
Center for Embedded Computer Systems
University of California, Irvine
__

Smartphone Based Robotics:
Powerful, Flexible and Inexpensive Robots for

Hobbyists, Educators, Students and Researchers

Nicolas Oros, Jeffrey L. Krichmar

Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-2620, USA

{noros, jkrichma}@uci.edu

CECS Technical Report 13-16
November 26, 2013

Abstract—In this manuscript, we survey the new and exciting

approach of Smartphone based robotics for research and
education. The increases in the computational power and sensing
of smartphones, plus the recent availability of interface boards,
have made this trend popular across a wide range of enthusiasts.
As an example, we show how we built an Android based robotic
platform composed of an Android phone, an off-the-shelf
input/output interface board, a R/C vehicle and additional
sensors and actuators. The total cost of the platform, excluding
the phone, was just $350. Our Android based robot has been used
for both undergraduate education and research purposes. In our
research, we showed that the behavior of our Android based
robot could be entirely driven by a neural network that ran on
the phone as the robot performed a foraging task outdoors. We
believe that Smartphone based robotic platforms such as ours are
ideal candidates for inexpensive robotics research and education,
and have a bright future in robotics.

Index Terms— Robot, Smartphones, Android phones

I. INTRODUCTION
HILE the field of robotics is continuously expanding at a
remarkable rate and better performing robots are

created every year, robotics still remains out of reach for many
students and researchers. The main reasons for this difficulty
are the high complexity of the hardware and software of
robots, and their typically high cost.

We believe that the computing power, sensing capabilities
and intuitive programming interfaces of modern smartphones
afford an inexpensive yet highly capable robotic platform.
Smartphone based robots are becoming increasingly popular,
with many exciting applications emerging in both academia
and industry. As a case in point, we provide a detailed
description of a simple robotic platform based on this
approach. We present examples where this robotic platform
has been used for education and research purposes, as well as
discuss potential future projects.

A. Robotic platforms for education and research
A large number of robotic platforms are available for research
and education (see Table 1 for a non-exhaustive list). Robotic
platforms such as the Lego Mindstorms NXT and more recent

This work was supported in part by the NSF under Grant IIS-0910710.
N. Oros and J. L. Krichmar are with the Department of Cognitive Sciences

and Department of Computer Science at the University of California, Irvine,
Irvine, CA 92697-5100 USA, noros; jkrichma@ uci.edu.

EV3, iRobot Create, VEX, TETRIX, SRV-1 and Bioloid (see
rows 1-6 of Table 1) are simple and inexpensive enough to be
used in education and robotic research. These platforms come
in kits or preassembled and can be used by educators, and
students to program behaviors. However, these platforms have
difficulties working outdoors on uneven terrain, and usually
do not have powerful onboard computers and a large suite of
sensors. Robots such as the Khepera, Koala and Pioneer (see
rows 7-10 of Table 1) are very popular in the research
community. While they are more capable than the above
platforms, the base models are also more expensive and
additional equipment, such as onboard computers, cameras
and sensors, drastically increase the total cost. Humanoid
robots such as the NAO and the DARwIn-OP are also
becoming more affordable and they are now used for research
and education. Kits provided by competitions, such as the
FIRST Robotics Competition and other robotic platforms
provide enough modularity and flexibility to be used for
education and research although they do not use onboard
computers, sensors and cameras of the same caliber as recent
smartphones. Other robots can be utilized for research and
education purposes, however a full review of such platforms is
beyond the scope of this manuscript.

Table 1. Popular robotic platforms used for education and research. Prices
are shown for the base models/kits.

