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Abstract

Both attentional signals from frontal cortex and neuromodulatory signals from basal forebrain (BF) have been shown to influence
information processing in the primary visual cortex (V1). These two systems exert complementary effects on their targets, includ-
ing increasing firing rates and decreasing interneuronal correlations. Interestingly, experimental research suggests that the cholin-
ergic system is important for increasing V1’s sensitivity to both sensory and attentional information. To see how the BF and
top-down attention act together to modulate sensory input, we developed a spiking neural network model of V1 and thalamus that
incorporated cholinergic neuromodulation and top-down attention. In our model, activation of the BF had a broad effect that
decreases the efficacy of top-down projections and increased the reliance of bottom-up sensory input. In contrast, we demon-
strated how local release of acetylcholine in the visual cortex, which was triggered through top-down gluatmatergic projections,
could enhance top-down attention with high spatial specificity. Our model matched experimental data showing that the BF and
top-down attention decrease interneuronal correlations and increase between-trial reliability. We found that decreases in correla-
tions were primarily between excitatory–inhibitory pairs rather than excitatory–excitatory pairs and suggest that excitatory–inhibi-
tory decorrelation is necessary for maintaining low levels of excitatory–excitatory correlations. Increased inhibitory drive via
release of acetylcholine in V1 may then act as a buffer, absorbing increases in excitatory–excitatory correlations that occur with
attention and BF stimulation. These findings will lead to a better understanding of the mechanisms underyling the BF’s interac-
tions with attention signals and influences on correlations.

Introduction

Attention can selectively sharpen or filter sensory information on a
moment by moment basis. We typically separate attention into two
distinct categories: bottom-up (sensory driven) and top-down (goal-
directed) (Desimone & Duncan, 1995; Buschman & Miller, 2007).
The cholinergic system, which originates in the basal forebrain
(BF), has been shown to be important for enhancing bottom-up sen-
sory input to the cortex at the expense of intracortical interactions
and enhancing cortical coding by decreasing noise correlations and
increasing reliability (Hasselmo & McGaughy, 2004; Yu & Dayan,
2005; Disney et al., 2007; Goard & Dan, 2009). Herrero et al.
(2008), however, have recently found that acetylcholine is also
important for top-down attentional modulation. It is still unclear
exactly how the BF may be important for facilitating both top-down
attentional and bottom-up sensory input into the visual cortex.
Top-down attention is usually associated with an increase in firing

rate in the set of neurons coding for a particular feature (Desimone
& Duncan, 1995). This effectively biases that feature over other

competing features. Recent experimental studies, however, have
shown that attention causes changes in the variability of neural
responses within and between trials (Cohen & Maunsell, 2009;
Mitchell et al., 2009; Harris & Thiele, 2011; Herrero et al., 2013).
This implies that interactions between neurons are a critical factor
for encoding information in sensory cortex.
We present a spiking neuron model that simulates the effects

that top-down attention and the BF have on visual cortical pro-
cessing. We show an increase in between-trial correlations and a
decrease in between-cell correlations in the cortex via GABAergic
projections to the thalamic reticular nucleus (TRN) and choliner-
gic projections onto muscarinic acetylcholine receptors (mAChRs)
in the primary visual cortex (V1), respectively. In addition, we
show that topographic projections from attentional areas to the
TRN can increase reliability of sensory signals before they get to
the cortex (Fig. 1). We demonstrate that GABAergic projections
from the BF to the TRN are a means by which the BF can effec-
tively ‘wash out’ top-down attentional filters that act on the thala-
mus, thus providing a new mechanism for BF’s control of
bottom-up and top-down information. Local mAChR activation
via top-down attentional signals is also important in our model
for facilitating top-down attention in V1 and helps to both
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increase the firing rate and decrease noise correlations between
these neurons (Herrero et al., 2008; Goard & Dan, 2009). Specifi-
cally, our model highlights how mAChR stimulation of excitatory
neurons is important for attentional modulation while mAChR
stimulation of inhibitory neurons is important for maintaining low
levels of excitatory–excitatory correlations when excitatory drive
is increased.
Contrary to recent experimental studies, which suggest a decrease

in excitatory–excitatory correlations between neurons with BF stimu-
lation and top-down attention, our model indicates that attention and
mAChR stimulation in V1 lead to a decrease in excitatory–inhibitory
correlations, but cause no change in excitatory–excitatory correla-
tions. Thus, because it is difficult to distinguish between excitatory
and inhibitory neurons experimentally (Nowak et al., 2003; Vignesw-
aran et al., 2011), it is possible that experimenters are seeing excit-
atory–inhibitory rather than excitatory–excitatory decorrelations. This
is a strong prediction of our model. We suggest inhibition may act as
a mechanism for absorbing additional excitatory input that may result
from increased excitatory drive from top-down attentional signals or
activation of mAChRs on excitatory neurons in order to extinguish
excess excitatory–excitatory correlations.

Methods

A model was developed that contained two cortical columns, simu-
lating two receptive fields, and was subject to both neuromodulation
by the BF and top-down attention (see Fig. 3). Input to the model
was a movie of a natural scene as described below. Our goal was to
see how neuromodulatory and top-down attention signals interacted
and influenced between-trial and between-neuron correlations in the
simulated cortical columns.

Stimuli presentation and pre-processing

Our experiment consisted of 60 trials, in which a 12-s natural scene
video was input to the spiking neural network. We used this natural
stimulus because it is similar to that used in Goard & Dan’s (2009)
experiments and affords comparison of our model’s responses with
their results. The video was obtained from the van Hateren movie
database to the network (http://biology.ucsd.edu/labs/reinagel/pam/
NaturalMovie.html). Experiments consisted of six blocks of ten trials
(see Fig. 2A). In each block of ten trials, five were performed with-
out BF stimulation, top-down attention and/or mAChR stimulation

