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Abstract—A predictive mechanism in the brain enables pri-
mates to visually track a target with almost zero lag smooth
pursuit eye movements, overcoming the delays in processing
retinal inputs. Interestingly, it also allows pursuit of occluded
targets with nonlinear motion patterns. We propose a recurrent
neural network (RNN) model that rapidly learns the target
velocity sequence and generates eye velocity signals to eliminate
the initial lag between target and eye velocities, and to track
occluded targets with nonlinear velocity. Moreover, the model
is able to adapt to unpredictable perturbation and phase shift
of target velocity and qualitatively reproduce the initial pursuit
acceleration in experimentally observed timescales. We propose
that the frontal eye field (FEF) region of the primate brain
is homologous to the proposed RNN based on its persistent
predictive activities during pursuit and location on the pursuit
pathway.

I. INTRODUCTION

Primates are incredibly proficient at tracking a visual target
with their eyes. Since their foveal vision is narrow, they rotate
their eyes continuously in the direction of the moving target
to keep it centered on the fovea, which provides high acuity
information. This type of eye movement is known as smooth
pursuit, as eye velocity changes smoothly in response to target
velocity. The pursuit system is able to track with almost zero
lag between eye and non-linear target velocities [1]. This
behavior is particularly impressive, since due to sensory and
processing delays of 80-100 ms in the visual pathways [2],
a system that solely relies on retinal error feedback for
oculomotor movements cannot achieve near zero lag pursuit.
Further, the primate eyes continue smooth pursuit of a target
after its disappearance [3], [4]. These two pursuit behaviors
indicate a predictive mechanism that is able to generate current
and future eye velocities based on the target motion sequence
in the past [1].

Early control-theoretic models of smooth pursuit [5], [2]
did not consider the predictive capabilities of pursuit, rather
they tried to mimic the experimentally observed typical initial
acceleration, overshoot, and response latency, while tracking a

constant velocity stimulus. Later models used prior knowledge
or memory from previous trials to eliminate sensory delays
and to be able to continue pursuit during occlusions [6], [7],
[8]. However, these memory-based models are not plausible
since they rely on periodicity of target velocity, resulting in
periodic improvement of pursuit lag [9]. They also cannot
adapt to transient perturbations in target velocity, whereas
humans adapt to perturbation and phase shift of a sinusoidal
target within a cycle [10].

A fundamental problem associated with pursuit is to gen-
erate eye velocity that persists while target velocity on retina
is zero. This takes place during perfect zero lag tracking and
during target occlusion. The neural mechanism that generates
predictive eye velocity signals in absence of visual inputs is not
known from the existing pursuit models. The state-of-the-art
Kalman filter based predictive pursuit models [6], [9] cannot
generate persistent eye velocity during long occlusions of a
target with nonlinear velocity, due to absence of the error
feedback to correct filter predictions. In contrast, both humans
and monkeys were found to continue pursuit of a target with
sinusoidal velocity after disappearance [3], [4].

In this paper, we propose an RNN based smooth pursuit
model that rapidly learns the target velocity sequence and
generates self-sustained predictive eye velocity signals to track
a moving target with near zero lag. The model is able to
i) gradually eliminate the initial lag between eye and target
velocities, ii) track an occluded target with nonlinear velocity,
iii) adapt to unpredictable perturbation and phase shift in target
velocity, and iv) qualitatively reproduce the typical initial
pursuit acceleration observed in experiments [10], [4], [3],
[11]. The RNN has a spontaneous baseline activity and is
trained online using the FORCE learning procedure [12]. We
also map our model to the pursuit pathway in the primate brain
based on neuroanatomy and behavior of the brain regions [11].
We propose that the FEF region of the frontal cortex, which
generates predictive eye velocity signals during pursuit of
visible and hidden targets [13], [11], [14], is a plausible neural
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correlate of our proposed RNN based on its activities during
pursuit and location on the pursuit pathway.

II. BACKGROUND

A. Predictive smooth pursuit behavior

The velocity of a target on the retina, known as retinal
slip (RS), is relied upon to generate and maintain accurate
smooth pursuit eye movements. RS can be considered as the
error between eye and target velocities. Since RS becomes
zero during zero lag tracking and occlusion, it cannot be
used to drive pursuit eye movements. However, it may be
used to correct them, as suggested in [15]. Moreover, the RS
information is delayed by approximately 80-100 ms during
early visual processing [15], [2]. As a result, a pursuit system
based on a delayed RS is not stable [15]. The pursuit system
needs to predict eye velocity 80-100 ms into the future using
available RS information in order to eliminate lag between
eye and target velocities.

