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Abstract—Recent developments in neuromorphic engineering
have enabled low-powered processing and sensing in robotics,
leading to more efficient brain-like computation for many robotic
tasks such as motion planning and navigation. However, present
experiments in neuromorphic robotic systems have mostly been
performed under controlled indoor settings, often with unlimited
power supply. While this may be suitable for many applications,
these algorithms often fail in outdoor dynamic environments that
could benefit the most from the low size, weight, and power
of neuromorphic devices. We present the current challenges
of outdoor robotics, how current neuromorphic solutions can
address these problems, our current approaches to the task,
and what further needs to be achieved to create a complete
neuromorphic solution to outdoor navigation and path planning.

I. INTRODUCTION

Robotics in outdoor environments presents a complex
set of challenges unseen in more controlled indoor settings.
Aside from the potential damage of electronic components
in harsh weather conditions, the dynamic nature of outdoor
environments produces unpredictable sensory input. Changes
in lighting add unpredictability to computer vision, and differ-
ent terrains cause problems for path planning algorithms that
assume a uniform space. Furthermore, the lack of a continuous
power source limits the time that a robot can be in operation,
requiring careful consideration of the power consumption of
sensors, actuators, and computational procedures. Neuromor-
phic systems address the challenge of limited power supply
and operation over long durations. Mimicking the energy effi-
ciency of the brain, neuromorphic hardware uses a massively
parallel, event-driven architecture that performs computations
at magnitudes lower power than the traditional Von Neumann
architecture [1], [2]. This is useful for outdoor navigation
tasks where energy efficiency can extend the operation time
and increase the survivability of robots in resource-scarce
areas. For example, conventional path planning algorithms
such as A star and Dijkstra’s algorithm can be computationally
expensive and would benefit from a neuromorphic solution [3],
[4]. Existing neuromorphic approaches include a path planner
inspired by place cell activation implemented on spiking VLSI
neurons [5] and a cost-encoding path planner implemented on
a field programmable gate array [6].

Despite the progress in developing navigational strategies

for robots in the neuromorphic domain, little work has been
done to show that these techniques succeed on embedded
systems in unpredictable environments. In order to show the
advantages of neuromorphic engineering in robotics, it is nec-
essary to test such applications in true power-limited, dynamic
environments. For any autonomous navigation system, the
agent must have long-term strategies such as path planning,
as well as short-term reactive strategies for obstacle avoidance
and road following. In this paper, we describe our current
advances in developing an integrated neuromorphic system for
performing all aspects of outdoor navigation.

II. METHODS

A. Android Smartphone Solution

1) Android-Based Robotics Platform: In creating an inte-
grated neuromorphic system, we needed to create an experi-
mental setup in which long term and reactive motion planning
could be isolated and swapped for neuromorphic or traditional
implementations. The Android-Based Robotics Platform was
created at the University of California, Irvine, consisting of
commercial off-the-shelf components [7]. A durable ground
robot controlled by an Android smartphone (Figure 1) was
ideal for an outdoor neuromorphic system of navigation,
as it can run simulations of neuromorphic algorithms and
has all of the necessary hardware for communication and
localization. Instructions for building the robot can be found
at http://www.socsci.uci.edu/∼jkrichma/ABR/. With this plat-
form we were able to test the robot in Aldrich Park, a 19-acre
botanical garden at the University of California, Irvine, which
contained roads of different widths, terrains, and inclinations.

2) Spiking Wavefront Propagation and Robot Implementa-
tion: We created an algorithm for path planning that could be
run on neuromorphic hardware [8]. We based our approach
on traditional wavefront path planning methods [9], which
are ideal due to their parallel and distributed nature. Similar
to other neuromorphic wavefront propagation techniques [5],
[6], we connected spiking neurons in a topographical map
corresponding to locations in 2D space. An efficient path
between a start and goal location could be obtained by
initiating a spike in the neuron corresponding to the start
location, and recording the spike times in an Address Event
Representation (AER) table as the neural activity propagated
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Fig. 1. Android-Based Robotics Platform. The robot runs on a Dagu Wild
Thumper 6-wheel-drive all-terrain chassis, with an SPT 200 pan and tilt to
hold the Samsung Galaxy S5 smartphone and control the view of the phone
camera. Front-facing MaxBotix LV-MaxSonars can detect obstacles. An ION
Motion motor controller and IOIO-OTG microcontroller are housed in the back
of the robot. Computing is handled by the Android phone, which accesses the
sensors and actuators through a Bluetooth connection with the IOIO-OTG.