Fig. 1. Frontal corticocortical and corticothalamic projections. Schematic diagram showing how frontal areas may influence sensory information directly via
direct corticocortical connections or via projections to the thalamic reticular nucleus (TRN), before the information is able to get to the cortex. The architecture
was adapted from Zikopoulos & Barbas (2007), who showed that there are topographic projections from the frontal cortex to the TRN that may be able to
selectively enhance one input and dampen another.
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(control) followed by five trials with BF stimulation, top-down atten-
tion and/or mAChR stimulation (non-control). In between each trial
and block, 1 and 4 s, respectively, of random, Poissonian spikes was
injected into the network at a rate of 2 Hz to allow network activity
to settle. The total simulation time of the experiment was 13.4 min.
This took approximately 78 min to run on a Tesla M2090 GPU.
The video contained 300 frames and each frame was presented to

the model for 40 ms of simulation time. Each image was originally
256 9 256 pixels. Because our cortical model is made up of single
columns, however, the input size was reduced to 20 9 20 pixels (see
Fig. 2B) to approximate the visual space that would drive neurons in a
receptive field of a V1 cortical column. This was an assumed approxi-
mation given the 100 deg2 receptive field and 36 9 36 (64 9 64
pixel) input from the Goard and Dan experiment. In the 256 9 256
pixel image, RF1 received input from pixels (121–140) 9 (121–140)
and RF2 received input from pixels (141–160) 9 (121–140). Figure 3
shows the architecture of RF1 and RF2.
It has been shown that retinal neurons remove linear correlations

by ‘whitening’ images before they reach the cortex (Simoncelli &
Olshausen, 2001). To simulate this, all the images were whitened
and normalised before being presented to the network (Fig. 2B).
Whitening was achieved by applying a Gaussian filter to the
Fourier-transformed image (see http://redwood.berkeley.edu/bruno/
npb261b/). This flattens the power spectrum of the image and is
essentially equivalent to convolving the image with an on-center
off-surround filter, as is observed in retinal ganglion cells and the
lateral geniculate nucleus (LGN). As we were not interested in mod-
eling orientation selectivity development, we assumed that the simu-
lated V1 columns, RF1 and RF2, were selective to vertical edges.
Therefore, the images were convolved with a vertical Gabor filter
after whitening. The Gabor filter was constructed by modulating a
Gabor kernel with a sinusoidal wave as shown in Eqn. (1), where
rx and ry determine the spatial extent of the Gaussian in x and y
and f specifies the preferred spatial wavelength (Dayan & Abbott,
2001). Excitatory Poisson spike generators converted the images
into spike trains in the input layer.

Gðx; yÞ ¼ 1
2prxry

exp � x2

2rx2
� y2

2ry2

� �
sin

2p
f
x

� �
ð1Þ

Network model

To develop our model, we used a publicly available simulator,
which has been shown to simulate large-scale spiking neural
networks efficiently and flexibly (Richert et al., 2011). The model
contained a TRN, LGN, BF, two prefrontal cortex areas (providing
top-down attention) and two, four-layered cortical microcircuits
(Fig. 3). The cortical microcircuit architecture was adapted from
Wagatsuma et al. (2011), which was able to account for experimen-
tal observations of attentional effects on visual neuronal responses
and showed that top-down signals enhanced responses in layers 2/3
and 5.
All connections that occur between layers in a microcircuit are

shown in Fig. 3. Within each layer, there are excitatory–excitatory,
excitatory–inhibitory, inhibitory-excitatory and inhibitory–inhibitory

A

B

Fig. 2. Image preprocessing. (A) The experiment was divided into six blocks, with ten trials in each block. In each trial, a 12-s video (300 frames) of a natural
scene from the van Hateren movie database was presented to the network. Within a block, five trials were performed under the control condition, followed by
five trials for the non-control condition (mAChR stimulation, BF stimulation and/or top-down attention). (B) Each image was originally 256 9 256 pixels.
Before being presented to the model, all images were first whitened and convolved with a vertical Gaussian filter. Because our cortical model is made up of sin-
gle columns, however, the input size was reduced to 20 9 20 pixels to approximate the visual space that would drive neurons in a single receptive field.

Fig. 3. Network model. The model contained a neuromodulatory area (BF),
two prefrontal cortex areas (providing top-down attention) and two, four-lay-
ered cortical microcircuits (RF1 and RF2), each of which had a subcortical
area composed of an input, TRN and LGN. The cortical microcircuit archi-
tecture was adapted from Wagatsuma et al. (2011). All connections that
occur between layers in a microcircuit are shown above. Within each layer,
there are excitatory–excitatory, excitatory–inhibitory, inhibitory–excitatory
and inhibitory–inhibitory connections (not shown).
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connections (data not shown). Connection probabilities in our corti-
cal model were the same as used in Wagatsuma et al. (2011) and
are given in Table 1. All subcortical and top-down connection
probabilities were set to 0.1 except LGN excitatory to L4 excitatory
(P = 0.15), LGN excitatory to L4 inhibitory (P = 0.0619), and TRN
inhibitory to LGN excitatory (P = 0.3). The number of neurons in
each area is shown in Table 2. The model contained a total of
46 926 neurons and approximately 43 million synapses.

Neuron model

Simple and extended versions of the Izhikevich model were used to
govern the dynamics of the spiking neurons in this simulation. The
computational efficiency of these point neurons (single compart-
ment) makes them ideal for large-scale simulations. Izhikevich neu-
rons are also highly realistic and are able to reproduce at least 20
different firing modes seen in the brain, which include: spiking,
bursting, rebound spikes and bursts, subthreshold oscillations, reso-
nance, spike frequency adaptation, spike threshold variability, and
bistability of resting and spiking states (Izhikevich, 2004). Inhibitory
and excitatory neurons in the cortex were modeled using the simple
Izhikevich model, which are described by the following equations
(Izhikevich, 2003):

_v ¼ 0:04v2 þ 5vþ 140� uþ I ð2Þ

_u ¼ aðbv� uÞ ð3Þ

if v ¼ 30; then v ¼ c; u ¼ uþ d ð4Þ

where v is the membrane potential, u is the recovery variable, I is
the input current, and a, b, c and d are parameters chosen based on

the neuron type. For regular spiking, excitatory neurons, we set
a = 0.01, b = 0.2, c = �65.0 and d = 8.0 (see Fig. 4). For fast-
spiking, inhibitory neurons, we set a = 0.1, b = 0.2, c = �65.0 and
d = 2.0 (Fig. 4). GABAergic and cholinergic neurons in the BF
were modeled as simple Izhikevich inhibitory and excitatory neu-
rons, respectively.
LGN and TRN neurons were modeled using the extended version

of the Izhikevich neuron model to account for the bursting and tonic
modes of activity, which these neurons have been shown to exhibit
(Izhikevich & Edelman, 2008). The equations governing these neu-
rons are given as:

C _v ¼ kðv� vrÞðv� vtÞ � uþ I ð5Þ

_u ¼ a½bðv� vrÞ � u� ð6Þ

The equations for this extended model are similar to the previous
model, except they include additional parameters, such as: mem-
brane capacitance (C), resting potential (vr) and instantaneous thresh-
old potential (vt). For LGN neurons, parameters were set to:
a = 0.1, c = �60, d = 10, C = 200, vr = �60 and vt = �50. For
TRN neurons, parameters were set to: a = 0.015, c = �55, d = 50,
C = 40, vr = �65 and vt = �45 (Izhikevich & Edelman, 2008). To
simulate the switch between bursting and tonic mode, the b parame-
ter, which is related to the excitability of the cell, was changed

Fig. 4. Spike trains. (Top) Spike trains for regular spiking excitatory neu-
rons (left) and fast spiking inhibitory neurons (right). (Bottom) Spike trains
for thalamic neurons that may be in tonic (left) or bursting (right) mode
depending on their membrane potential. If v < �65, the neurons are in burst-
ing mode; otherwise, they are in tonic mode (see Methods for details).