If a target’s motion is predictable, the primate vision system
learns the spatio-temporal sequence of target velocity on-
line [4], [3], [10]. This learned velocity pattern, also referred to
as the internal model, gradually reduces lag between target and
eye velocities during tracking. It also enables the vision system
to continuously track a target during occlusion. Experiments
with both humans and monkeys [4], [3] observed that when a
sinusoidal target was suddenly turned off during an ongoing
pursuit, the transition from target on to target off did not pro-
duce any transient deviation in pursuit velocity. Both studies
concluded that the internal model was used to generate eye
velocity even when the target was visible. Furthermore, Van
den Berg [10] observed that humans adapted to unexpected
perturbations and phase shifts of a sinusoidal target within a
cycle.

B. Previous models

Early pursuit models implemented a feedforward controller
that canceled out efferent feedback to achieve high velocity
gain [5], [16]. Krauzlis and Lisberger proposed a feedback
control model using parallel velocity and acceleration path-
ways with second order filters to process RS [2]. This model
used under-damped filters to generate the ringing behavior of
the earlier models [5]. None of these models achieved zero lag
pursuit of a periodic signal because they relied on a delayed
RS information.

From control-theoretic perspective, the current target ve-
locity information is required to predict current eye velocity
without lag. To work around this, later models used prior
knowledge or memory of target motion to estimate the cur-
rent target velocity. Bahill and McDonald proposed a model
for generating pursuit eye movements based on a priori
knowledge of target trajectory [17]. Other memory based
models proposed to generate pursuit eye movements based on
stored patterns for periodic trajectories [8]. Orban de Xivry et
al. [6] proposed a memory based model that used the target
trajectory stored from prior trials to run a Kalman filter for
eye velocity prediction. However, as indicated by [9], memory

based models are biologically not plausible, because i) they
require a periodicity estimator in the brain, ii) the improvement
in pursuit lag by memory-based models can only be periodic,
whereas studies [10], [11] found a rather gradual decrease in
lag between target and eye velocities, and iii) they cannot adapt
to unpredictable perturbations of a periodic signal within a
single cycle as observed in humans.

Shibata et al.’s model removed the requirement for prior
knowledge of target trajectory and adapted the parameters of
a Kalman filter online for eye movement predictions [9]. How-
ever, these Kalman filter based approaches have drawbacks, i)
they cannot account for acceleration/deacceleration caused by
the external target and operate using the negative feedback
of prediction error and ii) filter state and prediction are static
during occlusions. Both drawbacks arise since these models
do not learn the target motion pattern.

As this paper focuses on the computations for the predictive
pursuit behavior observed during experiments on primates [4],
[3], [10], we will not discuss other models related to pursuit,
such as target background separation for pursuit [18] and co-
development of pursuit and motion perception [19], [20], as
well as other types of eye movements.

III. THE PROPOSED MODEL

Studies on primates have shown that the predictive pursuit
system learns the spatio-temporal sequence of target veloc-
ity [4], [3], [10]. For this, the predictive system in the brain
solves three challenges that arise from biology and the nature
of the visual tracking task. First, the target velocity sequence
is learned rapidly (e.g. within a few cycles for periodic target
velocity [21]) to eliminate pursuit lag. Second, the learning
occurs using an RS information that is 80-100 ms delayed
during sensory processing. Third, RS vanishes during zero
lag pursuit or occlusion, and therefore cannot be used to drive
eye velocity.

Considering these challenges, we propose a smooth pursuit
model using an RNN to rapidly learn the target velocity
sequence and predict eye velocity during both presence and
absence of retinal inputs. The model produces eye velocity
prediction from spontaneous neural activations and uses the
delayed RS as the error signal for learning. The eye velocity
prediction is then converted to actual eye motor movements
by a downstream Inverse Dynamics Controller (IDC). The
processing by vision and attention systems to extract the target
velocity from the visual field and the IDC are not modeled
in this paper, as efficient models already exist for these tasks.
Figure 1 depicts the complete predictive smooth pursuit model.

