
Path Planning using a Spiking Neuron Algorithm with
Axonal Delays

Jeffrey L. Krichmar
Department of Cognitive Sciences
Department of Computer Science
University of California, Irvine
Irvine, CA, USA, 92697-5100

jkrichma@uci.edu

Abstract—A path planning algorithm is introduced that uses
the timing of spiking neurons to create efficient routes. The
algorithm is inspired by recent evidence showing activity-
dependent plasticity of axon myelination after learning. Using
this finding as inspiration, the algorithm’s learning rule varies
the simulated axon conductance velocity between neurons based
on the relative cost of traversing the environment. In terms of
path length and path cost, the spiking algorithm is as good or
better than other path planners. However, the present spiking
algorithm has the added advantage of adapting to change and
context by altering axon delays in response to environmental
experience. Because the spiking algorithm is suitable for
implementation on neuromorphic hardware, it has the potential
of realizing orders of magnitude gains in power efficiency and
computational gains through parallelization, and thus should
offer advantages for small, embedded systems.

Keywords—neuromorphic chips; path planning; robotics;
spiking neurons

I. INTRODUCTION
Path planning involves calculating an efficient route from a

starting location to a goal, while avoiding obstacles and other
impediments. Despite much advancement over several decades
of robotic research, there are still many open issues for path
planners [1, 2]. For example, most path planners are not
designed to handle a dynamic environment and changing
context and are computationally expensive.

Classic path planning algorithms include Dijkstra’s
algorithm, A*, and D*. Dijkstra’s algorithm uses a cost
function from the starting point to the desired goal. A*
additionally considers the distance from the start to the goal “as
the crow flies” [3]. D* extends the A* algorithm by starting
from the goal and working towards the start positions. It has
the ability to re-adjust costs, allowing it to replan paths in the
face of obstacles [4]. These algorithms can be computationally
expensive when the search space is large. Rapidly-Exploring
Random Trees (RRT) are a less expensive approach because
they can quickly explore a search space with an iterative
function [5]. Still, these algorithms are not flexible in dynamic
environments or in situations where the context changes.
Algorithms have been introduced, which use a cost function
and optimization techniques to adjust to changing
environmental conditions [6]. Still these path planners are

computationally expensive and may not be appropriate for
small, embedded systems, such as micro-aerial vehicles.

Because of their event driven design and parallel
architecture, neuromorphic hardware hold the promise of
lowering size, weight and power, and may be ideal for
embedded applications [7]. These systems are modeled after
the brain’s architecture and typically use spiking neural
elements for computation [8]. Spiking neurons are event driven
and use an Address Event Representation (AER), which holds
the neuron ID and the spike time, for communicating between
neurons. Since spiking neurons do not fire often and post-
synaptic neurons do not need to calculate information between
receiving spikes, AER allows for efficient computation and
communication.

One class of path planning that may be a good fit for
neuromorphic applications is the wave front planner [6, 9] or
diffusion algorithms [10]. In a standard wave front planner, the
algorithm starts by assigning a small number value to the goal
location. In the next step, the adjacent vertices (in a topological
map) or the adjacent cells (in a grid map) are assigned the goal
value plus one. The “wave” propagates by incrementing the
values of subsequent adjacent map locations until the starting
point is reached. Typically, the wave cannot propagate through
obstacles. A near optimal path, in terms of distance and cost of
traversal, can be read out by following the lowest values from
starting location to the goal location. This method has been
used in neurorobot applications [11, 12], and in neuromorphic
hardware [13].

We present a spiking neuron wave front algorithm for path
planning that adjusts to changes in the environment. Prior work
showed that a spike-based wave planner could run on
neuromorphic hardware [13]. The present algorithm builds on
this prior work by adding an adaptive element that considers
the relative cost of traversing through different parts of the
environment. The adaptive element is inspired by recent
empirical findings supporting experience dependent plasticity
of axonal conduction velocities [14]. Specifically, the cost of
traversing through space is represented in the axon delay
between neurons. In this way, the lowest cost path is reflected
in the spike timing, that is, the spike propagation will travel
faster over lower cost paths.