Table 1. Cortical connection probabilities

To

From

L2/3e L4e L5e L6e L2/3i L4i L5i L6i

L2/3e 0.1184 0.0846 0.0323 0.0076 0.1552 0.0629 0.0000 0.0000
L4e 0.0077 0.0519 0.0067 0.0453 0.0059 0.1453 0.0003 0.0000
L5e 0.1017 0.0411 0.0758 0.0204 0.0622 0.0057 0.3765 0.0000
L6e 0.0156 0.0211 0.0572 0.0401 0.0066 0.0166 0.0197 0.2252
L2/3i 0.1008 0.0363 0.0755 0.0042 0.1371 0.0515 0.0000 0.0000
L4i 0.0691 0.1093 0.0033 0.1057 0.0029 0.1597 0.0000 0.0000
L5i 0.0436 0.0209 0.0566 0.0086 0.0269 0.0022 0.3158 0.0000
L6i 0.0364 0.0034 0.0277 0.0658 0.0010 0.0005 0.0080 0.1443

Table 2. Number of neurons in each area of the network

Neural area Excitatory neurons Inhibitory neurons Cholinergic neurons

Input 400 400 –
Subcortical

LGN 220 – –
TRN – 220 –
BF – 220 220

Cortical
Layer 2/3 5170 1458 –
Layer 4 5478 1369 –
Layer 5 1212 266 –
Layer 6 3698 737 –
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depending upon membrane potential, v. Specifically, if v < �65, b
was set to 70 and the neuron would be in bursting mode (Fig. 4;
bottom, right). If v > �65, b was set to 0 and the neuron would be
in tonic mode (Fig. 4; bottom, left).

Conductance model

The synaptic input, I, driving each neuron was dictated by simulated
AMPA, NMDA, GABAA and GABAB conductances (Izhikevich &
Edelman, 2008; Richert et al., 2011). The conductance equations
used are well established and have been described in Dayan &
Abbott (2001) and Izhikevich et al. (2004). The total synaptic input
seen by each neuron was given by:

I ¼ gAMPAðv� 0Þ þ gNMDA

vþ80
60

� �2
1þ vþ80

60

� �2 ðv� 0Þ þ gGABAAðvþ 70Þ

þ gGABABðvþ 90Þ
ð7Þ

where v is the membrane potential and g is the conductance. The
conductances change according to the following first-order equation:

_gi ¼ � g
si

ð8Þ

where si = 5, 100, 6 and 150 ms for i = AMPA, NMDA, GABAA

and GABAB conductances, respectively. When an excitatory (inhibi-
tory) neuron fires, gAMPA and gNMDA (gGABAA and gGABAB ) increase
by the synaptic weight, w, between pre- and post-synaptic neurons.

Modulation of cortical and subcortical structures

The simulated BF modulated activity in the network in two ways
(Figs 5 and 6). First, in trials in which the BF was stimulated, excit-
atory Poisson spike trains drove GABAergic neurons within the BF.
These GABAergic neurons projected from the BF to the TRN,
inhibiting GABAergic neurons in the TRN. This in turn released
TRN inhibition of LGN. Second, cholinergic projections from BF to
excitatory and inhibitory neurons in the cortical microcircuits were

Fig. 5. Effects of basal forebrain (BF) stimulation on the network. This fig-
ure demonstrates how the network is affected when the BF is stimulated. As
shown above, cholinergic projections to both RF1 and RF2 lead to increases
in ACh in these columns in layers 2/3, 5 and 6. Additionally, GABAergic
projections from the BF inhibit the TRN, which disinhibits the LGN and
increases the efficacy of the connections from the sensory periphery to the
cortex. Note also that these GABAergic connections from the BF block the
top-down attentional signal on the TRN, which would otherwise be gating in
information only to RF1.

Fig. 6. Effects of attentional signals on the network. This figure demonstrates how top-down attentional signals can enhance information flow from the periph-
ery for a single receptive field (RF1) at the thalamic level and how top-down attentional signals can cause local ACh release, which leads to a further enhance-
ment of attention. As shown above, local ACh release happens as a result of Glu?ACh interactions. That is, glutamate release from top-down attentional fibers
causes cholinergic fibers to release ACh, leading to a local cholinergic effect on V1 neurons that contain ACh receptors.

© 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
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simulated. It has been shown that mAChRs tend to be localised on
excitatory and inhibitory neurons in the visual cortex and are likely
to increase their excitability (McCormick & Prince, 1986; Disney
et al., 2006). The b parameter in the Izhikevich equations describes
the sensitivity of the recovery variable u to subthreshold fluctuations
of the membrane potential v (Izhikevich, 2003). Increasing the b
parameter decreases the firing threshold of neurons. In this sense,
increasing b increases the cell’s excitability. When the BF was stim-
ulated, the b parameter in the Izhikevich model (Eqns 1 and 2),
which controls cell excitability, was increased from 0.20 to 0.30 for
inhibitory neurons and from 0.20 to 0.25 for excitatory neurons in
layers 2, 5 and 6 of the cortical microcircuits. This is intended to
mimic the cholinergic activation of mAChRs on excitatory and
inhibitory neurons, which leads to increased cell excitability.
Because we were mainly interested mAChR’s influence on inhibi-
tory and excitatory neurons and how it increases cell excitability,
our simulation of the cholinergic system did not include the effects
of nicotinic receptors on visual cortical neurons (Xiang et al., 1998;
Disney et al., 2007). Moreover, the effects of attention probably do
not affect nicotinic receptors, which are mainly expressed presynap-
tically on thalamocortical terminals (Disney et al., 2007). Therefore,
we focused on mAChRs, because of their strong influence on atten-
tional mechanisms and correlations.
Top-down attentional signals also acted on the network in two

