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Abstract—A path planning algorithm is introduced that uses 
the timing of spiking neurons to create efficient routes. The 
algorithm is inspired by recent evidence showing activity-
dependent plasticity of axon myelination after learning. Using 
this finding as inspiration, the algorithm’s learning rule varies 
the simulated axon conductance velocity between neurons based 
on the relative cost of traversing the environment.  In terms of 
path length and path cost, the spiking algorithm is as good or 
better than other path planners. However, the present spiking 
algorithm has the added advantage of adapting to change and 
context by altering axon delays in response to environmental 
experience. Because the spiking algorithm is suitable for 
implementation on neuromorphic hardware, it has the potential 
of realizing orders of magnitude gains in power efficiency and 
computational gains through parallelization, and thus should 
offer advantages for small, embedded systems.    

Keywords—neuromorphic chips; path planning; robotics; 
spiking neurons 

I. INTRODUCTION 
Path planning involves calculating an efficient route from a 

starting location to a goal, while avoiding obstacles and other 
impediments. Despite much advancement over several decades 
of robotic research, there are still many open issues for path 
planners [1, 2]. For example, most path planners are not 
designed to handle a dynamic environment and changing 
context and are computationally expensive. 

Classic path planning algorithms include Dijkstra’s 
algorithm, A*, and D*. Dijkstra’s algorithm uses a cost 
function from the starting point to the desired goal. A* 
additionally considers the distance from the start to the goal “as 
the crow flies” [3]. D* extends the A* algorithm by starting 
from the goal and working towards the start positions. It has 
the ability to re-adjust costs, allowing it to replan paths in the 
face of obstacles [4]. These algorithms can be computationally 
expensive when the search space is large. Rapidly-Exploring 
Random Trees (RRT) are a less expensive approach because 
they can quickly explore a search space with an iterative 
function [5].  Still, these algorithms are not flexible in dynamic 
environments or in situations where the context changes. 
Algorithms have been introduced, which use a cost function 
and optimization techniques to adjust to changing 
environmental conditions [6]. Still these path planners are 

computationally expensive and may not be appropriate for 
small, embedded systems, such as micro-aerial vehicles. 

Because of their event driven design and parallel 
architecture, neuromorphic hardware hold the promise of 
lowering size, weight and power, and may be ideal for 
embedded applications [7]. These systems are modeled after 
the brain’s architecture and typically use spiking neural 
elements for computation [8]. Spiking neurons are event driven 
and use an Address Event Representation (AER), which holds 
the neuron ID and the spike time, for communicating between 
neurons. Since spiking neurons do not fire often and post-
synaptic neurons do not need to calculate information between 
receiving spikes, AER allows for efficient computation and 
communication. 

One class of path planning that may be a good fit for 
neuromorphic applications is the wave front planner [6, 9] or 
diffusion algorithms [10]. In a standard wave front planner, the 
algorithm starts by assigning a small number value to the goal 
location. In the next step, the adjacent vertices (in a topological 
map) or the adjacent cells (in a grid map) are assigned the goal 
value plus one. The “wave” propagates by incrementing the 
values of subsequent adjacent map locations until the starting 
point is reached. Typically, the wave cannot propagate through 
obstacles. A near optimal path, in terms of distance and cost of 
traversal, can be read out by following the lowest values from 
starting location to the goal location. This method has been 
used in neurorobot applications [11, 12], and in neuromorphic 
hardware [13]. 

We present a spiking neuron wave front algorithm for path 
planning that adjusts to changes in the environment. Prior work 
showed that a spike-based wave planner could run on 
neuromorphic hardware [13]. The present algorithm builds on 
this prior work by adding an adaptive element that considers 
the relative cost of traversing through different parts of the 
environment. The adaptive element is inspired by recent 
empirical findings supporting experience dependent plasticity 
of axonal conduction velocities [14]. Specifically, the cost of 
traversing through space is represented in the axon delay 
between neurons. In this way, the lowest cost path is reflected 
in the spike timing, that is, the spike propagation will travel 
faster over lower cost paths. 
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II. METHODS 