The target velocity on the retina, i.e. RS, results from actual
movement of the target in the three-dimensional world and/or
eye/head/body movements. Since target motion projected onto
the retina is relative to eye motion, the resulting RS is the
difference between head-centered target velocity (vT ) and eye
velocity (vE). When the eye perfectly tracks a moving target
with foveal vision, RS will be zero.

RS(t) = vT (t)− vE(t) (1)
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Fig. 1. The proposed model for predictive smooth pursuit eye movement generation in primates. The plausible brain regions performing the specific functions
in the pursuit pathway are shown in green colored boxes. The retinotopic RS is extracted from visual field with a time delay of δ by the dorsal visual pathway
(RSδ). A recurrent network of neurons (blue circles) in the FEF region uses RSδ to learn the target velocity sequence and generates ũ, which is then low
pass filtered by a leaky integrator to obtain eye velocity predictions (ṽE ). All red colored synaptic connections are modified during learning. Cerebellum and
Brainstem together implement an inverse dynamic controller to generate the final eye velocity (vE ) via occulomotor control.

The retinal output, where RS of the target is embedded
in a visual scene background, is transmitted through two
interconnected visual cortical pathways, one that recognizes
objects (ventral pathway) and the other that extracts motion
components in the visual field (dorsal pathway). In Figure 1,
we only show the dorsal pathway as it processes motion
information. The dorsal visual pathway extracts motion of all
objects in visual field and the attention system selects the target
motion component from background, in time δ. We term the
cumulative operations performed by the dorsal pathway as f
and its target velocity output as RSδ .

RSδ(t) = f(RS(t− δ)) (2)

where, RSδ is delayed by time δ since its projection on the
retina.

The RNN, shown inside the box labeled FEF in Figure 1,
uses RSδ as the error signal to learn target velocity sequence
online and generates predictive eye velocity signals. Similar
predictive activities during pursuit have been observed in the
FEF region of frontal cortex, which receives outputs from
the dorsal pathway [13], [11], [14]. RSδ vanishes as the lag
between target and eye velocities is reduced during learning,
therefore the RNN needs to predict eye velocity in absence of
visual inputs.

This RNN is a type of reservoir computer [22], [23] and
is trained online using the FORCE learning procedure [12].
The RNN has 500 neurons connected all-to-all and operates
in a chaotic regime. All neurons of the RNN connect to a
single readout neuron (o) via readout synapses. The recurrent
and readout synapses are plastic and are modified online using
RSδ as the error. The output of the readout neuron ũ is fed
back to the RNN through fixed random weights with a gain
K. The signal ũ is low pass filtered to obtain the eye velocity
prediction ṽE .

The neurons in the RNN follow the dynamics proposed

in [12]. Hence, the dynamics of neuron i can be written as:

τ
dxi

dt
= −xi +

∑

j∈Pre(i)

wijrj +Kwioũ (3)

Where, τ is the time constant, xi is the neuron state, Pre(i)
is the set of neurons that projects to post-synaptic neuron i,
wij is the weight of the synapse from neuron j to neuron
i, wio is the weight of the synapse from the readout unit to
neuron i, and r is the non-linear activation function given as,

ri = tanh(xi) (4)

The readout unit linearly combines neuron activations
weighted by woi, which can be considered as an integrator
with unit gain and time constant.

ũ =
∑

i

woiri (5)

The leaky integrator performs low pass filter on the output of
the readout unit with gain Kl and time constant τl to generate
pursuit eye velocity prediction ṽE , following the dynamics
given by:

τl
dṽE
dt

= −ṽE +Klũ (6)

The recurrent and the readout weights are updated period-
ically after every δ time units, same as the visual processing
delay. This is done because the effect of weight updates on
RS is obtained after δ. The FORCE learning procedure is
applied to learn all recurrent and readout weights using the
same delayed error signal RSδ . The weight update for the
synapse from neuron j to neuron i is defined as,

wij(t) = wij(t− δ)−RSδ(t)
∑

k∈Pre(i)

Pjk(t)rk(t) (7)

Similarly, the readout weights are updated as,
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woi(t) = woi(t− δ)−RSδ(t)
∑

k∈Pre(o)

Pik(t)rk(t) (8)

where, P is a matrix containing individual learning rates for
all synapses, updated regularly. It is initialized to I/α, where
α is some constant and I is the identity matrix. P is updated
as the inverse of the correlation matrix of neuron activations
plus a regularization term αI [12].

