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Neurobiologically Inspired
Self-Monitoring Systems

This article outlines the neurobiological principles for living organisms that inspire
self-awareness in engineered systems, using adaptive, self-monitoring robots as an
exemplar for an engineered self-aware system.

By ANDREA A. CHIBA AND JEFFREY L. KRICHMAR

ABSTRACT | In this article, we explore neurobiological
principles that could be deployed in systems requiring self-
preservation, adaptive control, and contextual awareness.
We start with low-level control for sensor processing and motor
reflexes. We then discuss how critical it is at an intermediate
level to maintain homeostasis and predict system set points.
We end with a discussion at a high level, or cognitive level,
where planning and prediction can further monitor the system
and optimize performance. We emphasize the information flow
between these levels both from a systems neuroscience and an
engineering point of view. Throughout the article, we describe
the brain systems that carry out these functions and provide
examples from artificial intelligence, machine learning, and
robotics which include these features. Our goal is to show how
biological organisms performing self-monitoring can inspire the
design of autonomous and embedded systems.

KEYWORDS | Artificial intelligence; attention; adaptive control;
homeostasis; machine learning; neuroscience; robotics.

I.INTRODUCTION

Neurobiology has a long history of inspiring engineering
systems. The field of neural networks was derived from
the architecture of the nervous system with nodes and
connections that mimic neurons and synapses, respectively.
Many machine learning algorithms are based on discover-
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ies from the neuroscience of learning and memory. Robot
navigation systems have been modeled after regions of the
rodent brain which are important for spatial memory.

In this article, we explore neurobiological principles
that monitor and regulate an organism’s health and per-
formance. Fig. 1 provides a roadmap, which we follow
throughout the article. The left side of the figure lists com-
ponents of the nervous system involved in primitive reflex-
ive behavior and sensory process (bottom left, Fig. 1),
the maintenance of system stability (middle left, Fig. 1),
and higher level planning and control (top left, Fig. 1). The
right side of Fig. 1 lists possible parallels in engineered
autonomous systems.

At the lower level, the periphery and spinal cord do
much of the heavy lifting with reflexive movements and
rapid adjustments. Similarly, a robot would have motor
controllers and drivers to handle and monitor the move-
ment of actuators. On the sensory side, the peripheral
nervous system and specialized sensors (eyes, ears, and
touch receptors) handle incoming signals. These sensors
do not just pass information to other brain regions. Rather,
they are smart sensors that preprocess information and
adapt to conditions.

At the intermediate level, subcortical systems maintain
the organism’s health. These portions of the nervous sys-
tem regulate basic bodily functions such as hunger, thirst,
heart rate, temperature control, mating, maternal/paternal
instincts, defensive, and escape behaviors. These systems
monitor internal organs and external conditions and then
drive systems to set points appropriate for the current
conditions or the organism’s needs.

At the highest level, the central nervous system car-
ries out functions that could be called “cognitive.”
These include attention, executive control, decision-
making, navigation strategies, and planning. These func-
tions often require learning and long-term memory.
They may take time to develop and be applied. There-
fore, it is critically important for the intermediate
and lower levels to rapidly handle events and system
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Fig. 1. Schematic for neurobiologically inspired autonomous systems. On the left are terms and regions derived from neuroscience. On the
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motor control. Green: h tasis, maint e, and itoring. Or

ge: high-level planning, adapting, and goal-driven behavior.

health, while the higher, “cognitive” levels plan for the
future.

In the remainder of this article, we use Fig. 1 as a
roadmap to discuss in more detail these levels and how the
system monitors the self. In addition to covering the neu-
robiology behind these ideas, we will provide examples,
mainly from robotics work with which we are personally
familiar. By no means is this meant to be a comprehen-
sive review. Rather, the examples are meant to illustrate
our points. We hope that these ideas can inspire future
autonomous systems.

II. SENSORY AND MOTOR PRIMITIVES
At the lowest level of control in Fig. 1, the organ-
ism or autonomous system needs some primitive function-
ality to get it out of the box. This includes actuators with
motor drivers so that when a motor command for a behav-
ioral response comes to the motor system, actuators move
limbs or wheels in any desired direction and distance.
A copy of that motor command is sent to the level above.
In neuroscience, this is known as a motor efference copy,
and it is critical for the intermediate controller to monitor
the movement and make corrections if necessary [1]. Sim-
ilarly, sensory systems need low-level processing so that
when a stimulus, whether it is light, sound, or vibration,
reaches the organism, the signal is converted into some-
thing the controller can interpret. Having some processing
handled by these smart sensors and actuators reduces the
load on the rest of the nervous system, which in turn saves
time and energy.