A. Neuron Model and Connectivity 
To show how a spiking neuronal wave could be used in a 

path planning algorithm, we constructed a simple spiking 
neuron. The present neuron model contained a membrane 
potential (v), a recovery variable (u), and received current input 
(I) from synaptically connected neurons:  

 vi(t+1) = ui(t) + Ii(t) (1) 
 ui(t+1) = min(ui(t) + 1, 0) (2) 
 Ii(t+1) = j (1 if dij(t) = 1; 0 otherwise)  (3) 
 dij(t+1) = max(dij(t) - 1, 0) (4) 
 

dij(t) is the axonal delay between when neuron vj(t) fires an 
action potential and vi(t) receives the action potential. When 
vj(t) fires an action potential, dij(t) is set to the delay value of 
Di,j(t), which is described in section II.B and Eq. (5). Note 
from Eq. (4) that dij has a null value of zero unless the pre-
synaptic neuron fires an action potential. 

Equations (1-4) calculate the membrane potential, recovery 
variable, synaptic input, and axonal delay for neuron i at time 
step t, which is connected to j pre-synaptic neurons. The 
neuron spiked when v in Eq. (1) was greater than zero, in 
which case v was set to 1 to simulate a spike, u was set to 
minus 5 to simulate a refractory period, and the axonal delay 
buffer, d, was set to D. The recovery variable, u, changed each 
time step per Eq. (2). The delay buffer, d, changed each time 
step per Eq. (4). I in Eq. (3) was the summation of the j pre-
synaptic neurons that delivered a spike to post-synaptic neuron 
i at time t.  

The neural network consisted of a 64x64 grid of spiking 
neurons as described in Eqs. (1-4). Each neuron corresponded 
to a location in the environment and was connected to its eight 
neighbors (i.e., N, NE, E, SE, S, SW, W, NW). At 
initialization (t = 0), v and u were set to 0. All delays, D, were 
initially set to 5, but could vary depending on experience in 
the environment. D represented the time it takes to propagate a 
pre-synaptic spike to its post-synaptic target. 

B. Axonal Delays and Plasticity 
A spike wave front proceeds by triggering a single spike at 

a neuron that corresponds to the start location. This neuron 
then sends a spike to its synaptically connected neighbors. The 
delivery of the spike to its post-synaptic targets depends on its 
current axonal delay. Each synapse has a delay buffer, which 
governs the speed of the spike wave.  

 Di,j(t+1)=Di,j(t) + (mapx,y - Di,j(t)) (5) 
  

Where the delay Di,j(t) represents the axonal delay at time t 
between neurons i and j, mapx,y is the value of the environment 
at location (x,y), and  is the learning rate. For the present 
experiments,  was set to 1.0, which allows the system to 
instantaneously learn the values of locations. The learning is 
expressed through axonal delays. For example, if the spike 
wave agent encountered a major obstacle, with a high traversal 
cost (e.g., 25), the neuron at that location would schedule its 
spike to be delivered to it’s connected neurons 25 time steps 
later, whereas, if the value of a location was 1, the spike would 

be delivered on the next time step. It should be noted that in the 
present study the delay buffers were reset before each route 
traversal. The effect of different learning rates and building 
maps with experience is discussed in Section IV. 

C. Map of Environment 
The environment consisted of a 64x64 grid (see Fig. 1). 

Regions of the environment had cost values that included 
roads (value = 1), minor obstacles (value = 5), major obstacles 
(value = 25), and open spaces (value = 3). The agent could 
move in eight directions from any position on the map. 

 
Fig. 1. Spike wave front algorithm in a typical environment. The environment 
is a 64x64 grid. The colors represent different objects in the environment. Dark 
blue lines represent “roads” and have a cost of 1. Medium blue dots represent 
minor obstacles and have a cost of 5. Large yellow regions represent major 
obstacles and have a cost of 25. All other regions (light blue regions) represent 
open space and have a cost of 3. Different stages of the spike wave front are 
shown with the early stage in the top left image, and the later stages in the 
images proceeding from left to right columns and from the top to bottom rows. 
The final path is shown in the bottom right. The state of the spike wave and 
final route are depicted in gold. 