Biological interpretation of this type of neural dynamics has
been suggested previously based on experimental data [24].
Cortical neural networks maintain a spontaneous baseline
activity, which is chaotic and inherently unstable. However,
short-term plasticity based on pre-synaptic firing dynamically
tunes these networks to be stable and respond reliably to
external stimuli. This self tuning principle allows these cortical
networks to respond to external perturbations with character-
istic transient response.

Similar to [9], we follow the findings and the theory that
the cerebellum and the brainstem together implement an IDC,
which cancels the dynamics of the eye plant [25]. As in [9],
we assume that the IDC is ideal, and therefore we can write,

vE = ṽE (9)

where, ṽE is the low pass filtered eye velocity prediction.
With this assumption, we will not model IDC dynamics in
this paper.

IV. EXPERIMENTS AND RESULTS

We test the proposed predictive pursuit model on three
characteristic pursuit tasks. First, we compare the pursuit
initiation behavior of the model with experimental data from
studies on primates [26], [27]. Second, a predictive pursuit
task of a sinusoidal target, where we evaluate the capability of
the model to eliminate lag between target and eye velocities
caused by sensory delays and perform predictive pursuit of
occluded objects [3], [4]. Third, we evaluate the ability of the
model to adapt to unpredictable perturbations and phase shifts
of target velocity in experimentally observed timescales [10].

In all the experiments, the RNN contains N = 500 neurons
and they are fully connected. The initial recurrent weights are
drawn from a Gaussian distribution with mean 0 and standard
deviation g/

√
N with g = 1.5, which results in a spontaneous

chaotic behavior [12]. The readout weights are initialized to
zeros. The feedback weights connecting the readout unit to
the RNN neurons are drawn uniformly from the range -1 to
1 with gain K = 1. The integration timestep is 16 ms. The
time constant τ is set to 160 ms and like previous models,
the sensory delay δ is set to experimentally observed value
of 80 ms [2], [6]. For the leaky integrator, the time constant
τl is equal to 128 ms. The values of α and Kl are set to
1.25 and 0.5, respectively, for the initiation experiment, and to
100 and 1, respectively, for the predictive pursuit experiment.
The Matlab code used in the experiments is available at
https://github.com/hkashyap/predictivePursuit.

Similar to [6], pursuit onset is detected by fitting a piecewise
linear function (0 before pursuit onset T and A(t − T ) after
T ) to ṽE traces during an interval of 320 ms starting from
stimulus onset. Similarly, for the initiation experiment, mean
eye acceleration (B) is calculated by fitting ṽE traces during
the interval 80-180 ms after pursuit onset to ṽE(T + 0.08) +
B(t − (T + 0.08)). The interval is selected to compare with
experimental eye acceleration data [26], [6].

A. Pursuit initiation
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Fig. 2. Eye velocity during pursuit initiation in response to a ramp stimulus of
constant velocity 20 deg/s. The black dashed line depicts the target velocity.
The colored lines are the eye velocity responses generated by the proposed
model in 20 trials.

The smooth pursuit observed during sudden movement of
a target with constant velocity after fixation, known as a
ramp stimulus, has a very characteristic initial acceleration
profile, as observed in primate experiments [5], [2], [28], [29].
Figure 2 depicts the pursuit responses generated by our model
for a ramp stimulus of velocity 20 deg/s that starts at 400 ms.
In all trials, our model generates the typical initial acceleration
and the following overshoot, comparable with experimental
observations and outputs of the previous models [5], [2], [6].
The pursuit response latency of our model from the onset of
the stimulus is 146 ± 13.7 ms (mean±SD), which is similar
to the average pursuit response latency of 150 ms measured
experimentally for the ramp stimulus [27].

Consistent with the recent studies [28], [29], [27], our model
does not show an oscillatory behavior for the ramp stimulus
after the overshoot. The recent predictive pursuit model by
Orban de Xivry et al. [6] did not produce the oscillatory
behavior either. Mainly early control theoretic pursuit models
resulted in the oscillatory behavior [2], [5]. However, the pur-
suit model by Krauzlis and Lisberger [2] required a separate
image-acceleration pathway, in addition to an image-velocity
pathway, that generated the oscillatory behavior. Our model
does not require separate mechanisms for pursuit acceleration
and prediction.