A. Reflexive Behavior

Similar to biological organisms, autonomous systems
need innate behaviors or reflexes to be minimally com-
petent. For example, an organism will reflexively move

away from a noxious stimulus. It may also have innate food
preferences. When designing an autonomous system, engi-
neers typically build primitive behaviors, reflexive move-
ments, and even preferences to give it basic functionalities.

The neuroanatomist Valentino Braitenberg described a
series of thought experiments for his vehicles to demon-
strate a range of reflexive behaviors [2]. These vehicles
had innate preference or aversion for sensory sources such
as lights or sounds. The purpose of these vehicles was
to provide simple lessons in neuroscience principles. For
example, in the peripheral nervous system, sensory signals
from one side of the body crossover to the motoneurons on
the other side of the body. These contralateral connections
lead to rapid, reflexive avoidance behavior. He further
showed how switching the wires from sensors to ipsilateral
actuators would change avoidance behavior to orienting
behavior. Such an organization is found throughout the
nervous system. For example, the left side of the visual
cortex receives information from the right eye and part
of the left eye. The left side of the motor cortex mainly
drives limbs on the right side of the body. Furthermore,
the type of connection makes a big difference. Changing
a connection from excitatory to inhibitory will change
the vehicle’s behavior from avoiding to orienting and vice
versa. Reflexive circuits from peripheral sensory receptors
to motor neurons in the spinal cord and then to muscles are
made up of these excitatory and inhibitory circuits. This
organization is maintained throughout the periphery and
into the central nervous system.

The spinal cord and subcortical controllers execute
a number of preprogrammed behaviors [3]. These do
not require learning from scratch or remembering.
They are similar in vein to the idea of subsumption
architecture [4], [5], which demonstrated intelligence
without representation or reasoning. The subsumption
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architecture by Rodney Brooks’ group introduced a mul-
titask scheduler, where different low-level sensory sys-
tems could trigger different reflexive behaviors. Arbitration
between signals and prioritizing signals led to interesting
behavioral repertoires. Similarly, central pattern genera-
tors (CPGs) in the spinal cord arbitrate between motor
primitives [6].

B. Innate Values and Preferences

Organisms know the difference between good and
bad without needing to experience and learn these
preferences. Gustatory circuits have innate preferences
for certain foods. Noxious stimuli are painful and lead
to avoidance behavior. In general, biological organisms
and artificial autonomous systems need preferences and
reflexive responses, out-of-the-box, to survive. Value sys-
tems signal important events causing the organism to
be aware or attend to the stimuli and trigger adaptive
mechanisms that lead to remembering what to do in the
future in case such an event occurs again.

In the Darwin series of brain-based devices [7], all the
robots had innate values for what is good and bad. For
example, different metal objects had preferred “tastes”
depending on the metal’s conductivity, which led to the
robot learning to pick up good-tasting objects and putting
down bad-tasting objects based on their associated audi-
tory and visual cues [8]. In another set of experiments,
the different reflectivity of the surface the robot tra-
versed could also have positive or negative value, lead-
ing to orienting or fleeing behavior, respectively, [9],
[10]. These innate values allowed robots to explore their
environment without catastrophic failure. The exploration
allowed neural networks to experience and then learn
which sensory cues predicted these values and to plan
accordingly. Without innate values, such learning would
not be possible.

Similarly, field robots, edge devices, and the Internet of
Things (IoT) should have built-in preferences to maintain
connectivity and ensure system health. Building multiple
innate values into the system and tying these to appropri-
ate actions can result in adaptive behavior with minimal
control policies.

III. HOMEOSTASIS AND ALLOSTASIS

At the intermediate level of control in Fig. 1, the organ-
ism or autonomous system needs to monitor external envi-
ronmental conditions and internal body states to maintain
system health. In biological systems, this is carried out
by processes known as homeostasis and allostasis. These
critical systems allow the organism to be aware of internal
responses to changes in the environment (e.g., hunger,
pain, and thermoregulation).