to the destination. We could then trace the shortest route by
reviewing the spike times of the neurons and determining
which sequence of spikes arrived at the destination first.
Our novel addition to the wavefront propagation algorithm
was the use of adjustable axonal delays to encode the costs
traversing through the environment. Inspired by experience-
dependent white matter plasticity in the brain [10], the model
was able to sample the costs of traversing different parts of
the map, incrementally increasing or decreasing the axonal
delays accordingly. This is useful for an outdoor environment,
as the robot must consider costs such as obstacles, rugged
terrain and inclines. The temporal coding of the costs in spike
timing allows for a very efficient representation that can take
advantage of neuromorphic hardware.

We tested the algorithm on our Android-Based Robotics
Platform at Aldrich Park, by running the spiking wavefront
propagation algorithm on the smartphone and creating cost
maps corresponding to real terrain costs in the park [11]. There
were low costs for smooth asphalt, moderate costs for grass,
and high costs for obstacles and boundaries. Paths generated
by our algorithm were comparable to the non-neuromorphic
A star method in terms of generating the shortest and least
costly paths. Using the compass and GPS sensors on the phone,
the robot then navigated along the calculated path. We then
compared the trajectories of the planned route and actual route
as recorded by GPS logs on the phone, and found that the robot
was indeed able to navigate along the assigned path. Thus, we
were able to demonstrate the viability of our neuromorphic
path planner in a real outdoor environment, using an easily
accessible and affordable robotic platform.

3) Road Following Algorithm: In our robot experiments,
the GPS resolution was insufficient to reliably place the robot
on the paved paths in Aldrich Park. Therefore, we developed a
computer vision road following algorithm for when the robot
expected to be on smooth pavement. This required strategies
for finding the road from an off-road location and vice versa.
From our examination of the literature, we found a lack of
techniques to achieve this. Existing work on road tracking
usually assumes that the vehicle or the robot is already on the
road and that the road has a regular shape with obvious borders
so that its two sides can be approximated by a linear lane model

[12]. The performance of those algorithms usually relies on
obvious color distinction between the road and its surrounding
environment and a high-resolution camera which a normal
smartphone is not equipped with to generate video frames of
appropriate contrast and exposure [13]. Their road tracking
results can be negatively affected by shadows or obstacles
on the road [14]. Therefore, we developed a road following
algorithm (Figure 2) using the image processing class provided
by OpenCV [15]:

1) Starting with a camera frame from the phone, we
used GaussianBlur to remove noise from the image
and converted the image from RGB to grayscale.

2) We applied Eq. (1) [16] to adjust contrast and bright-
ness of the grayscale source image pixels f(i, j):

g(i, j) = α · f(i, j) + β (1)

where g(i, j) is the output image pixel, and the
parameters α > 0 and β are the gain and bias [16].

3) We used Sobel approximation to estimate the gradient
and find edges in the source image.

4) We thresholded pixels ranging from 0 to 255 to binary
values. The output image pixels for the road were
desired to have the value of 0.

5) We used dilation to expand gaps in the non-road
regions with an elliptical kernel. Then each path pixel
was chosen at the middle of each row’s largest black
segment of pixels to make sure the robot move along
the road center.

By computing the difference between the mean x value
of the detected path pixels and the center pixel value of the
camera screen, the robot could determine whether it should
move forward, left or right. The new road following algorithm
adjusted the image contrast to highlight the road and removed
shadows; thus, it may be applied to many outdoor road follow-
ing cases. The robot would then switch between the original

Fig. 2. Road following algorithm. Upper Left: Step 1. Gaussian blur and
conversion from RGB to grayscale image. Upper right: Step 2. Contrast and
brightness adjustment. Middle left: Step 3. Sobel gradient approximation.
Middle right: Step 4. Binary thresholding. Lower left: Step 5. Dilation and
path labeling. Lower right: Path display in red on the original test image.
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navigation mode and the road following mode depending on
whether its current destination along the route was on-road or
off-road. In order to find the road from an off-road location,
the robot would steer to match its compass direction with the
direction of the destination until road pixels could be detected.