We compare the mean eye acceleration during pursuit initia-
tion generated by the proposed model versus experimental data
of humans presented in [6], originally from a dataset by de
Brouwer et al. [26]. Figure 3 depicts the comparison of mean
eye acceleration profiles in response to targets velocities -50
deg/s to 50 deg/s at an increment of 5 deg/s. Similar to [6], eye
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ms after pursuit onset. Blue circles correspond to predictions by the proposed
model and red circles correspond to experimental data from de Brouwer et
al. [26], reproduced from [6]. Vertical bars are the standard deviations from
mean. Experimental data is not available for target velocity -50 deg/s.

acceleration is calculated during the interval 80 ms to 180 ms
after pursuit onset. The plot shows that acceleration generated
by the proposed model during pursuit initiation follows a
comparable trend as the experimental data. Similar to the
experiment, the standard deviation of acceleration generated
by our model gradually increases for higher target velocities,
which is caused by large weight updates due to higher RS
error signals. The mean acceleration produced by our model
matches the experimental data for target velocities up to 30
deg/s. Beyond this range, the experimental data shows the
effect of physiological limits as the acceleration plateaus.
Similar to the previous models [30], a saturation function for
acceleration may be used to reproduce this behavior.
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Fig. 4. The standard deviations of ṽE traces at different time points after the
stimulus onset with target velocity 20 deg/s, compares to Figure 1(b) of [27].

The variations in pursuit velocity observed between trials in
Figure 2 is attributed to different initial states of the reservoir.
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Fig. 5. The pursuit eye velocity generated by our model in response to
sinusoidal target velocity pattern. The black dashed line is the target velocity
and the colored lines are the eye velocity simulated using the proposed model.
The grey areas are the time periods where the target is occluded. (a) The target
is always visible, (b) the target is temporarily occluded and then reappears,
and (c) the target is permanently occluded after 15 seconds.

Figure 4 depicts the standard deviation among the eye velocity
traces at different time points after the onset of the stimulus
with target velocity 20 deg/s. Similar to the experimental
observations on humans and monkeys [27], [31], the standard
deviation of eye velocity generated by our model in 20 trials
jumps approximately 1 deg/s from its starting value (0 deg/s
in our case) within 300 ms from the stimulus onset, which
then linearly decreases and settles to approximately 0.64 deg/s
between 500 ms and 600 ms from the stimulus onset.

B. Predictive pursuit

Similar to the existing predictive pursuit models [9], [6]
and experiments [10], [4], [3], [11], we test our model on
a sinusoidally varying target velocity pattern. Primates track
sinusoidal targets with little or no lag [11], [10]. Figure 5
demonstrates the results of the experiment, which shows the
predictive capability of the proposed model in terms of almost
zero lag pursuit and sustained tracking performance during
occlusion. Figure 5a depicts the experiment where the target
follows a sinusoidal velocity pattern with amplitude 0.47 deg/s
and frequency 0.5 Hz. Since, the readout weights of the RNN
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are initialized to zero, the initial eye velocity is 0 deg/s.
The retinal slip or error signal for learning is not available
to the RNN during first 80 ms after target onset (sensory
delay) and therefore, the eye lags behinds the target (evident
from the target and the eye velocity plots in Figure 5a).
Learning process starts after 80 ms and despite using a delayed
error signal, it is able to eliminate the phase lag between
the target and eye velocities within the first cycle of the
sinusoid. Within a few cycles of the sinusoid, the eye velocity
closely follows the target velocity. Primate experiments using
periodic stimuli also observe that the phase error between
target and eye velocities becomes small within the third cycle
of sinusoid [21], [10].

Figure 5b and Figure 5c illustrate the effect on pursuit
performance due to temporary and permanent occlusion of
the target, respectively, after the model has learned the target
velocity pattern. In Figure 5b, when the target is occluded from
15 s to 20 s after target onset, the model continues to generate
a eye velocity pattern that closely resembles the occluded
target’s velocity. Although, a phase error develops between the
eye velocity and the target velocity during occlusion. After
the target reappears, the phase error is corrected within a
single cycle, much faster than the initial learning. Figure 5c
shows that when the target is occluded permanently at 15 s
after target onset, the model continues to generate sinusoidal
eye velocity pattern for many cycles. However, the phase
error between the target and eye velocity gradually increases.
Similar experiments on humans and monkeys [4], [3] report
that pursuit movement continues for a few cycles after a
sinusoidal target is turned off and then a phase error develops
gradually.