D. Spike Wave Propagation and Path Readout 
Fig. 1 shows the progression of a spike wave in a typical 

environment. Per the AER, the neuron ID and time step are 
recorded for each spike, which is shown in gold. The gold 
square in the top left image of Fig. 1 shows the wave 
emanating from location (58,53). The ensuing 8 figure panels 
going from left to right and top to bottom show the wave’s 
progress. In this instance the wave has broken up depending on 
the cost of the environment. Note that spikes along the road, 
which have a value of 1, have progressed further because of a 
shorter axonal delay. The spike wave algorithm ends when 
there is a spike at the goal location (25,13). 
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Fig. 2. Comparison of the four planning algorithms described in Section II on two representative maps. On both maps, the obstacles are shown in yellow, open space 
is shown in blue, and the paths generated by the algorithms are shown in gold. The map on the left with a start location of (47,14) and a goal location of (16,55) had 
one obstacle. The map on the right with a start location of (35,5) and a goal location of (20,64) had two obstacles. See text for description. 

To find the best path between the start and goal locations, 
we used the list of spikes held in AER format. From the goal, 
the list was searched for the most recent spike from a neuron 
whose location was adjacent to the goal location. If more than 
one spike met this criterion, the neuron whose location 
corresponded to the lowest cost and was closest to the start 
location was chosen. This iteratively proceeded from the goal 
through other neuron locations until a spike at the start location 
was found. The bottom right image in Fig. 1 shows the found 
path. Note how the path avoided obstacles and found the best 
road to get from the start (58,53) to the goal (25,13).  

E. Standard Wave Front Algorithms and A* Path Planner 
The standard wave front planner, a wave front planner with 

dynamic values, and the A* path planner were implemented to 
compare the spike wave front planner with other existing 
algorithms. The standard wave front planner was described 
above and implemented according to Section 4.5 of [15]. A 
value based wave front planner was also implemented. In this 
algorithm, instead of just incrementing the grid location of the 
wave’s leading edge, the cost of the location was also added. 

In addition, we implemented the A* algorithm [3], which is 
commonly used in path planning. A* uses a best-first search 
and attempts to find a least-cost path from the start location to 
the goal location. The cost includes the Euclidean distance 
from the start, the Euclidean distance from the goal, and the 
cost of traversing the location. From the start location, adjacent 
locations are placed in a node list. Then the node list is 

searched for the node with the lowest cost. The location 
corresponding to this low cost node is expanded by placing 
adjacent, unevaluated locations on the node list. The process is 
repeated until the goal location is reached. The A* algorithm 
can find the shortest path based on its cost function.   

F. Statistics for Comparing Algorithms 
To compare the path lengths, traversal costs and 

computation metrics, a paired-sample t-test was used 
(MATLAB, MathWorks, Inc.). The statistic tested for the null 
hypothesis that the experimental metrics from two algorithms, 
each with the same start, goal, and map, were equal. The p-
values were Bonferroni corrected for multiple comparisons. 
The metric data was checked for normality using Q-Q plots.  

III. RESULTS 
Fig. 1 shows a representative trial from an experiment. Several 
maps were generated to test the planner algorithms. For each 
map, multiple start and goal locations were tested. In all trials, 
the start and goal locations were not allowed to be at a major 
obstacle and the Euclidean distance between the start and goal 
locations had to be greater than 50. 

A. Comparing Wave Front Planners 
Fig. 2 shows representative trials comparing the spike wave 

front planner (top left for each map), to the A* algorithm (top 
right for each map), to the standard wave front planner (bottom 
left for each map), and to the wave front planner with values 
(bottom right for each map). The spike wave front and the 
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standard wave front are essentially equivalent and generate 
similar paths. The A* algorithm uses the Euclidean distance to 
the start and to the goal in its cost function and tends to be 
drawn towards those points (note how close it hugs the 
obstacles in Fig. 2).  

 

 
Fig. 3.Path lengths and traversal costs of the four path planning algorithms. The 
thick bars are the mean values of 300 trials (3 maps, 100 trials per map) and the 
error bars denote the standard deviations.   

The standard wave front planner was not allowed to 
propagate across a major obstacle, but the other algorithms did 
not have this restriction. Depending on the start or goal 
location, the wave front with values algorithm occasionally 
propagated through major obstacles (see both maps in Fig. 2). 
Similarly, the spike wave front and the A* algorithms had the 
potential of passing through major obstacles. In the case of the 
spike wave front, if the wave propagated through the obstacle 
fast enough it might generate a path through an obstacle. In the 
case of A*, a path could be generated through an obstacle if the 
cost was lower. Despite this potential, paths through major 
obstacles never occurred in all the maps and locations tested 
with the spike wave and the A* algorithms.  