Supported by the National Science Foundation Award #1302125 and
Northrop Grumman Aerospace Systems.

1219978-1-5090-0623-6/16/$31.00 c⃝2016 IEEE

II. METHODS

A. Neuron Model and Connectivity
To show how a spiking neuronal wave could be used in a

path planning algorithm, we constructed a simple spiking
neuron. The present neuron model contained a membrane
potential (v), a recovery variable (u), and received current input
(I) from synaptically connected neurons:

 vi(t+1) = ui(t) + Ii(t) (1)
 ui(t+1) = min(ui(t) + 1, 0) (2)
 Ii(t+1) = j (1 if dij(t) = 1; 0 otherwise) (3)
 dij(t+1) = max(dij(t) - 1, 0) (4)

dij(t) is the axonal delay between when neuron vj(t) fires an
action potential and vi(t) receives the action potential. When
vj(t) fires an action potential, dij(t) is set to the delay value of
Di,j(t), which is described in section II.B and Eq. (5). Note
from Eq. (4) that dij has a null value of zero unless the pre-
synaptic neuron fires an action potential.

Equations (1-4) calculate the membrane potential, recovery
variable, synaptic input, and axonal delay for neuron i at time
step t, which is connected to j pre-synaptic neurons. The
neuron spiked when v in Eq. (1) was greater than zero, in
which case v was set to 1 to simulate a spike, u was set to
minus 5 to simulate a refractory period, and the axonal delay
buffer, d, was set to D. The recovery variable, u, changed each
time step per Eq. (2). The delay buffer, d, changed each time
step per Eq. (4). I in Eq. (3) was the summation of the j pre-
synaptic neurons that delivered a spike to post-synaptic neuron
i at time t.

The neural network consisted of a 64x64 grid of spiking
neurons as described in Eqs. (1-4). Each neuron corresponded
to a location in the environment and was connected to its eight
neighbors (i.e., N, NE, E, SE, S, SW, W, NW). At
initialization (t = 0), v and u were set to 0. All delays, D, were
initially set to 5, but could vary depending on experience in
the environment. D represented the time it takes to propagate a
pre-synaptic spike to its post-synaptic target.

B. Axonal Delays and Plasticity
A spike wave front proceeds by triggering a single spike at

a neuron that corresponds to the start location. This neuron
then sends a spike to its synaptically connected neighbors. The
delivery of the spike to its post-synaptic targets depends on its
current axonal delay. Each synapse has a delay buffer, which
governs the speed of the spike wave.

 Di,j(t+1)=Di,j(t) + (mapx,y - Di,j(t)) (5)

Where the delay Di,j(t) represents the axonal delay at time t
between neurons i and j, mapx,y is the value of the environment
at location (x,y), and is the learning rate. For the present
experiments, was set to 1.0, which allows the system to
instantaneously learn the values of locations. The learning is
expressed through axonal delays. For example, if the spike
wave agent encountered a major obstacle, with a high traversal
cost (e.g., 25), the neuron at that location would schedule its
spike to be delivered to it’s connected neurons 25 time steps
later, whereas, if the value of a location was 1, the spike would

be delivered on the next time step. It should be noted that in the
present study the delay buffers were reset before each route
traversal. The effect of different learning rates and building
maps with experience is discussed in Section IV.

C. Map of Environment
The environment consisted of a 64x64 grid (see Fig. 1).

Regions of the environment had cost values that included
roads (value = 1), minor obstacles (value = 5), major obstacles
(value = 25), and open spaces (value = 3). The agent could
move in eight directions from any position on the map.