III. RESULTS

We added our road following strategy to the spike-based
path planning algorithm. We tested two routes, one requiring
the robot to start off-road and end on-road, and another starting
on-road and ending off-road. Figure 3 shows a sample run of
the algorithm. We calculated the percentage of route length
that the robot stayed on the path when it was supposed to from
video footage and GPS logs. For the route starting off-road, the
original implementation stayed on the road 51.2% of the time
it was supposed to whereas the road-following implementation
stayed on the road 63.2%. For the route starting on-road,
the original implementation stayed for 41.2% while the road-
following implementation stayed for 87.3%. We compared the
Fréchet distance [17] between the actual and planned routes.
For the route starting off-road, the distance of the trajectory
was 15.8 m from the original implementation and 18.4 m from
the road following strategy. For the route starting on-road, the
distance was 13.9 m for the original and 15.5 m for road
following. These initial metrics show that the robot was able
to decrease physical costs of navigating difficult terrains by
combining reactive planning with long-term path planning. We
hope to perform further experiments to confirm the strengths
of our road following approach.

Fig. 3. A) Satellite image of section of Aldrich Park used for mapping. B)
Route starting off-road and ending on-road. Black line indicates route assigned
by path planner. Red line indicates trajectory taken by road following strategy.
Green line is trajectory from original strategy. C) Cost map of area. The road
was assigned with a low cost, the middle grass area a medium cost and outer
areas high costs. D) Same as B but starting on-road and ending off-road.

IV. FUTURE DEVELOPMENTS

In future iterations of this work, the robot will learn costs
from the environment using information gathered from its

sensors. Rather than using an a priori map of the environment,
it would learn the environmental costs through active sensing
to discover which areas could be potentially damaging or
particularly efficient to get to the destination. We further
hope to convert this approach to run mainly on neuromorphic
hardware, bringing us closer to an energy-efficient solution for
outdoor navigation.

A. An Integrated Neuromorphic Hardware Solution

An integrated solution for navigation requires neuromor-
phic implementations of path planning and reactionary motion
planning such as obstacle avoidance and path following. Many
of these projects are already underway, and could replace some
of the non-neuromorphic aspects of our Android smartphone
approach. For path planning, our spiking wavefront path plan-
ner has been implemented on the IBM TrueNorth chip [18],
which could be integrated with our robotics platform to encode
the costs of a map in real time. The complete spike wavefront
and path readout are performed on the hardware itself, using
time buffers to delay spikes according to costs. The algorithm
could also be implemented on hardware that directly supports
axonal delays [19].

The IBM TrueNorth has also been used for reactionary
motion planning. The IBM NS1e board, which contains a
TrueNorth chip of 4096 cores [20], can be powered by an
external battery and is compact enough to fit on our current
robotic platform. We recently built a communication pipeline
between the NS1e and the Android smartphone using a Wi-
Fi connection and mobile hotspot [21]. As proof-of-concept,
we physically attached the NS1e board to the Android-Based
Robotics Platform and powered it with the same 7.2V NiMH
battery used to power the robot. We next trained the system to
perform path following with neuromorphic vision processing.
This was done by initially driving the robot by hand along
a steep mountain trail while saving the video frames and
corresponding commands, then using this dataset to train an
Energy-efficient deep network (Eedn) [22], and transferring
the connection weights to the TrueNorth. Then, the network
was run in real time as the smartphone transformed current
video frames into spiking format, sending the data through the
Wi-Fi connection. The output spikes of the TrueNorth were
then sent back to the phone, which used this information to
determine whether to steer the robot left, right, or forward
(Figure 4A). The trained network correctly classified 90% of
its test data, and the robot was able to autonomously follow
the steep mountain road (Figure 4B). For even more efficiency
of processing, the smartphone camera could be replaced with
a dynamic vision sensor mounted on the robot [23]. This
way, the image data would already be in an efficient spiking
format and save the energy of running a traditional frame-based
camera.

As both path planning and road following have been
implemented on the IBM TrueNorth, we envision a complete
neuromorphic navigational system in the not too distant future.
As the path planning algorithm simulates roughly one neuron
per 10 m2 in our experiments, it takes only a small number of
neurons on the TrueNorth to work on a large map. Running
a deep convolutional network for road following or obstacle
avoidance could therefore be performed simultaneously on
the unused portion of the TrueNorth, with both processes
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Fig. 4. A) The IBM TrueNorth was trained to classify frames into three
classes of steering commands, left, right, and forward. B) The neuromorphic
road following system traveled autonomously on this narrow mountain path.

communicating through Wi-Fi with the Android phone. We
would therefore have all the computationally intensive tasks of
outdoor navigation handled by the energy-efficient hardware.