To test the four path planning algorithms, three different 
maps were generated and 100 trials were run on each map. Fig. 
3 shows the average path lengths (i.e., the number of locations 
visited between the start and goal) and traversal costs for each 
of these algorithms. The left bar graph in Fig. 3 shows that the 
spike wave front planner had significantly shorter paths than 
A* (p < 0.0001; t-test). The spike wave front paths did not 
differ significantly from the wave front planner; in fact they 
had almost identical distances. That the wave front planners 
generated shorter paths than A* is somewhat surprising, but 
looking at Fig. 2, it can be seen that A*’s cost function could 
pull the path close to an obstacle resulting in a longer path 
around obstacles. Because the wave front planner with values 
occasionally generated paths through obstacles, its paths were 
significantly shorter than the other algorithms (p < 0.0001; t-
test). 

The cost of traversal was calculated by summing the costs 
of locations along the generated paths (Fig. 3, right). Similar to 

the path length analysis, the cost of traversing the paths was 
significantly less for the spike wave front and wave front 
algorithms than the A* algorithm (p < 0.0001; t-test). Because 
the wave front with values sometimes generated paths through 
obstacles its cost was significantly higher (p < 0.0001; t-test). 

Because the spike wave front planner can be implemented 
on neuromorphic hardware or on parallel spiking neural 
network simulators [16], it offers speedups over standard 
algorithms, such as A* or the wave front planner. When the 
environment contained open space and obstacles. The spike 
wave front planner was essentially equivalent to the standard 
wave front planner. However, whereas cycles for the wave 
front planners require mathematical operations executed on a 
conventional computer, the spike wave algorithm is compatible 
with neuromorphic hardware, which has been shown to have 
orders of magnitude savings in computation and bandwidth 
when using spike computations along with the AER format 
[17].  

B. Spike Wave Front Planner’s Adaptation to Change 
A key feature of the spike wave front planner and A* is 

their ability to adapt to environmental change. The spike wave 
front planner’s learning rule in Eq. (5) resembles the well-
known delta rule and results in the planner being able to predict 
the cost of future locations through the agent’s experience. The 
heuristic cost function of the A* algorithm can also take 
traversal costs into account when planning routes. 

To show how these algorithms respond to contextual 
changes, we tested one case where the roads had a cost value of 
1, and another case where the roads had the same cost value as 
open space (i.e., value = 3). Ten different maps (5 with one 
obstacle and 5 with two obstacles) were generated with 10 
trials per map.  

Table I shows the mean ± the standard deviation of the path 
length, the traversal cost, and the number of iterations for both 
algorithms in the road and no road cases. The number of 
iterations corresponds to how many loops each algorithm took 
to find a path. The Spike Wave Front and A* were 
significantly different (p < 0.05) for Path Length and Iterations 
in the “No Road” trials. All comparisons between the Spike 
Wave Front and A* for the “Road” trials were significantly 
different (p < 0.0001; t-test).  

TABLE I.  COMPARISON BETWEEN SPIKE WAVE FRONT PLANNER AND 
A* PLANNER WITH AND WITHOUT ROADS 

 Spike Wave Front A* 
 Road No Road Road No Road 

Path Length 81.9±15.0 58.4±10.0 61.4±14.6 59.9±13.6 
Traversal Cost 109.09±33.7 180.8±36.3 140.3±36.7 179.8±40.8 

Iterations 88.8±16.6 168.7±29.2 245.7±242.0 227.3±258.1 
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Fig. 4. Paths generated by the spike wave front planner and A* algorithm in the same environment, but with different costs. Two representative environments are 
shown. The left half of the figure shows a trial on the first environment with a start location at (59,40) and a goal location at (2,60). The right side of the figure shows 
a trial in the other environment with a start location at (3,16) and a goal location at (61,36). Images are pseudo colored to reflect the relative costs of objects in the 
environment with lowest cost being dark blue and highest cost being bright yellow. In the “Roads” condition, the cost of roads equals 1, cost of open space equals 3, 
cost of minor obstacles equals 5, and cost of major obstacles equals 25. In the “No Roads” condition, the roads were set equal to open space (i.e., value = 3). The 
calculated routes are shown in gold.  