different ways (Fig. 6). First, in trials in which the top-down atten-
tion signal projecting to RF1 was stimulated, excitatory Poisson

spike trains drove GABAergic neurons within the TRN, inhibiting
control of the TRN over the projections from LGN neurons that pro-
ject to cortical RF1 neurons (Barbas & Zikopoulos, 2007; Zikopou-
los & Barbas, 2007). This biases information coming into the cortex
to RF1 over RF2. These Poisson spike trains also drove excitatory
and inhibitory neurons in layers 2/3 and 5 of RF1. Second, it has
been shown that local application of acetylcholine can modulate
attention locally in a particular receptive field (Herrero et al., 2008).
A possible, although speculative, mechanism for this to occur in the
brain is via glutamate (Glu) ? acetylcholine (ACh) interactions as
shown in Fig. 6 [proposed by Hasselmo & Sarter (2011) in the rat
prefrontal cortex]. Local ACh release may help in further biasing
information in early visual cortex. This was simulated in the model
by stimulating mAChRs, which altered the b parameter (as described
above) of the excitatory and inhibitory neurons that top-down sig-
nals projected to when these top-down signals were applied.

Results

The results section is organised as follows. We first demonstrate that
our model matches experimental research done by Herrero et al.
(2008) showing that the cholinergic system modulates attention in
visual cortex. We then analyse the between-cell correlations and find
that correlations are reduced by both top-down attention, as was
seen by Cohen & Maunsell (2009) and Mitchell et al. (2009), and
muscarinic receptor activation, as was seen by Goard & Dan (2009).

Fig. 7. Acetylcholine and attentional modulation. Rasterplot (left), mean firing rate (top, right) and average mean firing rate (bottom, right) of a subset of 100
excitatory neurons in the first 5 s of the movie presentation taken from layer 2/3 of RF1 in our model for four conditions: (i) attend RF1 + mAChR, (ii) attend
away + mAChR, (iii) attend RF1 and (iv) attend away. These conditions are compared with the experimental findings found in fig. 1A of Herrero et al. (2008).
The results from our model match well with those from Herrero et al. That is, the strongest response of the group of neurons in RF1 comes when both top-
down attention and ACh are applied to the column and the weakest respond is when ACh is not applied and attention is directed into RF2.
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In this section, we further show that these decorrelations were medi-
ated by excitatory–inhibitory and inhibitory–inhibitory interactions
and left excitatory–excitatory correlations unchanged. Finally, we
analyse the between-trial correlations and demonstrate that both top-
down attention and BF activation lead to increases in the between-
trial correlations of excitatory neurons.

Cholinergic modulation of attention

As described in the Introduction, Herrero et al. (2008) performed
four electrophysiological and pharmacological experiments on maca-
que monkeys and showed that ACh modulates attention. They had
the subjects: (i) attend toward the RF that they were recording from
while they applied ACh to this RF, (ii) attended away from the
recorded RF while they applied ACh to the recorded RF, (iii) attend
toward the recorded RF without applying ACh, and (iv) attend away
from the RF without applying ACh. In the model, stimulating the
frontal areas that project to RF1 and RF2, respectively, simulated
the ‘attend toward’ and ‘attend away’ conditions. The ACh applica-
tion condition (‘mAChR’ condition in Fig. 7) involved stimulating
the muscarinic receptors in RF1 by increasing both the inhibitory
and the excitatory cell’s excitability as described in the Methods.
Our model matched results from Herrero et al. (2008) by showing

that ACh contributes to attentional modulation. To exhibit this, we

created a series of plots from our model (Fig. 7) that can be easily
compared with those shown in fig. 1A of Herrero et al. In Fig. 7,
we show raster plots, time-dependent firing rates and average firing
rates for 100 excitatory neurons in layer 2/3 of RF1 for the first 5 s
of the movie presentation and for the four conditions performed in
Herrero et al. (2008). The firing rate was calculated by summing the
number of spikes across the neuron population and smoothing this
out using a moving average with a bin size of 100 ms. The average
firing rate across time was found by computing the mean of the fir-
ing rate across neurons over the length of the trial.
The results from our model match qualitatively with those from

Herrero et al. (2008) as can be seen in comparing Fig. 7 with fig.
1A from Herrero et al. That is, the strongest response of the layer
2/3 neurons in RF1 comes when both top-down attention and ACh
are applied to the column and the weakest response is when ACh is
not applied and attention is directed into RF2. As was speculated in
Hasselmo & Sarter (2011), the attentional mechanism in our model
was facilitated by the local release of ACh as a result of Glu?ACh
interactions between top-down attention signals from prefrontal cor-
tex (PFC)/V4, cholinergic fibers, and V1 neurons, as shown in
Fig. 6. As explained in the Discussion and the Results below, this
mAChR-mediated increase in firing rate with attention is primarily
mediated by mAChR increases in the excitability of excitatory neu-
rons, whereas the mAChR-mediated increase in excitability of inhib-

A

B

C

D

E

F

G

H

I

Fig. 8. Neuromodulatory effects on interneuronal correlations. Scatter plots demonstrating how mAChR and BF stimulation affect interneuronal correlations. In
each case, the black and blue scatter points correspond to RF1 and RF2, respectively. The red and green crosses correspond to the center of mass of the black
(RF1) and blue (RF2) scatter points, respectively (size of crosses is equal to 209 � SEM). The left, center and right columns correspond to excitatory–excit-
atory, excitatory–inhibitory and inhibitory–inhibitory correlations between neurons, respectively. The top, middle and bottom rows correspond to situations in
which no mAChRs are stimulated, mAChRs in RF1 are stimulated and the BF is stimulated, respectively. Note that both mAChR stimulation and BF stimula-
tion lead to a decorrelation of excitatory–inhibitory and inhibitory–inhibitory neurons (as indicated by the red ‘+’ below the line y = x) and do not significantly
affect excitatory–excitatory correlations. In particular, mAChR stimulation causes excitatory–inhibitory and inhibitory–inhibitory decorrelations in RF1 only (see
E and H), and BF stimulation causes excitatory–inhibitory and inhibitory–inhibitory decorrelations in RF1 and RF2 (see F and I).