Fig. 1. Spike wave front algorithm in a typical environment. The environment
is a 64x64 grid. The colors represent different objects in the environment. Dark
blue lines represent “roads” and have a cost of 1. Medium blue dots represent
minor obstacles and have a cost of 5. Large yellow regions represent major
obstacles and have a cost of 25. All other regions (light blue regions) represent
open space and have a cost of 3. Different stages of the spike wave front are
shown with the early stage in the top left image, and the later stages in the
images proceeding from left to right columns and from the top to bottom rows.
The final path is shown in the bottom right. The state of the spike wave and
final route are depicted in gold.

D. Spike Wave Propagation and Path Readout
Fig. 1 shows the progression of a spike wave in a typical

environment. Per the AER, the neuron ID and time step are
recorded for each spike, which is shown in gold. The gold
square in the top left image of Fig. 1 shows the wave
emanating from location (58,53). The ensuing 8 figure panels
going from left to right and top to bottom show the wave’s
progress. In this instance the wave has broken up depending on
the cost of the environment. Note that spikes along the road,
which have a value of 1, have progressed further because of a
shorter axonal delay. The spike wave algorithm ends when
there is a spike at the goal location (25,13).

1220 2016 IEEE Congress on Evolutionary Computation (CEC)

Fig. 2. Comparison of the four planning algorithms described in Section II on two representative maps. On both maps, the obstacles are shown in yellow, open space
is shown in blue, and the paths generated by the algorithms are shown in gold. The map on the left with a start location of (47,14) and a goal location of (16,55) had
one obstacle. The map on the right with a start location of (35,5) and a goal location of (20,64) had two obstacles. See text for description.

To find the best path between the start and goal locations,
we used the list of spikes held in AER format. From the goal,
the list was searched for the most recent spike from a neuron
whose location was adjacent to the goal location. If more than
one spike met this criterion, the neuron whose location
corresponded to the lowest cost and was closest to the start
location was chosen. This iteratively proceeded from the goal
through other neuron locations until a spike at the start location
was found. The bottom right image in Fig. 1 shows the found
path. Note how the path avoided obstacles and found the best
road to get from the start (58,53) to the goal (25,13).

E. Standard Wave Front Algorithms and A* Path Planner
The standard wave front planner, a wave front planner with

dynamic values, and the A* path planner were implemented to
compare the spike wave front planner with other existing
algorithms. The standard wave front planner was described
above and implemented according to Section 4.5 of [15]. A
value based wave front planner was also implemented. In this
algorithm, instead of just incrementing the grid location of the
wave’s leading edge, the cost of the location was also added.

In addition, we implemented the A* algorithm [3], which is
commonly used in path planning. A* uses a best-first search
and attempts to find a least-cost path from the start location to
the goal location. The cost includes the Euclidean distance
from the start, the Euclidean distance from the goal, and the
cost of traversing the location. From the start location, adjacent
locations are placed in a node list. Then the node list is

searched for the node with the lowest cost. The location
corresponding to this low cost node is expanded by placing
adjacent, unevaluated locations on the node list. The process is
repeated until the goal location is reached. The A* algorithm
can find the shortest path based on its cost function.

F. Statistics for Comparing Algorithms
To compare the path lengths, traversal costs and

computation metrics, a paired-sample t-test was used
(MATLAB, MathWorks, Inc.). The statistic tested for the null
hypothesis that the experimental metrics from two algorithms,
each with the same start, goal, and map, were equal. The p-
values were Bonferroni corrected for multiple comparisons.
The metric data was checked for normality using Q-Q plots.

III. RESULTS
Fig. 1 shows a representative trial from an experiment. Several
maps were generated to test the planner algorithms. For each
map, multiple start and goal locations were tested. In all trials,
the start and goal locations were not allowed to be at a major
obstacle and the Euclidean distance between the start and goal
locations had to be greater than 50.

A. Comparing Wave Front Planners
Fig. 2 shows representative trials comparing the spike wave

front planner (top left for each map), to the A* algorithm (top
right for each map), to the standard wave front planner (bottom
left for each map), and to the wave front planner with values
(bottom right for each map). The spike wave front and the

2016 IEEE Congress on Evolutionary Computation (CEC) 1221

standard wave front are essentially equivalent and generate
similar paths. The A* algorithm uses the Euclidean distance to
the start and to the goal in its cost function and tends to be
drawn towards those points (note how close it hugs the
obstacles in Fig. 2).