Homeostasis refers to stability through constancy and
allostasis refers to predictive control of physiological condi-
tions. Allostasis and homeostasis are complementary, that
is, when predictions fail, there needs to be error correction
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and new set points [12]. Homeostatic mechanisms can
maintain stability at these set points. These processes
are governed by the hypothalamus and other subcortical
regions. We will discuss later how cortical predictive con-
trol can further regulate allostasis. In Fig. 1, we suggest
that allostasis and homeostasis are important for system
monitoring and regulating basic behaviors. However, they
are constantly sending system status to high-level con-
trollers and are receiving context and system signals from
higher levels. If predicted outcomes do not match expec-
tations (e.g., a motor action did not result in being in an
expected position), signals are sent from the intermediate
controller to the higher level controller for error correction
and adaptation.

A. System Health and Self-Monitoring

In the brain, the autonomic nervous system and asso-
ciated physiological processes maintain system health and
respond to changes [13]. There are a variety of homeosta-
tic systems to maintain set points in the body, including
thermoregulation, hunger, thirst, and protection against
predators and disease. Many of these mechanisms are
subconscious and reflexive, others are under voluntary
control. The term “allostasis” is a process by which the
body responds to stressors or changes to regain stability
in the face of change. For example, a set point can change
and the system must adapt and take action to restore order.
The order may come in the form of a new set point that is
more suitable to the current state of the environment and
the current state of the organism. Matching the dynamics
of the system to the dynamics of the environment or the
load that is placed on the system can serve the purpose of
finding a new stable state that maximizes efficiency, given
the context [14], [15].

Self-monitoring and allostasis can lead to behav-
ioral tradeoffs. The autonomic nervous system monitors
whether its needs are met. If the physiological system is
intent on fulfilling basic needs, such as food and sleep,
it can temporarily withstand a number of problems. How-
ever, as the duration of responding in the face of unmet
needs increases, the likelihood that the system will become
depleted and undergo a state change also increases. For
example, humans under stress might exhibit an observable
allostatic change in the form of the system’s compen-
satory down-regulation of thyroid production [16]. This
lowers the system’s metabolic rate, altering its energetic
and restorative needs. It comes with costs, however. Low
thyroid production can lead to some short-term memory
deficits. The benefit of allowing the organism to continue
functioning under substandard conditions, however, can
outweigh the costs.

Some researchers have suggested that monitoring the
system health and internal states is a step toward “self-
awareness” [17], [18]. The internal representations lead to
self-monitoring and can set a context for the system. On the
one hand, this causes the system to adjust its actions based
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Fig. 2. Using an imagined trial-and-error algorithm, robots, like animals, can quickly adapt to recover from damage. (a) Undamaged,
hexapod robot. RGB-D stands for red, green, blue, and depth. (b) Hexapod robot with a broken leg. (c) After damage occurs, the robot

recognizes that it cannot walk fast and in a straight line. The robot tests different types of behaviors until it discovers an effective
compensatory behavior. Adapted from [11]. Reprinted by permission from Springer Nature.

on system health or needs. On the other hand, internal
representations are often thought to lead to the notion
of “feelings” and “awareness.” In humans, monitoring of
internal states often occurs below the level of aware-
ness; however, people can bring things like feeling heart
rate, respiration rate, and other signals into awareness.
The concept of interoception in humans includes sensing
the state of visceral organs or the internal state of the
body [17]. The circuits that are proposed to support such
a function (including the amygdala and insular cortex)
receive input from all of the visceral organs. This ability
to sense one’s state is often thought to be fundamentally
necessary for emotion regulation and for assessing the
state of another being [18].

The concepts of allostasis and homeostasis have implica-
tions for autonomous systems. Seeking an energy source,
transitioning into a power savings mode when idle, and
shutting down a computer if its hardware gets too hot
are examples where control modeled after homeostasis
and allostasis could be advantageous. These functions
do not need a central top-down control to operate. Not
only do autonomous systems need to monitor their health
and maintain working levels for their power consumption,
sensors, and actuators, but they also need to adapt and
respond to perturbations; especially if they are operating

at the edge far away from power sources and support.
Understanding how to maintain stability through change,
as a nervous system under chronic load does, could benefit
the adaptability of autonomous systems to substandard
conditions or even unusually dynamic or unstable condi-
tions, ultimately aiding survival.