© 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 1–14

Basal forebrain enhancement of attention 7



itory neurons, which also occurs with top-down attention, helps to
maintain low levels of excitatory–excitatory correlations. Note that
the absolute changes in firing rate shown in Fig. 7 are greater than
those seen in Herrero et al., although this is a function of the rate
that was chosen for the Poisson spike generator driving the top-
down attention signal and should therefore not influence our result
that mAChRs modulate attention.
In the Herrero et al. experiments, they found that attentional mod-

ulation was enhanced only at low doses of ACh application. Higher
doses of ACh, by contrast, could reduce attentional modulation. We
ran additional simulations (data not shown) showing that these
results could be replicated if the excitability of inhibitory neurons
increases at a faster rate than the excitability of excitatory neurons.
This suggests that the number and distribution of mAChRs on excit-
atory and inhibitory neurons could play an important role in shaping
these dose-dependent effects.

Top-down attention and BF-mediated decrease in between-
cell correlation

We investigated the change in between-cell correlations that resulted
from attentional and BF-related signals in comparison with control
conditions. To achieve this, we periodically either stimulated top-
down attentional areas, mAChRs in RF1, or the BF, as described in
the Methods. This led to the six conditions shown in Figs 8 and 9:
(i) no attention, no mAChR stimulation and no BF stimulation
(Fig. 8, top); (ii) no attention and mAChRs in RF1 stimulated

(Fig. 8, middle); (iii) no attention and BF stimulated (Fig. 8, bot-
tom); (iv) attention signal in RF1 only (Fig. 9, top); (v) attention
signal in RF1 and mAChRs in RF1 stimulated (Fig. 9, middle); and
(vi) attention signal in RF1 and the BF stimulated (Fig. 9, bottom).
We refer to these six cases as the ‘non-control’ conditions. Control
conditions, by contrast, refer to times in the experiment when there
was no top-down attention, no mAChR stimulation and no BF stim-
ulation was applied to the network. We then measured the interneu-
ronal correlations in the non-control and control conditions. This
was done by first binning the spikes of all neurons at 100 ms. Bin-
ning spikes at 100 ms removes high-frequency oscillations, and thus
correlations seen in the plots are low-frequency correlations. This
was a similar analysis as was used in Goard & Dan (2009). We then
used the MATLAB routine corrcoef to compute the correlation coef-
ficient for a subset of 80 neurons taken from all layers (20 neurons
per layer) in RF1 and RF2 across trials in both the control and the
stimulated cases.
To see how attention, mAChR stimulation and BF stimulation

changed correlations between cells, in Figs 8 and 9 we plot the
excitatory–excitatory, excitatory–inhibitory and inhibitory–inhibitory
correlations for the six non-control conditions discussed above (indi-
cated by the row name). For each of the nine subplots in Figs 8 and
9, the non-control condition is plotted on the y-axis against the con-
trol condition, plotted on the x-axis. Each scatter point corresponds
to the correlation value computed under both the non-control
(y-axis) and control (x-axis) conditions. Thus, a scatter point above
the line y = x indicates an increase in correlation in the non-control

A

B

C

D

E

F

G

H

I

Fig. 9. Attentional and neuromodulatory effects on interneuronal correlations. Scatter plots demonstrating how top-down attention, mAChR stimulation and BF
stimulation affect interneuronal correlations. As in Fig. 8, black and blue scatter points correspond to RF1 and RF2, respectively, and the red and green crosses
correspond to their center of masses. When top-down attention is applied to RF1, there is a decorrelation of excitatory–inhibitory and inhibitory–inhibitory neu-
rons (see Fig. 8D and G). The top-down attention signals also tend to further decorrelate excitatory–inhibitory and inhibitory–inhibitory neurons in combination
with mAChR stimulation in RF1 (see Fig. 8E and H), indicating a strong separation from RF2. When the BF is turned on, however, this separation is dimin-
ished, as can be seen in the bottom, center and bottom, right plots, indicating a decreased bias to RF1 over RF2.
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condition. A scatter point below the line y = x indicates a decrease
in correlation in the non-control condition. Black and blue scatter
points are used for RF1 and RF2, respectively. Red and green
crosses indicate the center of mass of the scatter points for RF1 and
RF2, respectively, and the size of the crosses is 20 times the stan-
dard error of the mean (SEM) of the center of mass.
We first analysed the between-cell correlations during BF stimula-

tion. A similar study was performed experimentally on rats by
Goard & Dan (2009). In their study, the BF was periodically stimu-
lated (similar to ours) while showing the rats a natural movie. They
found that during periods of BF stimulation, the neurons in V1
became decorrelated. In addition, they showed that this correlation
is mediated by muscarinic receptors. As can be seen in the bottom
row of Fig. 8, when we stimulated the BF, excitatory–inhibitory and
inhibitory–inhibitory correlations in both RF1 and RF2 decreased,
while excitatory–excitatory correlations remained unchanged. Our
result suggests that the decorrelation reported by Goard and Dan
was primarily mediated by inhibitory neurons. For the mAChR in
RF1 case (middle row of Fig. 8), we also see a decrease in
between-cell correlations, indicating that the decrease in correlations
is further mediated by mAChRs.
We also applied top-down attentional signals to our cortical col-

umns and saw how this affected between-cell correlations with and
without mAChR and BF stimulation (Fig. 9). Attentional modula-
tion is classically known to increase firing rates in a particular sub-
set of neurons in order to bias these neurons so they win out in
competition against other groups (Desimone & Duncan, 1995).

However, it has recently been shown that decreases in neuronal cor-
relations via top-down signals to V4 corresponded to 80% of the
attentional bias (Cohen & Maunsell, 2009; Mitchell et al., 2009). In
Fig. 9, we show how attention affects interneuronal correlations
with and without mAChR and BF stimulation. The top row of
Fig. 9 shows that when only an attentional signal is applied to RF1,
excitatory–inhibitory and inhibitory–inhibitory correlations decrease,
while excitatory–excitatory correlations remain constant. This decor-
relation is enhanced when also stimulating mAChRs in RF1 (Fig. 9,
middle). Note also in the middle row of Fig. 9 the correlations in
the unattended receptive field (RF2) remain the same, indicating no
bias in the unattended RF. However, when the BF is stimulated,
RF2 also becomes decorrelated, resulting in a loss or weakening of
this bias.
To see how the type of neuron affected interneuronal correlations

within a column, we changed fast-spiking neurons in RF1 to regu-
lar-spiking neurons by changing the a and d paramaters of the
Izhikevich equations (Fig. 10). When attention was applied to RF1
both excitatory–excitatory and excitatory–inhibitory correlations
increase in RF1 (top row). Likewise, when the BF is activated,
excitatory–excitatory and excitatory–inhibitory correlations increase
in RF1 (bottom row). This implies that when an additional excit-
atory input drives a cortical column (e.g. top-down attention is
applied to a column or the BF is activated), the firing pattern of the
inhibitory neuron is crucial for maintaining low correlations. This
also suggests that inhibitory neuron activation and excitation by
mAChRs is perhaps a way to constrain excitatory–excitatory correla-
tions that would arise with increased excitatory drive.

