavior could
be achieved through the interaction of different neural areas via reentrant connections. Despite its
success in showing the capabilities of reentrant circuits, the model had several limitations. The stimuli
used were taken from a limited set and were of uniform scale. Furthermore, its behavior did not
emerge in a rich and noisy environment of the kind confronted by behaving organisms.

To address these limitations, we constructed a BBD, Darwin VIII, to test the necessity and
sufficiency of synchronous activity brought about by reentrant connections between neural areas to
bind together and discriminate objects in a visual scene [22, 33]. Darwin VIIIL, which had a neural
model similar to the reentrant cortical model described above (see [38] for details), autonomously
approached and viewed multiple visual shapes containing overlapping features. It was trained to
prefer one of these shapes, by pairing the shape with an auditory cue, and it demonstrated this
preference by orienting toward the preferred object. When confronted by a pair of these shapes,
Darwin VIII learned to successfully track towards the preferred object, designated the target; and
avoid the other objects, designated the distracters. Figure 5 shows that Darwin VIII subjects with
intact reentrant connections tracked each of four different targets over 80% of the time, but subjects
with severed reentrant connections had significant degradation in their tracking performance. These
observations indicate that reentrant connectivity was necessary for the reliable discrimination of
targets from visually similar distracters. In contrast to previous models of target selection, which
required external intervention or an artificial environment [16, 17, 27, 38], Darwin VIII autono-
mously solved the binding problem in a rich environment in which there was self-movement that
generated changes in the size and location of visual stimuli.

While performing this task, temporally coherent neuronal circuits were activated for each object
in the visual scene. These circuits were composed of active neuronal groups distributed throughout
different areas in the simulated nervous system. Circuits associated with objects having different
combinations of features were distinguishable by their temporal characteristics, specifically the
relative phase of their neural activity.
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Figure 5. Darwin VIII's behavior following conditioning. Three separate Darwin VIl subjects were conditioned to prefer
one of four target shapes (rd = red diamond, rs = red square, gs = green square, gd = green diamond). Bars represent the
mean percentage of the time Darwin VIII centered its gaze on the target shape, with error bars denoting the standard
deviation. Subjects with reentrant connections intact (white bars) tracked targets significantly better than subjects with
lesions, where the reentrant connections between neural areas were cut during testing (light gray bars), and subjects with
the reentrant connections cut during both training and testing (black bars). Asterisks denote p < 0.01 using the Wilcoxon
rank sum test.

The results of these experiments demonstrated: (i) the importance of synchronization of neuronal
activity in perceptual categorization, (i) the role of reentrant connectivity (i.e., the activity across
reciprocal excitatory connections between neuronal units) in sustaining this synchrony, and (iii) that
the interaction between local processes (i.c., activity in each neural area) and global processes (i.c.,
emergent synchronously active circuits distributed throughout the nervous system) was necessary for
successful discriminatory behavior.

3 Discussion

By correlating neural activity with behavioral responses during perceptual and conditioning tasks
performed by our brain-based devices (BBDs), we have obtained new insights into the organization of
autonomous behavior and into its underlying mechanisms. We have shown that BBDs, such as
Darwin VII and Darwin VIII, can be used to gain insight into how nervous systems may categorize an
unlabeled world and shape behavior, and can test specific theories of brain function, such as the visual
binding of objects through reentrant synchronous circuits.

The development of adaptive and autonomous behavior by BBDs is novel in its neurally based
approach and has implications for the construction of intelligent machines. Without a doubt the most
sophisticated behavior seen in either biological or artificial agents is demonstrated by organisms
whose behavior is guided by a nervous system. Thus, the construction of behaving devices based on
principles of nervous systems may have much to offer.

However, this raises a question concerning which aspects of the nervous system should be
incorporated into these devices and at what level of organization the nervous system should be
modeled.

3.1 Choosing the Right Level of Abstraction
One of the most fundamental purposes of a biological model is to achieve explanatory power by
facilitating direct comparisons with real biological function and experimental data. For example,
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Thelen and colleagues have developed a dynamical system model of arm reaching and decision
making by an infant in the A not B task [37]. This model has provided an explanation of the factors
influencing a reach decision and has made novel predictions, such as the effect of salience of hidden
objects on reaching decisions, which in turn have suggested further experiments that could be tested
with infants.