B. Safety and Damage Control

Allostasis and homeostasis have similarities to Self-
Integrating and Self-improving Systems or SISSY, which
has been used in space systems and engineering, to guar-
antee safety [20]. In SISSY, the system needs to detect
faults, self-protect (or safetying), and determine the min-
imal acceptable performance. Similarly, the hypothalamus
monitors fault detection and sets the minimal acceptable
performance by making new set points. Some differences
may be observed, such as the nervous system and the body
has built-in self-protection features and determining the
appropriate performance level is dynamic and dictated by
multiple signals (i.e., different brain areas). In this way,
the nervous system is a more distributed variant of SISSY.

Similar to SISSY, self-monitoring and self-modeling
in robotics can allow the system to recognize damage
and attempt to fix or overcome an injury. For example,
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Cully et al. [11] developed a method for adapting gaits
on a hexapod robot. Through self-modeling, the robot
controller had a memory of potential gaits. If one or more
of the robot’s legs were damaged, the robot would detect
the damage, “imagine” different ways of moving, and then
choose the new gait it thought would work best under the
new circumstances. In this way, at a low level of control,
the robot monitored itself and adapted its behavior quickly
without intervention (see Fig. 2).

C. Neuromodulation and Value Systems

Allostasis and homeostasis can be maintained by so-
called “value systems.” Organisms adapt their behavior by
generating predictions that recruit value systems to main-
tain adequate performance and behavior. When recruited,
these systems signal contextual information, trigger learn-
ing, and select actions. In the brain, these value systems are
supported by neuromodulatory systems. The neuromodu-
latory systems are subcortical regions in the brain that have
a strong influence on a number of brain areas which are
considered to be involved in cognition.

Neuromodulators include dopamine, serotonin,
norepinephrine, acetylcholine, and other neurochemicals
that are released to a wide network of neural structures.
The function of these neuromodulatory systems varies
according to their actions on different target structures
and receptors. For example, dopamine is thought to
signal aspects of reward, saliency, novelty, invigoration,
motor timing, and prediction error [4], [21], [22].
Serotonin typically contributes to feelings of well-being
and security or safety. However, serotonergic producing
neurons in the Raphe Nucleus undergo a paradoxical
switch under conditions of high levels of threat [23],
whereby these neurons then trigger threat escape behavior,

including harm aversion, and might also trigger anxious
states, which can lead to protective behaviors [21], [24],
[25]. Under conditions of safety or lower threat, these
same neurons will trigger “freezing” behavior or cessation
of movement. Norepinephrine can create state changes
in brain processing, signal vigilance, arousal, and under
conditions of learning, track unexpected uncertainty
[26], [27]. Acetylcholine is critical for inducing cortical
state changes, map plasticity, sensory coding, incrementing
and decrementing attention, responding to conditions
of memory load, memory consolidation, attention, and
tracking expected uncertainty [27]-[29]. The basal
forebrain neurons, which produce acetylcholine, receive
projections from all other neuromodulatory systems,
perhaps serving as a final common pathway to different
regions of cortex [30].

In robotics, neuromodulatory value systems can control
behavior by changing the system’s contextual state. For
example, a robot was created to mimic rodent behav-
ior by staying near walls or near a nest when it was
anxious about an unfamiliar environment [19]. However,
once it sensed that the environment was safe, the robot’s
curiosity increased and it explored novel objects in the
middle of the environment (see Fig. 3). Simulated acetyl-
choline and norepinephrine allowed the robot to respond
quickly to novel events and habituate to uninformative
events. Increasing serotonin levels in the model led to
risk-averse behavior (i.e., staying near the walls or nest),
whereas increasing dopamine levels led to invigorated,
curious behavior (i.e., examining objects in the middle
of the environment).

For an autonomous system design, such modula-
tion could allow a system to detect important sig-
nals from noise, and switch from one activity to
another. For example, in our neural network modeling,
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Fig. 3. Neuromodulatory robot controller. (a) Neural network architecture to control robot behavior. Cholinergic (ACh) and noradrenergic
(NE) neurons act as an attentional filter (AchNe) and the dopaminergic and serotonergic neurons (DA and 5-HT) set the level of curious or

anxious behavior, respectively. The most active orbitofrontal cortex (OFC) or medial prefrontal cortex (mPFC) neuron dictated the robot’s
action. (b) and (c) Wall following behavior and find home (i.e., a charging station) were examples of anxious behaviors. (d) and (e) Exploring

the middle of the room or approaching a novel object was an example of curious behavior. Adapted from [19] with permission.
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we have shown how neuromodulation can overcome
catastrophic forgetting [31], and can lead to goal-driven
perception [32]. Moreover, the noradrenergic system,
which is important for one-shot learning and task switch-
ing [26], [33], [34], has important implications for solving
shortcomings in deep neural networks. A strong phasic
response from the noradrenergic system can clear a mem-
ory that is no longer valid, and cause rapid adaptation
to new information [33]. This may be the brain’s way of
performing task switching and goal-directed perceptions.