Fig. 3.Path lengths and traversal costs of the four path planning algorithms. The
thick bars are the mean values of 300 trials (3 maps, 100 trials per map) and the
error bars denote the standard deviations.

The standard wave front planner was not allowed to
propagate across a major obstacle, but the other algorithms did
not have this restriction. Depending on the start or goal
location, the wave front with values algorithm occasionally
propagated through major obstacles (see both maps in Fig. 2).
Similarly, the spike wave front and the A* algorithms had the
potential of passing through major obstacles. In the case of the
spike wave front, if the wave propagated through the obstacle
fast enough it might generate a path through an obstacle. In the
case of A*, a path could be generated through an obstacle if the
cost was lower. Despite this potential, paths through major
obstacles never occurred in all the maps and locations tested
with the spike wave and the A* algorithms.

To test the four path planning algorithms, three different
maps were generated and 100 trials were run on each map. Fig.
3 shows the average path lengths (i.e., the number of locations
visited between the start and goal) and traversal costs for each
of these algorithms. The left bar graph in Fig. 3 shows that the
spike wave front planner had significantly shorter paths than
A* (p < 0.0001; t-test). The spike wave front paths did not
differ significantly from the wave front planner; in fact they
had almost identical distances. That the wave front planners
generated shorter paths than A* is somewhat surprising, but
looking at Fig. 2, it can be seen that A*’s cost function could
pull the path close to an obstacle resulting in a longer path
around obstacles. Because the wave front planner with values
occasionally generated paths through obstacles, its paths were
significantly shorter than the other algorithms (p < 0.0001; t-
test).

The cost of traversal was calculated by summing the costs
of locations along the generated paths (Fig. 3, right). Similar to

the path length analysis, the cost of traversing the paths was
significantly less for the spike wave front and wave front
algorithms than the A* algorithm (p < 0.0001; t-test). Because
the wave front with values sometimes generated paths through
obstacles its cost was significantly higher (p < 0.0001; t-test).

Because the spike wave front planner can be implemented
on neuromorphic hardware or on parallel spiking neural
network simulators [16], it offers speedups over standard
algorithms, such as A* or the wave front planner. When the
environment contained open space and obstacles. The spike
wave front planner was essentially equivalent to the standard
wave front planner. However, whereas cycles for the wave
front planners require mathematical operations executed on a
conventional computer, the spike wave algorithm is compatible
with neuromorphic hardware, which has been shown to have
orders of magnitude savings in computation and bandwidth
when using spike computations along with the AER format
[17].

B. Spike Wave Front Planner’s Adaptation to Change
A key feature of the spike wave front planner and A* is

their ability to adapt to environmental change. The spike wave
front planner’s learning rule in Eq. (5) resembles the well-
known delta rule and results in the planner being able to predict
the cost of future locations through the agent’s experience. The
heuristic cost function of the A* algorithm can also take
traversal costs into account when planning routes.

To show how these algorithms respond to contextual
changes, we tested one case where the roads had a cost value of
1, and another case where the roads had the same cost value as
open space (i.e., value = 3). Ten different maps (5 with one
obstacle and 5 with two obstacles) were generated with 10
trials per map.

Table I shows the mean ± the standard deviation of the path
length, the traversal cost, and the number of iterations for both
algorithms in the road and no road cases. The number of
iterations corresponds to how many loops each algorithm took
to find a path. The Spike Wave Front and A* were
significantly different (p < 0.05) for Path Length and Iterations
in the “No Road” trials. All comparisons between the Spike
Wave Front and A* for the “Road” trials were significantly
different (p < 0.0001; t-test).