Top-down attention and BF-mediated increase in between-trial
correlation

Between-trial correlation is a measure of the reliability of individual
neurons in the cortex. We analysed how attention, mAChR and BF
signals affect between-trial correlations by grouping single neurons
into trials and computing their correlation coefficients in control and
non-control conditions (similar to Figs 8 and 9) to give the
between-trial correlations. For each subplot in Fig. 11, the x-axis
denotes the control condition and the y-axis denotes the non-control
condition. For example, the subplot in the top-left corner shows the
between-trial correlations of the control condition (x-axis) against
the no attention and no mAChR/BF condition (y-axis).
Top-down attentional signals may bias information in the cortex

by increasing the reliability of neurons. Figure 11 (two left columns)
shows that when attention was applied to RF1 and the BF was not
stimulated, excitatory neurons in RF1 increased their between-trial
correlation, while neurons in RF2 remained unchanged. In our
model, this increase in reliability happens as a result of top-down
projections to the TRN, which release TRN’s inhibitory control over
the LGN. We have shown a similar mechanism in a recently pub-
lished computational model (Avery et al., 2012a). Anatomical stud-
ies have shown that the PFC has highly topographic projections
connecting to the TRN (Zikopoulos & Barbas, 2006). Because of
this, the PFC can filter out distractors and up-modulate important
sensory information before it even reaches the cortex. This type of
attentional bias in the thalamus has been demonstrated in several
studies (Crick, 1984; McAlonan et al., 2006, 2008).
The BF and mAChRs are also thought to influence sensory pro-

cessing. Therefore, we tested how mAChR and BF stimulation
affect between-trial correlations with and without attention applied
to RF1. As indicated by comparing Fig. 11D and E (excitatory neu-
rons), mAChR stimulation in RF1 seemed to have little effect on

A

B

C

D

Fig. 10. Changing inhibitory spiking patterns changes interneuronal correla-
tions. Scatter plots demonstrating how interneuronal correlations change
when fast spiking inhibitory neurons in RF1 are changed to regular spiking
neurons. Black and blue scatter points correspond to RF1 and RF2, respec-
tively, and the red and green crosses correspond to their center of masses.
When top-down attention is applied to RF1, both excitatory–excitatory and
excitatory–inhibitory correlations increase (top, left and top, right). This is in
contrast to Fig. 9A and D, in which excitatory–excitatory correlations remain
constant with attention and excitatory–inhibitory correlations decrease. Simi-
larly, when the BF is turned on (bottom) excitatory–excitatory and excit-
atory–inhibitory neuron correlations increase. Note that when the BF is on,
RF2 (which still has fast spiking interneurons) excitatory–excitatory neuronal
correlations remain constant and excitatory–inhibitory correlations decrease.
This suggests that the spiking pattern of inhibitory neurons (and, thus, excit-
atory–inhibitory decorrelation) is necessary to sustain low levels of correla-
tion with increases in input that accompany BF stimulation and top-down
attention.
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changing the reliability of the input. BF stimulation, however, was
able to increase the reliability of both inputs to the cortex (Fig. 11,
bottom). Goard & Dan (2009) also showed that stimulation of the
BF leads to an increase in the reliability of neurons in the LGN and
cortex. In addition, comparing Fig. 11E and F (excitatory neurons)
shows that when the BF is stimulated, the reliability of RF2
increases to match that of RF1. This demonstrates that BF stimula-
tion is able to override the attentional bias imposed onto RF1 and
enhance both sensory inputs to the cortex. This happens as a result
of GABAergic projections from the BF to the TRN, which have
been shown anatomically (Bickford et al., 1994). These projections
make the BF very important for regulating the flow of information
from the sensory periphery to the cortex. In contrast to excitatory
neurons, inhibitory neurons in our simulation showed hardly any
increase in reliability when top-down attention was applied (Fig. 11,
inhibitory neurons) and only a weak increase in reliability when the
BF was stimulated (Fig. 11I and L).

To see how the type of neuron affected between-trial correlations,
we changed fast-spiking neurons in RF1 to regular-spiking neurons
as above (Fig. 12). Comparing Fig. 12A–D with plots Fig. 11D, J,
F and L, respectively, we see no significant changes. Thus, we can
conclude that changing the spike waveform of inhibitory neurons
appears not significantly to affect the between-trial correlations of
either inhibitory or excitatory neurons.

Discussion

The present model illustrates several important mechanisms underly-
ing attention and neuronal correlations in visual cortex. First, our
model accounts for the BF enhancement of both bottom-up sensory
input and top-down attention through ‘local’ and ‘global’ neuromodu-
latory circuitry. Within the context of our model, glutamatergic projec-
tions from frontal cortex synapse onto cholinergic fibers in V1,
causing local cholinergic transients, which, ultimately, lead to a local

A

B

C

D

E

F

G

H

I

J

K

L

Fig. 11. Attentional and neuromodulatory effects on between-trial correlations. Scatter plots demonstrating how attention, mAChR stimulation and BF stimula-
tion affect between-trial correlation in both excitatory (two left columns) and inhibitory (two right columns) neurons of RF1 and RF2. As in Figs 8 and 9, the
red and green crosses correspond to the center of mass of the black (RF1) and blue (RF2) scatter points, respectively (size of crosses is equal to 59 � SEM).
For excitatory neurons (two left columns), between-trial correlations in RF1 increase when top-down attentional signals are applied to RF1 and the BF is off
(top and middle, right columns), while the between-trial correlations in RF2 stay constant, indicating a biasing of the sensory signal to RF1. When the top-down
attention is applied and the BF is stimulated (bottom figures), however, both RF1 and RF2 have an increase in between-trial correlations, indicating that the BF
overrides the top-down attentional bias to RF1. For inhibitory neurons (two right columns), between-trial correlations do not show as strong of an increase in
reliability in any of the cases when compared with the excitatory neurons. Note that in the bottom, right figure the red cross is beneath the green cross, making
it difficult to see.