IV. COGNITIVE CONTROL

At the highest level of control in Fig. 1, long-term strategies
are planned and executed. Such planning requires the
ability to predict outcomes and adapt when there are
unexpected results. Making predictions requires the con-
struction of internal models, which necessitates learning
and memory. Since an organism or autonomous system
cannot possibly monitor every signal from the environ-
ment, the higher level must prioritize which signals to
receive and act upon through attention mechanisms.

The cognitive control level has similarities to cogni-
tive architectures (for a review, see [35]). Many of these
architectures include modules for attention, perception,
action selection, learning and memory, reasoning, and
other cognitive functions. However, most of these cognitive
architectures do not consider systems-level neuroscience.
Rather their goal is to extract principles from human cog-
nitive neuroscience into modules with specific functions.
What we argue for here is an approach that takes into
consideration the anatomy and dynamics of the cortical
and subcortical nervous systems. Moreover, we argue that
all levels of our approach are closely coupled to the body.
In the sections that follow, we look at many of these cogni-
tive functions and how they monitor the self and body.

A. Predictive Control

Predictions can be generated based on prior experience
and knowledge about the world, including benefits, lia-
bilities, salience, and the statistics of the natural world.
Whereas the elements of the neural system develop pre-
dictive capacities, cortical regions (frontal and parietal)
that continually receive highly processed incoming sensory
input and input from systems with memory or motor
capacity can realize predictive coding at a pivotal level for
the organism [36]. These brain areas set goals and predict
outcomes [37]. Preempting reflexes, predicting value, and
goal seeking can improve system performance. Moreover,
the prediction is related to minimizing energy from an
information theory standpoint [38]. By minimizing sur-
prises and unanticipated events, the system can reduce
energy expenditure.

Prediction requires the construction and maintenance
of internal models. The brain maintains internal models
for a wide range of behaviors; from motor control to

language processing [39], [40]. There is evidence for
neural correlates of model-based reinforcement learning
in the prefrontal cortex, where an internal model is main-
tained to predict the value of future decisions [41]. In the
rodent hippocampus, neural traces have been observed
that appear to be evaluating different options before taking
action [42], [43]. Prediction and inference are fundamen-
tal computations in cognitive systems [44].

Predictive models in the brain allow the organism to
plan for the future and are advantageous when deliber-
ation before action is possible. Notably, predictions and
internal models in humans are prone to error in probabilis-
tic reasoning. Whereas the propensity for human decision
making “errors” are often viewed as irrational, it also
remains possible that at least a subset of these errors is
adaptive to survival [45]. For example, overestimating the
possibility of life-threatening events might be important
for survival.

These predictive strategies have been deployed in a
wide range of robot applications. For example, robot con-
trollers develop internal models to predict the movement
of objects and other robots [46], [47]. In other cases,
robots predict positive and negative value, which leads to
maximizing exposure to positive objects and minimizing
encounters with aversive objects [8], [48]. Through experi-
ence, these robots learned auditory and visual categories in
an unsupervised manner. Encounters with objects caused
the appropriate reflex action and value system response
to associate the value and appropriate action with the
object. In this way, the perception of an object would result
in the value being anticipated and the action occurring
earlier. Another robot modeled a predictive motor con-
trol region, known as the cerebellum, to develop “pre-
flexes” [49]. Specifically, the robot used optic flow to
predict collisions. Awkward, erratic movements due to
collisions were replaced with smooth collision-free navi-
gation through cluttered environments (see Fig. 4). Other
neurobiologically inspired models of navigation build pre-
dictions of object and goal locations. Robots were able
to learn pathways, and even communicate spatial trajec-
tories and temporal references to other robots using this
knowledge [50], [51].