When roads were available, the path lengths were 
longer, but the traversal cost was much less. Because the A* 
algorithm did not use the roads as much as the spike wave, 
A*’s paths were shorter, but the cost was higher. For the A* 
algorithm longer paths meant more iterations. But, for the 
spike wave the number of iterations was related to the 
traversal cost because low cost paths meant spikes arrived 
quicker and the algorithm ended sooner. Fig. 4 shows two 
representative examples of these cases. When roads were 
present both algorithms tended to choose paths that used the 
roads. However, because the A* algorithm’s cost function 
depended on the start and goal locations it oftentimes chose 
shorter paths that did not use roads (see maps on right of 
Fig. 4). When the roads were removed, both the spike wave 
front and the A* algorithm planned paths that utilized the 
open space while avoiding major and minor obstacles. 

IV. DISCUSSION 
In the present paper, we introduced a path planning 

algorithm that used spiking neurons and axonal delays to 
compute efficient routes. The spike wave front path planner 
has several interesting properties: (i) Paths are near optimal 
and comparable to conventional path planning algorithms, 
such as the A* algorithm or a wave front planner. (ii) A 
learning rule based on axonal delays allows the algorithm to 
consider the cost of traveling through an environment and 

adapts paths accordingly. (iii) The algorithm uses spikes and 
the popular AER format making it compatible with 
neuromorphic hardware. (iv) The spike wave front takes 
significantly less iterations than the A* algorithm. (v) 
Because the spike wave front is a local algorithm (i.e., 
computations are independent and based on neighboring 
neurons), it is suitable parallel implementation. 

A. Axonal Delay Plasticity 
Recent evidence suggests that the myelin sheath, which 

wraps around and insulates axons, may undergo a form of 
activity-dependent plasticity [14, 18]. These studies have 
shown that the myelin sheath becomes thicker with learning 
motor skills and cognitive tasks. A thicker myelin sheath 
implies faster conduction velocities and improved synchrony 
between neurons. 

The present algorithm introduced a learning rule inspired 
by activity-dependent myelinization, in which a path that 
traverses through an easy portion of the environment (e.g., 
via a road) would have shorter axonal delays than a path that 
travels through rough terrain. Assuming a robot or other 
autonomous vehicle had the ability to sense the cost of 
moving through a portion of the environment, by vision, 
accelerometers or other means, the robot could add such 
information to its map. In this way, the robot’s path planner 
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could calculate a route based on difficulty. For example, Fig. 
4 and Table I simulated a robot choosing between “off-road” 
and “on-road” routes just by changing the cost of the road in 
the robot’s map. Moreover, paths could be planned based on 
the robot’s present state or context. For example, if the robot 
was low on energy, it might risk traveling through obstacles 
to get to a charging station quickly. To achieve such a path, 
the relative cost of obstacles could be made lower and the 
calculated route would reflect this preference. Taken 
together, the axonal delay learning rule presented here could 
be a flexible method for selecting context and experience 
based path planning. 

B. Hardware Implementation of Spike Wave Front Planner 
Neuromorphic hardware differs from the conventional 

Von Neumann computer architecture in that it is 
asynchronous and event-driven, with parallel computation [7, 
8]. The artificial neurons do not take up computation cycles 
unless they receive a spike event from a connected neuron. 
Typical neuromorphic designs have the memory, in the form 
of synapses, co-located with the processing units, that is, the 
neurons. This allows computations to be local, independent, 
and parallel. These features allow neuromorphic chips to 
have low size, weight and power [7, 19]. Nearly all these 
chips use spiking neuron elements and some form of AER. 

The present algorithm is compatible with neuromorphic 
hardware. It builds upon a hardware implementation of a 
spike-based wave front planner [6]. It adds a learning rule, 
which depends on axonal delays, to make the planner more 
flexible and to consider the relative costs of traversing an 
environment. Axonal delays have been introduced in large-
scale spiking neural network simulations [20, 21], but are not 
typical for neuromorphic hardware. However some 
neuromorphic designs include axonal delays [22]. To 
implement the present algorithm in neuromorphic hardware, 
all that would be needed is a delay buffer or a means to 
change the conductance properties of a connection. Because 
a synaptic based learning rule, such as Spike Timing 
Dependent Plasticity (STDP), is not needed for the present 
algorithm, the circuitry to support the spike wave front 
planner could be simplified. 