© 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
European Journal of Neuroscience, 1–14

10 M. C. Avery et al.



enhancement of top-down attention. In contrast, stimulation of the BF
has a more global effect and can actually decrease the efficacy of top-
down projections and increase sensory input by blocking top-down
projections in the thalamus. Second, our model suggests an important
role for mAChRs on both inhibitory and excitatory neurons. mAChRs
on excitatory neurons are important for increasing firing rates and
improving attentional modulation. mAChRs on inhibitory neurons, by
contrast, help to maintain low levels of correlations in response to
increases in excitation that come from both top-down attention and
mAChRs on excitatory neurons. When excitatory drive was increased
to a column due to top-down attention or BF stimulation, excitatory–
inhibitory correlations decreased and excitatory–excitatory correla-
tions remained constant. This decrease in correlations was further
mediated by mAChRs. When the firing pattern of inhibitory neurons
was changed from fast-spiking to regular-spiking, excitatory–excit-
atory and excitatory–inhibitory correlations increased with top-down
attention and BF stimulation. This suggests an important role for inhi-
bition in maintaining low excitatory–excitatory correlation levels
when excitation is increased due to mAChR stimulation on excitatory
neurons or added inputs, such as top-down attention.
The present model accounts for experimental results demonstrat-

ing BF’s role in the enhancement of both bottom-up sensory input
and top-down attention. While it has been traditionally accepted that
activation of the BF cholinergic system amplifies bottom-up sensory
input to the cortex while reducing cortico-cortical and top-down
attention (Hasselmo & McGaughy, 2004; Yu & Dayan, 2005;
Disney et al., 2007), it has also been shown that ACh may be
important for enhancing top-down attentional signals in visual cortex
(Herrero et al., 2008). To resolve these seemingly contradictory
results, we propose a circuit that involves global and local modes of
action by which the BF can enhance sensory and top-down atten-
tional input, respectively. When the BF is stimulated (Fig. 13A,
top), it releases ACh in V1 and disinhibits thalamic relay nuclei (via

GABAergic projections to the TRN) in a non-specific manner. This
leads to a global enhancement of sensory input to the cortex and
may correspond to a heightened state of arousal. In contrast, when
top-down attentional signals stimulate visual cortex, they can cause
a local release of ACh within the context of our model, which
enhances attention locally (Fig. 13A, bottom).
The exact mechanisms underlying BF enhancement of sensory

information in visual cortex are not completely understood, although
it has been suggested that nicotinic receptors play an important role
(Disney et al., 2007). We propose that this balance of bottom-up
sensory input and top-down input may also be occurring at the level
of the thalamus. Topographic projections from the PFC to the TRN,
which bias salient input coming from the sensory periphery, may be
inhibited via GABAergic projections from the BF. This gives the
BF a graded control over top-down attentional biases that PFC may
be having on the thalamus. We also suggest that local release of
ACh modulates attention by enhancing the firing rates of attended
regions in the cortex (Fig. 7). This result matches well with electro-
physiological and pharmacological experiments performed on mon-
keys (Herrero et al., 2008).
A significant finding from our model was that top-down atten-

tional signals and simulated mAChRs decreased correlations
between excitatory–inhibitory and inhibitory–inhibitory neurons in
the cortex; however, excitatory–excitatory correlations remained
unchanged (Figs 8 and 9). Several experimental studies have shown
that attention and neuromodulation decrease interneuronal noise cor-
relations (Cohen & Maunsell, 2009; Goard & Dan, 2009; Mitchell
et al., 2009). In fact, Cohen and Maunsell showed that decorrelation
caused more than 80% of the attentional improvement in the popula-
tion signal. This suggested that decreasing noise correlations was
more important than firing rate-related biases. These studies, how-
ever, did not identify the types of neurons they were recording from,
which may be difficult using conventional recording techniques.
Our model predicts that the decorrelations seen in these studies

may be excitatory–inhibitory pairs of neurons rather than excitatory–
excitatory pairs. In our model, we found no change in excitatory–
excitatory correlations when applying top-down attention and
stimulating the BF, but saw a significant decrease in excitatory–
inhibitory and inhibitory–inhibitory correlations. In this view,
excitatory–excitatory pairs are able to maintain a constant, low cor-
relation state regardless of the amount of excitatory drive (which
should increase correlations) due to fast-spiking inhibitory neurons
(Fig. 13B). Because muscarinic receptors caused a further decrease
in excitatory–inhibitory correlations, we suggest that they may act
as a buffer, absorbing increases in excitation that occur with atten-
tion and BF stimulation by changing either the inhibitory spike
waveform (i.e. inhibitory speed) or the inhibitory strength.
A recently published study further substantiates our finding that

excitatory–inhibitory pairs of neurons have stronger decorrelation
than excitatory–excitatory pairs. Middleton et al. (2012) were able
to distinguish between excitatory and inhibitory neurons and looked
at the correlations between these pairs in layer 2/3 of the rat’s whis-
ker barrel cortex. They compared correlations during spontaneous
and sensory stimulated states and found that excitatory–inhibitory
pairs of neurons became decorrelated when sensory stimuli were
presented to the animal, whereas excitatory–excitatory pairs of neu-
rons remained at low levels of correlations.
Our model suggests that the spiking pattern of the inhibitory neu-

ron is important for maintaining neuronal decorrelation when further
excitatory drive is applied (Fig. 10). Given excitatory–inhibitory
decorrelation and minimal excitatory–excitatory correlations both in
our model and in Middleton et al. (2012), we suggest that a primary

A

B

C

D

Fig. 12. Changing inhibitory spiking patterns does not significantly change
between-trial correlations. Scatter plots demonstrating how between-trial cor-
relations are affected by changing fast spiking neurons in RF1 to regular
spiking neurons. When top-down attention is applied to RF1 (top), changing
the firing pattern of fast spiking neurons in RF1 to regular spiking does not
seem to significantly change between-trial correlations for both inhibitory
and excitatory neurons (compare with Fig. 11, top row). When the BF is
stimulated (bottom), both excitatory and inhibitory neurons in RF1 tend to
have a slightly higher between-trial correlation (compare with Fig. 11, bot-
tom row).
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role of inhibitory neurons in cortex is to maintain a low level of
excitatory–excitatory correlations with changing levels of excitation
that may arise due to mAChR stimulation of excitatory neurons and/
or top-down attentional signals. As illustrated in Fig. 13C, we pro-
pose that there is a relationship between excitatory–excitatory and
excitatory–inhibitory correlations that is dependent upon levels of
excitation and inhibition. Increased excitation will tend to increase
correlations and increased inhibition will tend to decrease correla-
tions between excitatory–excitatory and excitatory–inhibitory pairs.
Inhibition may be important for maintaining optimal levels of excit-
atory–excitatory correlation in visual cortex. This implies that
increasing inhibition makes it more difficult for an excitatory input
to push the network out of the optimal regime and into a higher