However, there is a tendency among modelers to apply Occam’s razor (i.e., the best theory is the
simplest theory with the least assumptions) to their designs. For example, Beer and colleagues have
introduced the notion of simple idealized models that show minimally cognitive behavior [3, 34].
These agents are developed through an evolutionary algorithm and contain on the order of tens of
artificial neurons. Their agents show sensitivity to the future location of an object and can act is if
they are able to switch attention between objects. Because their model is simple enough that a
rigorous dynamical systems analysis can be applied, they can make interesting predictions about the
cognitive mechanisms undetlying attention and working memory.

In neuroscience, however, the simplest explanation is rarely the best explanation. Brains are large
in scale, complex in dynamics, and have multiple levels of control (e.g, from molecular events to
gross anatomical structure). What should be the proper level of abstraction and complexity for a
brain-based device?

We designed BBDs to test theories of the brain that could not presently be tested with animals
in the laboratory. These BBDs were designed so that they generate data, in the form of neuronal
activities in different brain regions, that can be directly compared with experimental data. Equally
important in the design is that a BBD must display adaptive behavior and this behavior must be
measurable by an observer. The BBD’s neural model, by necessity, is developed at a systems level,
in which the structure of the brain and its different regions gives rise to adaptive behavior.
Although these models are still too simple to make direct comparisons with neurophysiology,
they can make predictions about the neuroanatomical and dynamical constraints that subserve
adaptive behavior.

Preserving this structure tends to make the model very large in terms of the number of distinct
neural areas and the number of neuronal units within each of these areas. For example, Darwin VII’s
early visual processing region contained as few neuronal units as possible to resolve the different
shapes in its environment (see Rezina in Figure 2). Because its nervous system was based on the
anatomy of the visual stream, this eatly region, with its 4096 neuronal units, had projections to
“higher” regions of the same scale (see /7s B, I7s H, 1is 1] and IT in Figure 2), resulting in a large-
scale simulation.

3.2 Importance of Neuroanatomy

The brain can be studied at many different levels (e.g,, molecular, synaptic, cellular, and network), but
structure at the gross anatomical level is critical for function and often ignored in models of the
nervous system. Thus, chemical changes in the nervous system, such as the effect of Prozac on the
serotonin system, serve to modulate brain function. A loss of neuroanatomical structure due to
stroke, trauma, or injury can cause serious deficits. For example, an injury to the hippocampal and
subhippocampal structures can cause anterograde amnesia, that is, the loss of the ability to form new
memorties [23, 32]. Lesions of the prefrontal cortex can cause a loss in the ability to plan for the
future, make rational decisions, and process emotion [8]. Additionally, in cases where a stroke or
some other injury causes lesions to one side of the parietal cortex, subjects are reported to neglect
the side opposite the lesion [9]. In general, damage to the neuroanatomical structure of the brain,
whether due to stroke, disease, or trauma, can lead to dramatic deficits in function.

Any model of brain function must not only take into consideration the structure of different brain
regions, but also pay attention to the connectivity within and between these brain areas. Brain
function is more than the activity of disparate regions; it is the interaction between these areas that is
crucial, as we have shown in Darwin VII and Darwin VIIL Synaptic connections, which occur within
and between neural areas, help define the function of a region. For example, the auditory cortex can
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be induced to carry out visual processing by rerouting the projection from the optic nerve to the
auditory cortex [36]. Additionally, special connectivity that occurs during a critical period of the
developing animal allows the visual system to be responsive to orientation [5]. Thus, brains are
defined by a distinct neuroanatomy in which there are areas of special function, which are defined by
their connectivity to sensory input, to motor output, and to each other.

3.3 Brain-Based Devices and Embodiment

Brains do not function in isolation; they are tightly coupled with the organism’s morphology and
environment. Therefore, our models are embodied in a physical device and explore a real as opposed
to a simulated environment. For our purposes, the real environment is required for two reasons.
First, simulating an environment can introduce unwanted and unintentional biases into the model.
For example, a computer-generated object presented to a vision model has its shape and
segmentation defined by the modeler and directly presented to the model, whereas a device that
views an object hanging on a wall has to discern the shape and figure from ground segmentation
based on its own active vision. Second, teal environments are rich, multimodal, and noisy; an
artificial design of such an environment would be computationally intensive and difficult to simulate.
However, all these interesting features of the environment come for free when we place the BBD in
the real world. The modeler is freed from simulating a world and need only concentrate on the
development of a device that can actively explore the real world.