It should be noted that the present algorithm used a 
simplified spiking neuron to demonstrate the algorithm’s 
path planning capabilities. Many neuromorphic hardware 
designs support more complex neuron models, such as leaky 
integrate and fire neurons or the Izhikevich neuron [17, 22-
25]. In previous work, we have shown that similar wave 
dynamics to that shown here can be demonstrated in more 
complex neuron models [26]. Therefore, it would be feasible 
to convert the present algorithm to a more complex neuron 
model given the right settings. 

In the present algorithm, the AER representation is used 
to read out the path, which may be a limitation since it 
requires saving the AER list for each planned route. It also 
requires a planning calculation and readout for every route. 
A more natural implementation might use the rank order of 
the spike wave in a similar way to that proposed by Thorpe 
and colleagues [27, 28]. Such alternative readout 
implementations will be explored in the future. 

C. Learning Unknown and Uncertain Environments 
The present simulations assumed a known, static 

environment with instantaneous learning (  = 1.0 in Eq. 5). 
In addition, the system started out naïve before every route 
traversal. That is, the delay buffers were reset to their initial 
value before being given a start and goal location. Future 
extensions of the spike wave front planning algorithm could 
readily work in unknown or uncertain environments by 
setting the learning rate to be between 0.0 and 1.0, and not 
resetting the delay buffer values (D in Eq. 5) after each 
traversal. Instead, the system could retain its learned values 
between trials and the learning rate could be set to reflect the 
dynamics of the environment.  

If an environment were uncertain, using the spike wave 
front planner with a learning rate between 0 and 1 could 
build a dynamic value map of the environment. For example, 
if a location were traversable 25% of the time, the algorithm 
would learn this uncertainty and plan accordingly.  Similar to 
[29], this would result in the spike wave front planner 
predicting the cost of traversing locations in an environment. 
Moreover, the planner’s prediction would take the 
uncertainty into consideration. Such a planner would have 
advantages in learning the landscape of an environment, 
responding flexibly and fluidly to change, and not falling 
into local minima.  

In an unknown environment, a robot or autonomous 
agent can sense the cost of locations in the environment and 
update its map accordingly. When the agent is tasked with 
planning a route between locations it can use the cost values 
for which it has experience and can specify a cost value for 
unknown locations in the map. The cost of unknown 
locations could be set depending on the agent’s context (e.g., 
low for exploration vs. high for exploitation). Moreover, as 
the agent gained more experience traversing routes, the map 
could become more complete with this cost metadata.  

D. Spike Wave Front Comparison to Other Planning 
Algorithms 
In terms of path lengths, traversal cost, and iterations 

through the algorithm, the spike wave front planner was as 
good or better than other implemented path planning 
algorithms (Fig. 3 and Table I).  

Since the underlying algorithm is the same, the 
performance of the spike wave front planner was roughly 
equivalent to the wave front planner. However, the axonal 
delay learning rule allowed the spike wave front to take 
traversal cost into consideration and could adapt to 
environmental change (Fig. 4).  

The spike wave front planner had interesting differences 
from the A* algorithm. A* uses the start and goal location to 
calculate paths and this leads to short paths that may not have 
the lowest traversal cost. The spike wave front only 
considers the local computations at the front edge of the 
wave. Not only does this make the algorithm more sensitive 
to traversal cost, but it also means that the spike wave front 
computations are local and independent. Efficient routes are 
computed without using the global start and goal locations.  
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V. CONCLUSIONS 
In summary, the spike based wave front planner 

introduced here has interesting features that make it 
attractive for autonomous and embedded systems. A form of 
activity-dependent plasticity (i.e., changes in axon 
myelinization), which is rarely used in neural simulations, 
inspired the algorithm. The algorithm shows improvements 
over other path planning algorithms because it computes 
with spiking neurons and it can adapt to environmental 
change. Spiking algorithms have been shown to run 
efficiently and with low power on neuromorphic hardware, 
making this algorithm suitable for micro aerial vehicles and 
other embedded devices. Straightforward extensions to the 
algorithm would further improve its flexibility and adaptive 
behavior.  
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