TABLE I. COMPARISON BETWEEN SPIKE WAVE FRONT PLANNER AND
A* PLANNER WITH AND WITHOUT ROADS

 Spike Wave Front A*
 Road No Road Road No Road

Path Length 81.9±15.0 58.4±10.0 61.4±14.6 59.9±13.6
Traversal Cost 109.09±33.7 180.8±36.3 140.3±36.7 179.8±40.8

Iterations 88.8±16.6 168.7±29.2 245.7±242.0 227.3±258.1

1222 2016 IEEE Congress on Evolutionary Computation (CEC)

Fig. 4. Paths generated by the spike wave front planner and A* algorithm in the same environment, but with different costs. Two representative environments are
shown. The left half of the figure shows a trial on the first environment with a start location at (59,40) and a goal location at (2,60). The right side of the figure shows
a trial in the other environment with a start location at (3,16) and a goal location at (61,36). Images are pseudo colored to reflect the relative costs of objects in the
environment with lowest cost being dark blue and highest cost being bright yellow. In the “Roads” condition, the cost of roads equals 1, cost of open space equals 3,
cost of minor obstacles equals 5, and cost of major obstacles equals 25. In the “No Roads” condition, the roads were set equal to open space (i.e., value = 3). The
calculated routes are shown in gold.

When roads were available, the path lengths were
longer, but the traversal cost was much less. Because the A*
algorithm did not use the roads as much as the spike wave,
A*’s paths were shorter, but the cost was higher. For the A*
algorithm longer paths meant more iterations. But, for the
spike wave the number of iterations was related to the
traversal cost because low cost paths meant spikes arrived
quicker and the algorithm ended sooner. Fig. 4 shows two
representative examples of these cases. When roads were
present both algorithms tended to choose paths that used the
roads. However, because the A* algorithm’s cost function
depended on the start and goal locations it oftentimes chose
shorter paths that did not use roads (see maps on right of
Fig. 4). When the roads were removed, both the spike wave
front and the A* algorithm planned paths that utilized the
open space while avoiding major and minor obstacles.

IV. DISCUSSION
In the present paper, we introduced a path planning

algorithm that used spiking neurons and axonal delays to
compute efficient routes. The spike wave front path planner
has several interesting properties: (i) Paths are near optimal
and comparable to conventional path planning algorithms,
such as the A* algorithm or a wave front planner. (ii) A
learning rule based on axonal delays allows the algorithm to
consider the cost of traveling through an environment and

adapts paths accordingly. (iii) The algorithm uses spikes and
the popular AER format making it compatible with
neuromorphic hardware. (iv) The spike wave front takes
significantly less iterations than the A* algorithm. (v)
Because the spike wave front is a local algorithm (i.e.,
computations are independent and based on neighboring
neurons), it is suitable parallel implementation.

A. Axonal Delay Plasticity
Recent evidence suggests that the myelin sheath, which

wraps around and insulates axons, may undergo a form of
activity-dependent plasticity [14, 18]. These studies have
shown that the myelin sheath becomes thicker with learning
motor skills and cognitive tasks. A thicker myelin sheath
implies faster conduction velocities and improved synchrony
between neurons.

The present algorithm introduced a learning rule inspired
by activity-dependent myelinization, in which a path that
traverses through an easy portion of the environment (e.g.,
via a road) would have shorter axonal delays than a path that
travels through rough terrain. Assuming a robot or other
autonomous vehicle had the ability to sense the cost of
moving through a portion of the environment, by vision,
accelerometers or other means, the robot could add such
information to its map. In this way, the robot’s path planner

2016 IEEE Congress on Evolutionary Computation (CEC) 1223

could calculate a route based on difficulty. For example, Fig.
4 and Table I simulated a robot choosing between “off-road”
and “on-road” routes just by changing the cost of the road in
the robot’s map. Moreover, paths could be planned based on
the robot’s present state or context. For example, if the robot
was low on energy, it might risk traveling through obstacles
to get to a charging station quickly. To achieve such a path,
the relative cost of obstacles could be made lower and the
calculated route would reflect this preference. Taken
together, the axonal delay learning rule presented here could
be a flexible method for selecting context and experience
based path planning.