C. Unpredictable perturbation and phase shift
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Fig. 6. Response of the predictive pursuit model to unpredictable perturbation
and phase shift. Black dashed line is the target velocity and the colored lines
are the eye velocity generated by the model in 5 trials. R = 0.58 s is the
experimental reaction time since perturbation calculated using Van den Berg’s
formula [10]. Compares to Figure 8(a) of [10]. Pursuit starts at 0 s (not shown).

In human subject experiments, Van den Berg [10] studied
the effect of unpredictable perturbation and phase shift on
predictive pursuit by replacing a sinusoidal velocity stimulus
with a ramp stimulus for half cycle. During perturbations, the
eye initially accelerated following the original course of the
sinusoidal target before reversing acceleration to match the
modified velocity. During this transition, the time at which the
acceleration becomes zero since the beginning of perturbation

is known as the reaction time (R). The study observed maxi-
mum reaction times when the target velocity was perturbed at
the peak of the sinusoid, which were larger than one quarter
of a cycle and approximated using the following formula.

R =
1

4× frequency
+ 0.08s (10)

Figure 6 depicts the eye velocity generated by our model
during the same experiment, where perturbation occurs at the
peak velocity of a 0.5 Hz sinusoidal target for half cycle. The
reaction times achieved by our model are close to 0.58 s,
the experimental reaction time obtained using Equation 10.
Similar to the experimental data, our model adapts to the
new phase within the first cycle after perturbation, and the
phase error caused by the perturbation is corrected during the
first two cycles after perturbation. The results from our model
and Van den Berg’s experiment [10] show that the predictive
pursuit system continuously learns the target velocity at a fast
learning rate, which is not possible in memory based models.

D. Unpredictable target velocity
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Fig. 7. Eye velocity prediction by our model in response to an unpredictable
target velocity input. The black dashed line is the target velocity sequence and
the colored lines are the model output during ten trials. The grayed regions
are occlusions.

We also test the response of our model when the target
velocity is not predictable. Similar to the human pursuit
experiment for unpredictable targets [32], we use a pseudo-
random target sequence that is a sum of four sine waves with
different frequency and amplitude. The target velocity is not
predictable, as evidenced by the deviation in pursuit prediction
during the three blank periods, shown in Figure 7. Similar
to the experimental observations [32], [10] for unpredictable
targets, our model is able to reduce the initial sensory lag
using continuous prediction and then switches between phase
lead and phase lag to maintain small prediction error. The
third occlusion at 19 s illustrates the unpredictability of the
target movement, as the model expected the target velocity to
either plateau or increase or decrease. The deviations caused
by target blanking are corrected after target reappearance.

V. DISCUSSION

In this paper, we present a computational model of pre-
dictive smooth pursuit eye movement in primates. The model
implements the predictive mechanisms using an RNN and is
able to achieve almost zero lag tracking of sinusoidal targets by
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eliminating sensory delays, pursuit of an occluded target with a
non linear velocity profile, and adaptation to unpredictable per-
turbation and phase shift of target velocity in experimentally
observed timescales. The model also qualitatively reproduces
the experimentally observed initial pursuit acceleration. To the
best of our knowledge, this is the first neural network model
to achieve all of the above mentioned primate smooth pursuit
behaviors. It demonstrates that a single neural network can
generate pursuit initiation dynamics and persistent predictive
pursuit signals. Although, pursuit experiments on primates
suggested that an internal model of target motion may be
used for pursuit prediction [21], [4], [3], [10], the neural
mechanism to create and maintain the internal model was not
known. Our work shows how the internal model is learned
and updated rapidly by an RNN using a delayed RS signal
as error, in order to reduce tracking lag, generate persistent
pursuit during occlusions, and correct eye velocity during
target perturbations.
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Fig. 8. Mean RS (the solid black trace) from 10 trials of the experiment
shown in Figure 5a. The target velocity (the dashed line) is superimposed for
reference. The RS signal is received by the predictive model after 80 ms to
simulate sensory delays.