V. CONCLUSION

The challenge of robotics today lies in the development
of algorithms that work in unpredictable environments such
as an outdoor setting. We have shown a feasible method
of offloading the computation necessary for navigation onto
energy-efficient neuromorphic hardware. Our Android-Based
Robotics Platform allows mapping, localization, path planning,
and reactive controls to be implemented with traditional or
neuromorphic methods. With recent developments in neuro-
morphic implementations, soon we may be able to replace
all navigational functions on the Android-Based Robotics
Platform to form a complete neuromorphic system for outdoor
navigation and path planning. This would lead to practical
advantages in the real world. For instance, the low size and
energy efficiency of neuromorphic hardware allow for teams of
small nimble robots that can explore unknown territory for long
amounts of time. With the smartphone interface, the robots
may communicate through an ad-hoc network to coordinate
the search and rescue of survivors in disaster recovery.
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S. Renaud et al., “Neuromorphic silicon neuron circuits,” Frontiers in
neuroscience, vol. 5, p. 73, 2011.

[3] S. M. La Valle, “Motion planning,” IEEE Robotics & Automation
Magazine, vol. 18, no. 2, pp. 108–118, 2011.

[4] A. R. Soltani, H. Tawfik, J. Y. Goulermas, and T. Fernando, “Path
planning in construction sites: performance evaluation of the dijkstra, a,
and ga search algorithms,” Advanced Engineering Informatics, vol. 16,
no. 4, pp. 291–303, 2002.

[5] S. Koul and T. K. Horiuchi, “Path planning by spike propagation,”
in Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE.
IEEE, 2015, pp. 1–4.

[6] S. Koziol, S. Brink, and J. Hasler, “A neuromorphic approach to path
planning using a reconfigurable neuron array ic,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp.
2724–2737, 2014.

[7] N. Oros and J. L. Krichmar, “Smartphone based robotics: Powerful,
flexible and inexpensive robots for hobbyists, educators, students and
researchers,” Center for Embedded Computer Systems, University of
California, Irvine, Irvine, California, Tech. Rep. 13-16, 2013.

[8] J. L. Krichmar, “Path planning using a spiking neuron algorithm
with axonal delays,” in Evolutionary Computation (CEC), 2016 IEEE
Congress on. IEEE, 2016, pp. 1219–1226.

[9] M. Soulignac, “Feasible and optimal path planning in strong current
fields,” IEEE Transactions on Robotics, vol. 27, no. 1, pp. 89–98, 2011.

[10] R. D. Fields, “A new mechanism of nervous system plasticity: activity-
dependent myelination,” Nature Reviews Neuroscience, vol. 16, no. 12,
pp. 756–767, 2015.

[11] T. Hwu, A. Y. Wang, N. Oros, and J. L. Krichmar, “Adaptive robot path
planning using a spiking neuron algorithm with axonal delays,” IEEE
Transactions on Cognitive and Developmental Systems, 2017.

[12] H. Kong, J.-Y. Audibert, and J. Ponce, “General road detection from a
single image,” IEEE Transactions on Image Processing, vol. 19, no. 8,
pp. 2211–2220, 2010.

[13] V. Marion, O. Lecointe, C. Lewandowski, J. G. Morillon, R. Aufrere,
B. Marcotegui, R. Chapuis, and S. Beucher, “Robust perception algo-
rithms for road and track autonomous following,” in Proc. SPIE, vol.
5422, Unmanned Ground Vehicle Technology VI, 2004, pp. 55–66.

[14] D. Lieb, A. Lookingbill, and S. Thrun, “Adaptive road following using
self-supervised learning and reverse optical flow,” in Proceedings of
Robotics: Science and Systems, 2005.

[15] G. Bradski, Dr. Dobb’s Journal of Software Tools.

[16] OpenCV, “Changing the contrast and brightness of an image,”
http://docs.opencv.org/2.4/doc/tutorials/core/basic linear transform/
basic linear transform.html, 2016, [Online; accessed 11-Dec-2016].

[17] H. Alt and M. Godau, “Computing the fréchet distance between two
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