A new and exciting alternative to these platforms is to build
a robotic platform with a smartphone acting as an onboard

IRobot Create $130

VEX Robotics (VEX IQ; VEX) $250; $400

Lego Mindstorms NXT 2.0 $280

Robotis (Bioloid; DARwIn-OP) $350; $12,000

TETRIX $380

Surveyor (SRV-1) $495

K-Team Corporation
(K-Junior; Kilobot; Khepera; Koala) $800; $1,200 (for 10); $3,200; $8,400

Adept MobileRobots
(AmigoBot; Pioneer DX; Pioneer AT) $1,695; $4,000; $6,495

Scout (Dr Robot) $8,750

Aldebaran Robotics (NAO) $15,600

Smartphone Based Robotics:
Powerful, Flexible and Inexpensive Robots for

Hobbyists, Educators, Students and Researchers
Nicolas Oros, Jeffrey L. Krichmar

W

computer, as well as a sensing and interacting device. The
computational power of handheld devices, such as mobile
phones and tablets, increases every year at a remarkable rate.
Even though smartphones have compact form factors, they are
currently equipped with powerful quad-core processors and
graphical processing units, video cameras, location providers
(GPS, Wi-Fi, Cell-ID), long lasting batteries, and a multitude
of sensors such as acceleration and orientation sensors. They
also have an impressive suite of communication options
(Bluetooth, Wi-Fi, Wi-Fi Direct, 3G, 4G), are powered by
small long-lasting batteries, run modern operating systems
(OS), and are reasonably priced. For software development,
smartphone OS’s provide a Software Development Kit (SDK)
that enables programmers to readily create applications.
Programmers often share their applications with the
community enabling rapid prototyping and development. For
these reasons, we believe that smarthphones are promising
candidates for onboard computing and sensing in autonomous
robots.

B. Smartphone based robots and vehicles
A growing interest in having smartphones interacting with

peripheral devices such as motors, servos and sensors led to
the recent creation of electronic interface boards that can be
purchased online or built at a small cost. These boards serve as
communication bridges between AndroidTM smartphones and
external devices. The two main boards available to the public
are the IOIO ($39.95; Sparksfun item 11343) and the Arduino
ADK Rev3 ($73.40), although other boards exist (e.g.
Amarino, Microbridge, PropBridge).

An increasing number of projects realized by hobbyists,
students or teachers, which utilize these electronic boards, are
available in Open Source repositories (see Table 2). A
significant number of these projects involve remote-controlled
(R/C) cars, or other four wheeled based robots, controlled by
Android phones via IOIO or Arduino boards. Most of them
involve remote controlled functionalities, occasionally with
video, sensory and location feedback to another phone or a
computer. For example, a group of high school students built
sailboats controlled by Android phones via IOIO boards. A
group of hobbyists (Cellbots team) developed open source
platforms for Android phones that can be used to control
different robotic platforms such as the IRobot Create, Lego
Mindstorms, VEX Pro, and Arduino based Truckbot or
Tankbot. These examples show that existing robots can be
used as bases, and Android phones as onboard computers. A
company called Robots Everywhere develops Open Source
control software for Android based robots. Interestingly, some
of these projects emerge from developing countries, where the
use of Smartphone based robots is attractive due to their low
cost and high computational power. For example, a group in
Thailand created Android based robots using IOIOs that are
fast and can play soccer with ping-pong balls (see Table 2,
Android Soccer Robot).

Our group has built a remote controlled vehicle, named The
Android Car, using a R/C car, an Android phone, a phone
holder and IOIO. The vehicle can be controlled over Wi-Fi
and stream video and sensory information back to a computer

(see Table 2 and Figure 1). As will be described below, we are
using an upgraded version of this platform for teaching and for
research in computational neuroscience.

Figure 1. The Android Car built using a R/C car, an Android phone, a phone
holder and IOIO, could be controlled over Wi-Fi and stream video and
sensory information back to a computer. The phone was connected to the
IOIO via a USB cable. See Table 2, The Android Car.

Smartphone robots and applications are becoming

increasingly prevalent in research projects (see Table 2).
Scientists at NASA and MIT built free-flying satellites called
SPHERES that are self-contained with power, propulsion,
computing and navigation equipment. These devices were
tested in the International Space Station and were equipped
with Android phones. More recently, NASA launched three
nanosatellites in orbit around Earth called PhoneSats. These
satellites used smartphones as control systems and a UHF
radio beacon to transmit data and images to the ground. The
smartphones monitored the cameras, accelerometers,
magnetometers, and gyroscopes, which were onboard the
satellites. In the field of human-robot interaction, researchers
at MIT built a robot companion equipped with a smartphone
named DragonBot. This cloud-connected robot utilizes the
smartphone for motor control, 3D animation, image streaming,
data capture, and is used to study human/robot interaction and
potentially help kids learn. It has five physical degrees of
freedom and an animated face that can display a wide range of
emotional expressions. Other smartphone based robots have
been developed to help remote users to communicate with
each other through the robotic interface, which utilizes facial
expressions and body gestures [1]. Researchers at Georgia
Tech are working on a musical robotic swarm composed of
cell-phone based robots that can communicate with humans
and with each other and coordinate their movement in order to
explore real time algorithmic musical composition and
performance [2]. Android phones have also been used
successfully with the LEGO Mindstorms NXT for
robotics/software engineering classes [3].