Interesting and unexpected results, which would not be apparent using a simulated agent in a
virtual environment, have emerged by placing BBDs in the real world. For example, invariant object
recognition in Darwin VII and Darwin VIII arose mainly as a result of plasticity between
topographic feature detectors (e.g, I7s in Figure 2) and non-topographic association areas (e.g,,
IT in Figure 2) that were reinforced and expanded by subsequent inputs from stimuli during the
BBD’s movements. When the temporal sequence of the images leading to invariance was artificially
shuffled [1], invariant object recognition did not occur. Another example of the influence of the
environment was seen in our experience-dependent perceptual categorization experiments in which
we altered the environment so that Darwin VII tended to sample different sequences and
occurrences of stimuli from one trial to the next [21]. Differences in an individual’s perceptual
history had an effect on the organization and response of the nervous system. Similarly to results
with primates [18], more neurons in the area IT responded to familiar than to unfamiliar stimuli.

3.4 Analysis of the Brain-Based Device’s Behavior
While a central goal of research in the neurosciences is to understand the relationships between brain
structute, function, and behavior, several related factors make this a challenging task. Presently, it is
not possible simultaneously to analyze all levels of control from molecular events to motor
responses. Using current electrophysiological techniques, one can simultaneously record only from
a few hundred neurons in a behaving animal. To confront these issues and complement these
approaches, we have adopted synthetic neural modeling [13, 30].

The advantage of a synthetic model is that these measurements can be carried out at all levels and
in every neuron and synapse of the BBD’s nervous system during the acquisition and recall of a
behavior. However, researchers using synthetic models need to analyze their data in such a way that
they can compare their results with empirical data. By analyzing the neural dynamics of the model
(i.e., spike rates, correlations between areas, neural decoding, and prediction) and choosing a
behavioral paradigm similar to those used when studying behaving animals (mazes, conditioning
paradigms, decision-making tasks, etc.), the modeler can directly compare the BBD’s results with the
results of psychological and neurophysiological experiments. However, this does put the burden on
modelers of including complexity in their models sufficient for these psychological and physiological
metrics to be obtainable.

We have made a number of insights and predictions based on results of experiments with BBDs.
For example, in Darwin VII, the activity of neuronal units in the area IT was sufficient to predict the
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visual stimulus seen by Darwin VII’s camera. We showed that this prediction held even when the
number sampled was very small (see Figure 6 in [19]), which is in accord with results in behaving
animals [15, 40]. In agreement with experimental results with primates, our experiments with Darwin
VII showed that experience can have an effect on the number of neurons that respond to a category
similar to results shown in the inferotemporal cortex of the primate [18]. Furthermore, by controlling
the conditions in a way that would be impossible with a living organism, we demonstrated that the
effect is altered if the organism is first exposed to a rich environment (see Table 1). In Darwin VII,
we showed that the value system can shift from being activated by an innate unconditioned stimulus
to being activated by an initially neutral stimulus, as do dopaminergic cells in the primate [35]. Thus,
the activity in the value system becomes predictive of a stimulus’ value and can shape behavior. In
Darwin VIII, our model suggests that synchrony between widely separated neural areas may play a
key role in solving the binding problem and demonstrates the importance of reentrant connections in
facilitating binding through synchrony. It demonstrates that binding through synchrony is feasible in
a real-world environment where objects are constantly changing in size and position.

4 Summary

Higher brain functions depend on the cooperative activity of an entire nervous system, reflecting its
morphology, its dynamics, and its interaction with the phenotype and the environment. Brain-based
devices are designed to incorporate these attributes so that they can test such theories of brain
function. We have demonstrated that BBDs can address many difficult and unsolved problems,
without instruction or intervention, such as object recognition, visual binding of objects in a scene,
and operant conditioning. Like the brain, they operate according to selectional principles through
which they form categorical memory, associate categories with innate value, and adapt to the
environment. These devices also provide the groundwork for the development of intelligent
machines that follow neurobiological rather than computational principles in their construction.
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