B. Attention Systems

Given the vast number of potential stimuli available to
an organism at any given moment, attention systems are
necessary to reduce processing and focus responses to only
those stimuli that are salient to the organism [52]-[54].
Saliency can depend on context or priorities, and attention
can be reactive or predictive. Stimulus-driven or bottom-
up attention causes rapid responses to salient stimuli. For
example, an object (say a dog) moving in the periphery
may cause a rapid shift of the eyes to focus attention on
the dog and follow its movements. Goal-driven or top-
down attention can cause the system to filter signals being
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Fig. 4. (a) Segway Robotic Mobile Platform navigated a path
dictated by orange traffic cones. An adaptive control model based
on the cerebellum allowed the robot to learn smooth obstacle-free
trajectories through predictive learning. (b) Layout of the different
courses. Adapted from [49]. Copyright (2006) National Academy of

Sciences.

processed by the brain. For example, looking for a specific
object (again, say a dog) may cause a visual search to only
pay attention to objects with the size, shape, and texture
of dogs. Areas such as the prefrontal cortex or the parietal
cortex drive attention to features and spatial locations,
respectively [52], [55].

In addition to cortical influences, neuromodulatory sys-
tems are well situated to drive attention in the cortex
and other brain regions. For example, the basal forebrain
cholinergic system has cortically projecting neurons that
can quickly change the firing properties and the structure
of firing correlations in cortex to maximize sensory coding
for processing and can increase attention for learning
[56], [57]. This region of the basal forebrain can result
in clearer visual coding or superior auditory tracking.
Another region of the basal forebrain contains neurons
that project to the hippocampus to change its processing
state in order to decrement the attention to irrelevant
aspects of the environment. This implies that the attention
system increases the signal-to-noise ratio to take in highly
valued information while ignoring irrelevant information.
Interestingly, the basal forebrain has temporal dynamics
that might allow information to be conveyed to cortex via
principles of multiplexing from information theory [58].

982 PROCEEDINGS OF THE IEEE | Vol. 108, No. 7, July 2020

As such, the cortex might engage in demultiplexing in
order to gain access to temporally precise information to
guide attention and action.

In addition to the cholinergic system, the neuromod-
ulator norepinephrine can rapidly switch the organism’s
focus of attention and induce scanning that is effective
for assessing threats [59]. The locus coeruleus, which is
the source of norepinephrine, has sweeping projections to
the cortex, providing a mechanism by which the entire
cortex can be aroused when very large state changes
must be induced. Such a state change can, for example,
change the perception of time, by speeding the system
up enough to take in information and rapidly switch
attention for advantageous decision making and survival
purposes [60].

Modeling attention systems has become popular in arti-
ficial neural networks [61]. Similar to the basal forebrain,
some of these artificial attention systems have an incre-
mental component with a mask acting as a decrement-
ing component [62]. Furthermore, ideas from how the
neuromodulators acetylcholine and norepinephrine track
uncertainties in the environment [27], have led to the
design of goal-driven attention neural networks [32].

Being able to track the uncertainties in the world and
rapidly change the focus of attention is critically impor-
tant for self-monitoring and safety. Take, for example,
an instance on the road in which an autonomous car might
be avoiding an accident, changing states quickly would
allow it to consider different sources of incoming infor-
mation, switch attention to the most salient information,
make adaptive decisions, and modify its actions before
damage could occur.

C. Learning and Memory

A critically important aspect of humans and other ani-
mals is the ability to learn and retain information. We are
able to learn over a lifetime and rapidly learn new infor-
mation or skills. Learning allows us to remember facts and
events of our lives and this leads to an awareness of how
our past might influence the present and future. This is
very different than how artificial neural networks learn and
remember. Typically, artificial neural networks are trained
on huge data sets for thousands to millions of training
epochs. When there is new information, these networks
need to be retrained and often succumb to catastrophic
forgetting of old information. Moreover, slight changes to
the data can cause dramatic failures [63].

The brain can offer clues on how to overcome these
shortcomings in artificial lifelong learning systems. For
example, the hippocampus can learn new information
rapidly, and this information gets consolidated in the neo-
cortex over time [64]. This idea of interleaved learning can
overcome catastrophic forgetting. Recent results have also
shown that the cortex can rapidly learn new information
if it fits within a context or schema [65]-[67]. It has been
shown that, in neural networks, having a schema memory
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Fig. 5.
Toyota human support robot (HSR). The HSR retrieved objects in a
breakroom and a classroom schema. Search times decreased as the

Schema network, from [31] and [68], implemented on the

HSR learned which items belong to each schema.

can alleviate catastrophic forgetting and lead to contextual
awareness, that is, taking the appropriate action depend-
ing on the situation [31], [68]. For example, schemas for
rooms in a house may assist in a robot finding an object,
such as a piece of fruit is typically found in the kitchen
(see Fig. 5).