A puzzling aspect of smooth pursuit eye movement is that
during zero lag tracking and occlusion, pursuit movement
continues when RS is zero. Figure 8 depicts the RS signal at
the retina (without delay) during pursuit of a sinusoidal target
by our model. It can be seen that after the target motion pattern
is learned, the RS is not exactly zero, but deviates by small
amounts around zero. However, the small RS components
cannot drive pursuit output during occlusion. We propose
that the RNN is able to generate self-sustained eye velocity
predictions. The small RS components are continuously used
to correct the pursuit prediction. During occlusion, these
corrective RS components are not available, and therefore, the
pursuit eye velocity gradually lags behind the target, similar
to experimental data [4]. In our model, the RNN operates
in a chaotic regime and each neuron has its own baseline
spontaneous activity. During occlusion, the learned neural
activity pattern continues to produce the pursuit prediction.

For the control theoretic models without memory, a zero
RS keeps the velocity prediction at a constant value. There-
fore, these models can generate pursuit eye movement for
a constant velocity ramp stimulus, but not for a sinusoidal
target velocity stimulus during long occlusions. For memory
based models [6], [8], occlusions larger than one cycle of
a sinusoidal target velocity will result in incorrect pursuit

prediction. Moreover, [6] assumes that the brain knows the
noise distribution of target velocity. The model by Shibata et
al. [9] uses both RS and position error to run the Kalman
filter based prediction, and the position error parameters are
constantly updated to maintain almost zero RS. However,
the model is not tested for long occlusions (maximum tested
occlusion is 1/10th of a cycle).

The role of FEF in predictive pursuit

Many studies have observed a direct role of FEF in predic-
tive smooth pursuit representation. Keating [11] found that
lesions or ablations of FEF impaired monkeys’ ability to
conduct smooth pursuit of sinusoidal targets when the target
was visible and during occlusions. Single unit recordings in
FEF found neurons that continued to respond strongly after
a sinusoidal target had been extinguished [14]. Fukushima et
al. [13] found similar FEF neurons from recording studies
on monkeys. Predictive pursuit eye movement signals in FEF
were also observed during fMRI studies [33]. These studies
suggest that FEF learns an internal model of the target velocity
pattern to signal predictive pursuit eye movements, regardless
of whether the target is visible or not.

FEF receives strong projections from the middle temporal
area (MT) and the medial superior temporal area (MST),
which are regions in the dorsal visual pathway that respond
to object motion. Similarly, FEF connects to the lateral intra-
parietal area (LIP) with bidirectional connections [34]. LIP
is upstream from MST in the visual pathway and has been
associated with detection of object motion using bottom up
attention signals [35]. On the output side, efferents from FEF
are transmitted to dorsal pontine nuclei (PN) and reticularis
tegmenti pontis (NRTP) regions in the brainstem. These brain-
stem regions relay information from FEF to cerebellum for
oculomotor adaptation [36].

Based on the outcomes of lesion studies and anatomical
connections, Keating [11] suggested that FEF is subsequent
to the parietal areas of the visual pathway and prior to PN in
controlling pursuit eye movements. This implies that FEF is a
plausible neural correlate for our RNN, based on their common
predictive activities during smooth pursuit and location on the
pursuit pathway. Both FEF and our RNN use visual inputs to
predict eye velocity commands for oculomotor controllers in
cerebellum. Whereas, the leaky integrator can be realized in
PN/NRTP as it relays FEF output to cerebellum.

VI. CONCLUSION

Experiments on primates observed predictive eye velocity
signals in FEF and suggested that an internal model of the
target velocity is used to control eye movements instead of
visual input [11], [14], [3]. However, it is not known how
such an internal model is developed and updated rapidly by a
neuron population in the brain.

Here we introduced a model of smooth pursuit using an
RNN that rapidly learns an internal model of non-linear target
velocity sequence and generates eye velocity for tracking with
almost zero lag, when the target is visible and when the target
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is occluded. Further, the proposed model is able to generate
the typical acceleration pattern during pursuit initiation and
adapt to unpredictable target velocity perturbation and phase
shift in experimentally observed timescales [27], [10]. In this
neural model of predictive smooth pursuit, we demonstrated
that a population of recurrent neurons, continuously learning
from a delayed retinal slip information, can generate both the
pursuit initiation dynamics and the predictive pursuit behaviors
observed in primates. The resulting model could have practical
applications for tracking objects in video and autonomous
systems.
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