excitatory–excitatory correlation state (Fig. 13C). ACh’s role in V1,
then, might be to further activate inhibitory neurons so that they can
absorb the increase in excitation that comes with top-down attention
and BF activation of mAChRs on excitatory neurons without adding
in excessive correlations.
It has been suggested that low-frequency excitatory–excitatory

noise correlations originate from cortico-cortical connections (Mitch-
ell et al., 2009). It is possible that we do not see attention and
mAChR-dependent decreases in excitatory–excitatory correlations,
then, due to the fact that our model does not incorporate these con-
nections. Interestingly, mAChRs have been shown to also decrease
lateral connectivity in the cortex (Hasselmo & McGaughy, 2004),
which could potentially mediate the decrease in excitatory–excit-

A B

C

Fig. 13. Global vs. local neuromodulation and the mechanism of cholinergic-mediated decorrelation. (A) When the basal forebrain is stimulated (top),
GABAergic projections from the basal forebrain inhibit neurons in the TRN, disinhibiting the LGN. This increases the reliability of all signals coming into cor-
tex (Fig. 11). Cholinergic projections from the basal forebrain also release acetylcholine (shown in orange) non-specifically. This leads to a global enhancement
of information coming into cortex and may be associated with a heightened state of arousal. This may also be a means of blocking attentional signals that may
be biasing information via projections to the TRN. When attention is applied to a specific receptive field and the BF is not stimulated (bottom), the top-down
projections disinhibit the LGN for a single receptive field and cause local acetylcholine release. (B) Muscarinic receptors (shown in orange) excite inhibitory
neurons (red) in V1. This leads to an increase in inhibition and a decrease in correlations between excitatory–inhibitory (qE,I) and inhibitory–inhibitory (qI,I)
neuron pairs. We propose this additional inhibition is important for keeping excitatory–excitatory correlations (qE,E) low in times of increased excitatory input.
(C) Plot showing the relationship that our model suggests exists between excitatory–inhibitory and excitatory–excitatory correlations. Increased excitation tends
to drive both excitatory–excitatory and excitatory–inhibitory correlations up. The strength of the inhibitory drive, by contrast, fights this to maintain low decorre-
lations between excitatory–excitatory pairs. Low levels of inhibition due to a decrease in inhibitory strength or speed [e.g. changing the inhibitory neurons
waveform (Fig. 10)] would lead to an increase in excitatory–excitatory and excitatory–inhibitory correlations. The stimulation of muscarinic receptors on inhibi-
tory neurons may thus act as a buffer, decorrelating excitatory–inhibitory neuronal pairs to absorb increases in excitation that may otherwise cause an increase
excitatory–excitatory correlations.
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atory correlations. It would be interesting to develop a model that
incorporates cortico-cortical connections to see if mAChR-dependent
reductions in their efficacy can decrease noise correlations between
excitatory neurons.
It is important to point out that decreases in excitatory–excitatory

correlations only improve encoding when two neurons have high
signal correlations (Averbeck & Lee, 2006). Because neurons in
each column receive the same Gabor-filtered input, we assume they
all have high signals correlations, and thus decorrelating the signal
would improve coding. Neurons that have low signal correlations,
by contrast, such as neurons that encode for orthogonal stimulus ori-
entations within a single receptive field, may improve encoding by
increasing noise correlations. mAChR influences on lateral connec-
tivity strength may thus be crucial for facilitating this type of
improvement in information processing. From a modeling and
experimental standpoint, it will be interesting to see how mAChRs
influence noise correlations when signal correlations differ.
We demonstrated that both BF and top-down attentional signals

lead to an increase in cortical reliability as a consequence of their
projections to the TRN. The reliability of a neuron is related to the
probability that it will fire at a particular time and rate given
repeated presentation of the same stimulus. In a prior model, we
demonstrated that GABAergic projections from the BF are able to
enhance between-trial reliability in LGN and cortex and decrease
the burst-to-tonic ratio in the LGN by inhibiting TRN neurons
(Avery et al., 2012a). Similarly, in this model we showed that stim-
ulation of the BF increases reliability of neurons in cortex
(Fig. 11F). In addition to the GABAergic projections from the BF
to the TRN, it has been shown that there exist topographic top-down
projections to the TRN from the PFC (Zikopoulos & Barbas, 2007;
McAlonan et al., 2008). These projections may act as an attentional
filter, enhancing important information at the expense of irrelevant
information before this information even gets to the cortex. Given
this circuitry, we were able to show that top-down attentional sig-
nals can also lead to an increase in reliability of a single receptive
field via projections to the TRN (Fig. 11D).
Several computational models have been recently developed that

show how neuromodulation can effect cortical processing. The
SMART model (Synchronous Matching Adaptive Resonance Theory)
developed by Grossberg & Versace (2008) is a spiking model that
included a detailed cortical and subcortical (thalamic) circuit design as
well as synaptic plasticity and cholinergic neuromodulation. Deco &
Thiele (2011) also developed a model demonstrating how cholinergic
activity affects the interaction between top-down attentional input and
bottom-up sensory information in a cortical area. Finally, a model of
the cholinergic and noradrenergic systems was developed that demon-
strated how these systems track expected and unexpected uncertainty
in the environment, respectively, and affect several cortical targets in
order to optimise behavior (Avery et al., 2012b).
The present model differed from those mentioned above in sev-

eral important ways. First, it showed how non-cholinergic neurons
(GABAergic) in the BF could influence subcortical structures
(TRN). The three papers above, by contrast, concentrated exclu-
sively on cholinergic neurons in the BF and their influence on the
cortex. Second, our model presented a mechanism showing how the
BF can enhance both bottom-up sensory input and top-down atten-
tion by incorporating local and global modes of action by the BF.
Thiele and Deco, on the other hand, were interested in modeling
cholinergic influences on top-down attention and Avery et al. were
interested in modeling the cholinergic enhancement of bottom-up
sensory input. It would be interesting to combine the level of detail
of our model and the SMART model with the wide range of cholin-

ergic actions that were incorporated into Deco & Thiele (2011) and
Avery et al. (2012b).
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