B. Hardware Implementation of Spike Wave Front Planner
Neuromorphic hardware differs from the conventional

Von Neumann computer architecture in that it is
asynchronous and event-driven, with parallel computation [7,
8]. The artificial neurons do not take up computation cycles
unless they receive a spike event from a connected neuron.
Typical neuromorphic designs have the memory, in the form
of synapses, co-located with the processing units, that is, the
neurons. This allows computations to be local, independent,
and parallel. These features allow neuromorphic chips to
have low size, weight and power [7, 19]. Nearly all these
chips use spiking neuron elements and some form of AER.

The present algorithm is compatible with neuromorphic
hardware. It builds upon a hardware implementation of a
spike-based wave front planner [6]. It adds a learning rule,
which depends on axonal delays, to make the planner more
flexible and to consider the relative costs of traversing an
environment. Axonal delays have been introduced in large-
scale spiking neural network simulations [20, 21], but are not
typical for neuromorphic hardware. However some
neuromorphic designs include axonal delays [22]. To
implement the present algorithm in neuromorphic hardware,
all that would be needed is a delay buffer or a means to
change the conductance properties of a connection. Because
a synaptic based learning rule, such as Spike Timing
Dependent Plasticity (STDP), is not needed for the present
algorithm, the circuitry to support the spike wave front
planner could be simplified.

It should be noted that the present algorithm used a
simplified spiking neuron to demonstrate the algorithm’s
path planning capabilities. Many neuromorphic hardware
designs support more complex neuron models, such as leaky
integrate and fire neurons or the Izhikevich neuron [17, 22-
25]. In previous work, we have shown that similar wave
dynamics to that shown here can be demonstrated in more
complex neuron models [26]. Therefore, it would be feasible
to convert the present algorithm to a more complex neuron
model given the right settings.

In the present algorithm, the AER representation is used
to read out the path, which may be a limitation since it
requires saving the AER list for each planned route. It also
requires a planning calculation and readout for every route.
A more natural implementation might use the rank order of
the spike wave in a similar way to that proposed by Thorpe
and colleagues [27, 28]. Such alternative readout
implementations will be explored in the future.

C. Learning Unknown and Uncertain Environments
The present simulations assumed a known, static

environment with instantaneous learning (= 1.0 in Eq. 5).
In addition, the system started out naïve before every route
traversal. That is, the delay buffers were reset to their initial
value before being given a start and goal location. Future
extensions of the spike wave front planning algorithm could
readily work in unknown or uncertain environments by
setting the learning rate to be between 0.0 and 1.0, and not
resetting the delay buffer values (D in Eq. 5) after each
traversal. Instead, the system could retain its learned values
between trials and the learning rate could be set to reflect the
dynamics of the environment.

If an environment were uncertain, using the spike wave
front planner with a learning rate between 0 and 1 could
build a dynamic value map of the environment. For example,
if a location were traversable 25% of the time, the algorithm
would learn this uncertainty and plan accordingly. Similar to
[29], this would result in the spike wave front planner
predicting the cost of traversing locations in an environment.
Moreover, the planner’s prediction would take the
uncertainty into consideration. Such a planner would have
advantages in learning the landscape of an environment,
responding flexibly and fluidly to change, and not falling
into local minima.

In an unknown environment, a robot or autonomous
agent can sense the cost of locations in the environment and
update its map accordingly. When the agent is tasked with
planning a route between locations it can use the cost values
for which it has experience and can specify a cost value for
unknown locations in the map. The cost of unknown
locations could be set depending on the agent’s context (e.g.,
low for exploration vs. high for exploitation). Moreover, as
the agent gained more experience traversing routes, the map
could become more complete with this cost metadata.

D. Spike Wave Front Comparison to Other Planning
Algorithms
In terms of path lengths, traversal cost, and iterations

through the algorithm, the spike wave front planner was as
good or better than other implemented path planning
algorithms (Fig. 3 and Table I).