Hippocampal memory is also important for navigation
and has neurons that encode heading, place, and path inte-
gration [69]. These spatial representations have inspired a
number of robotic navigation systems [9], [70]. A recent
discovery in neuroscience was a repeating pattern in ani-
mals as they move through space [71]. These neurons,
known as grid cells, have inspired deep neural networks
capable of navigation [72] and robot simultaneous local-
ization and mapping (SLAM) systems that rival nonneural
SLAM systems in performance [73]. In general, the hip-
pocampus and surrounding regions have been an impor-
tant inspiration for developing neurobiologically based
navigation systems (for a review, see [74]). Most of these
robot systems have been based on rodent experiments. Any
navigation system that could come close to the rodent’s
capabilities would be a huge advance for robot navigation
as anyone who has witnessed how well the rodent gets
around complex environments can attest.

Fig. 6.
at Lund University in Sweden (https://www.lucs.lu.se/epi). It is
designed to be used in developmental robotics experiments. The

Epi is a humanoid robot developed by LUCS Robotics Group

irises of its eyes can change color and the pupils can dilate and
contract.

D. Affective Behavior

An important part of cognition is the ability to express
and recognize affect or emotions [17], [18]. For robots and
intelligent agents to interact more naturally with people,
they may need to have or emulate emotions [75]. The
eyes can convey a wide range of emotions. Johansson
and Balkenius [76] have developed a detailed model of
the brain areas that control pupil dilation. This led to the
development of a robot with eyes that have a strong emo-
tional effect (see Fig. 6). Robots that seem more natural
and are easier to understand through nonverbal signals
may overcome the so-called “uncanny valley” and be more
reliable companions.

Socially affective robots have been introduced for rat—
robot interaction studies [77]. Initial studies demonstrated
that rats discriminated between a social and nonsocial
robot and were more likely to release a trapped robot
from a cage who had helped them out of the cage in the
past [78]. This suggests that rats monitor not only

Fig. 7.
from [77] with permission.

Rodent-robot interaction using the PiRat robot. Adapted
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themselves, but also their relation with other individuals.
The next-generation robot, PiRat, engaged the rats and
featured a control scheme capable of adapting its behavior
to the state of a rat (see Fig. 7). Results showed that the
rats took different trajectories according to the different
behaviors of the robot. This could lead to a framework
where social interaction could be studied in more con-
trolled situations. It may also allow the robot to adapt
its behavior in response to the state of another agent,
which could lead to applications for robotic caretakers,
assistants, or search and rescue teams.

V. CONCLUSION

In this article, we cover a range of neurobiological topics
with the potential to inform self-awareness in autonomous
systems, starting from innate reflexes, which allow the sys-
tem to have basic competency, to cognitive functions, such
as attention, memory, and social behavior. The autonomic
nervous system monitors system health, keeps the organ-
ism within the operating range, and triggers system repair.
Value systems, which are based on neuromodulation, can
provide alerts, drive learning, and change context. Predic-
tive coding leads to planning, goal-driven behavior, and
model-based learning. Attention and memory systems have
applications in computer vision systems, search systems,
and navigation.

All of the aforementioned brain-inspired principles have
implications for autonomous systems. The organizing prin-
ciples of the nervous system, which are described here,
could be applied to embedded systems, IoT, self-driving
vehicles, and robots (see Fig. 1). In general, the nervous
system is monitoring the self at multiple levels. It is
making predictions on what to expect, and dynamically
setting expectations based on environmental conditions,
as well as internal needs. This functionality could lead
to more autonomy and more flexibility in embedded sys-
tems. Moreover, it could realize a new class of devices
and artifacts that demonstrate the intelligent and complex
behavior we associate with biological systems.

Although this form of self-monitoring presented here
can often be done fluidly and below the level of self-
awareness, it can also be brought into awareness for
heightened comprehension or decisive action. The concept
that an organism can switch between self-monitoring and
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