Since the underlying algorithm is the same, the
performance of the spike wave front planner was roughly
equivalent to the wave front planner. However, the axonal
delay learning rule allowed the spike wave front to take
traversal cost into consideration and could adapt to
environmental change (Fig. 4).

The spike wave front planner had interesting differences
from the A* algorithm. A* uses the start and goal location to
calculate paths and this leads to short paths that may not have
the lowest traversal cost. The spike wave front only
considers the local computations at the front edge of the
wave. Not only does this make the algorithm more sensitive
to traversal cost, but it also means that the spike wave front
computations are local and independent. Efficient routes are
computed without using the global start and goal locations.

1224 2016 IEEE Congress on Evolutionary Computation (CEC)

V. CONCLUSIONS
In summary, the spike based wave front planner

introduced here has interesting features that make it
attractive for autonomous and embedded systems. A form of
activity-dependent plasticity (i.e., changes in axon
myelinization), which is rarely used in neural simulations,
inspired the algorithm. The algorithm shows improvements
over other path planning algorithms because it computes
with spiking neurons and it can adapt to environmental
change. Spiking algorithms have been shown to run
efficiently and with low power on neuromorphic hardware,
making this algorithm suitable for micro aerial vehicles and
other embedded devices. Straightforward extensions to the
algorithm would further improve its flexibility and adaptive
behavior.

ACKNOWLEDGMENT
The author would like to thank the members of the

Cognitive Anteater Robotics Laboratory and Philippe
Gaussier for many useful discussions.

REFERENCES

[1] S. M. LaValle, "Motion Planning," Robotics &

Automation Magazine, IEEE, vol. 18, pp. 79-89,
2011.

[2] S. M. LaValle, "Motion Planning," Robotics &
Automation Magazine, IEEE, vol. 18, pp. 108-118,
2011.

[3] P. E. Hart, N. J. Nilsson, and B. Raphael, "A
Formal Basis for the Heuristic Determination of
Minimum Cost Paths," Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, pp.
100-107, 1968.

[4] A. Stentz and I. Carnegle, "Optimal and Efficient
Path Planning for Unknown and Dynamic
Environments," International Journal of Robotics
and Automation, vol. 10, pp. 89-100, 1993.

[5] S. M. LaValle and J. J. Kuffner, "Randomized
Kinodynamic Planning," The International Journal
of Robotics Research, vol. 20, pp. 378-400, May 1,
2001 2001.

[6] M. Soulignac, "Feasible and Optimal Path Planning
in Strong Current Fields," Robotics, IEEE
Transactions on, vol. 27, pp. 89-98, 2011.

[7] G. Indiveri, B. Linares-Barranco, T. J. Hamilton,
A. van Schaik, R. Etienne-Cummings, T. Delbruck,
et al., "Neuromorphic silicon neuron circuits,"
Front Neurosci, vol. 5, p. 73, 2011.

[8] J. L. Krichmar, P. Coussy, and N. Dutt, "Large-
Scale Spiking Neural Networks using
Neuromorphic Hardware Compatible Models," J.
Emerg. Technol. Comput. Syst., vol. 11, pp. 1-18,
2015.

[9] J. Barraquand, B. Langlois, and J. C. Latombe,
"Numerical potential field techniques for robot
path planning," Systems, Man and Cybernetics,
IEEE Transactions on, vol. 22, pp. 224-241, 1992.

[10] R. E. Bellman, "On a routing problem," Quarterly
of Applied Mathematics, vol. 16, pp. 87-90, 1958.

[11] P. Gaussier, A. Revel, J. P. Banquet, and V.
Babeau, "From view cells and place cells to
cognitive map learning: processing stages of the
hippocampal system," Biological Cybernetics, vol.
86, pp. 15-28, Jan 2002.

[12] M. Quoy, P. Laroque, and P. Gaussier, "Learning
and motivational couplings promote smarter
behaviors of an animat in an unknown world,"
Robotics and Autonomous Systems, vol. 38, pp.
149-156, Mar 31 2002.

[13] S. Koziol, S. Brink, and J. Hasler, "Path planning
using a neuron array integrated circuit," in Global
Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, 2013, pp. 663-666.

[14] R. D. Fields, "A new mechanism of nervous system
plasticity: activity-dependent myelination," Nat
Rev Neurosci, vol. 16, pp. 756-767, 12//print 2015.

[15] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor,
W. Burgard, L. E. Kavraki, et al., Principles of
Robot Motion: Theory, Algorithms, and
Implementations. Cambridge, MA: The MIT Press,
2005.

[16] M. Beyeler, K. D. Carlson, T.-s. Chou, N. Dutt,
and J. L. Krichmar, "CARLsim 3: A User-Friendly
and Highly Optimized Library for the Creation of
Neurobiologically Detailed Spiking Neural
Networks," in International Joint Conference on
Neural Networks, Killarney, Ireland, 2015.

[17] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S.
Cassidy, J. Sawada, F. Akopyan, et al., "Artificial
brains. A million spiking-neuron integrated circuit
with a scalable communication network and
interface," Science, vol. 345, pp. 668-73, Aug 8
2014.

[18] R. D. Fields, "White matter in learning, cognition
and psychiatric disorders," Trends Neurosci, vol.
31, pp. 361-70, Jul 2008.

[19] N. Srinivasa and J. Cruz-Albrecht, "Neuromorphic
adaptive plastic scalable electronics: analog
learning systems," IEEE Pulse, vol. 3, pp. 51-6, Jan
2012.

[20] E. M. Izhikevich and G. M. Edelman, "Large-scale
model of mammalian thalamocortical systems,"
Proc Natl Acad Sci U S A, vol. 105, pp. 3593-8,
Mar 4 2008.

[21] E. M. Izhikevich, J. A. Gally, and G. M. Edelman,
"Spike-timing dynamics of neuronal groups,"
Cereb Cortex, vol. 14, pp. 933-44, Aug 2004.

[22] J. M. Cruz-Albrecht, M. W. Yung, and N.
Srinivasa, "Energy-Efficient Neuron, Synapse and
STDP Integrated Circuits," Biomedical Circuits
and Systems, IEEE Transactions on, vol. 6, pp.
246-256, 2012.

[23] T. Sharp, F. Galluppi, A. Rast, and S. Furber,
"Power-efficient simulation of detailed cortical

2016 IEEE Congress on Evolutionary Computation (CEC) 1225

microcircuits on SpiNNaker," J Neurosci Methods,
vol. 210, pp. 110-8, Sep 15 2012.

[24] E. M. Izhikevich, "Which model to use for cortical
spiking neurons?," IEEE Trans Neural Netw, vol.
15, pp. 1063-70, Sep 2004.

[25] T. Pfeil, A. Grubl, S. Jeltsch, E. Muller, P. Muller,
M. A. Petrovici, et al., "Six networks on a
universal neuromorphic computing substrate,"
Front Neurosci, vol. 7, p. 11, 2013.

[26] T.-S. Chou, L. D. Bucci, and J. L. Krichmar,
"Learning Touch Preferences with a Tactile Robot
Using Dopamine Modulated STDP in a Model of
Insular Cortex," Frontiers in Neurorobotics, vol. 9,
2015.

[27] S. Thorpe, A. Delorme, and R. Van Rullen, "Spike-
based strategies for rapid processing," Neural
Netw, vol. 14, pp. 715-25, Jul-Sep 2001.

[28] R. VanRullen, R. Guyonneau, and S. J. Thorpe,
"Spike times make sense," Trends Neurosci, vol.
28, pp. 1-4, Jan 2005.

[29] W. Schultz, P. Dayan, and P. R. Montague, "A
neural substrate of prediction and reward," Science,
vol. 275, pp. 1593-9, Mar 14 1997.

1226 2016 IEEE Congress on Evolutionary Computation (CEC)