Smartphone based robots are finding their way into
commercial applications (see Table 2). For example, Romo is
a small robot using an iPhone as an onboard computer. It can
be trained to perform face tracking, controlled using another
iOS device over Wi-Fi, or over Internet for telepresence. A
simple SDK is also provided to users in order to create their
own apps. Similarly, Botiful is a small telepresence robot built
for Android phones. Double is a tall telepresence robot using
an iPad as a computing and interacting device. Shimi is a

robotic musical companion that reacts to songs played by a
smartphone when connected to it. Kibot and Albert are robotic
companions that can play with children and help them learn.
These companion or telepresence robots are an interesting
market. However, they are not modular and not suitable for
many education or research purposes.

II. ANDROID BASED ROBOTIC PLATFORM
Similar to the examples discussed above and in Table 2, our

group has developed a smartphone robot platform for
hobbyists, students and researchers. We believe our platform
provides flexibility over other available options making it
attractive to a wide range of enthusiasts. In this section and in
section III, we describe the components of the platform and
instructions on how to construct a smartphone robot. The
robot is constructed from an Android phone, IOIO board,
which is connected via Bluetooth or USB, a R/C vehicle and
additional sensors and actuators (see Figures 2 through 5). The
robot takes advantage of the sensors on the phone (e.g.,
camera, accelerometers, GPS), as well as additional sensors
external to the phone (e.g. IR sensors, Hall Effect Sensors) via
the IOIO. The Android phone interacts with actuators, such as
speed controllers or pan/tilt units, via the IOIO board.

Our Android Robotic Platform is an inexpensive do-it-
yourself (DIY) smartphone based robotic platform using off-
the-shelf components and open source software libraries that
could easily be built by students, hobbyists or researchers, but
still perform complex computations and tasks. Our goal was to
minimize both expenses and time spent on building robots,
allowing users to focus on more fundamental research and
robotic problems. The platform also had to be modular and
flexible enough to support different sensors and actuators that
could be incorporated and relocated very easily. Furthermore,
the platform had to be able to traverse a wide range of indoor
and outdoor terrains. We believe that three main off-the-shelf
components can be used in order to fulfill these requirements:
1) A smartphone running the Android operating system used
as onboard computers and sensing devices; 2) an electronic

board (e.g. IOIO, Arduino ADK) used to interact with
peripheral devices such as servos, motors and sensors not
included in the phone; 3) a R/C vehicle, or inexpensive robotic
base. Due to the variability in complexity of these
components, the total cost to build such a robotic platform can
change, especially depending on the phone and vehicle used.

In the following sections, we will describe a robotic
platform that can be built for approximately $350 (excluding
the phone). The main difference, compared with other
smartphone based robots, is that our platform is more modular,
and can be used outdoors on uneven terrain.

Figure 2. Diagram showing the main components of the Android based
robotic platform and their interactions. The robotic platform gets sensory
input from the phone’s internal sensors, as well as external sensors via the
IOIO board. The Android phone sends commands to the robot’s actuators via
the IOIO board. The Android phone interacts with the IOIO board through a
USB cable or a Bluetooth connection.

A. Android phone
1) Hardware

An important advantage of using a smartphone for an
onboard computer is that the size of a robot can be kept
relatively small, yet still have great features. Its cost can also
be minimal since the phone itself can handle computation,
sensing and battery power.

Many different phones are now available on the market.
Before purchasing an Android phone to be used as an onboard
computer for a robot, one has to consider the uses and needs of
that particular robot. A hobbyist or student may consider using

Table 2. Smartphone based robotic projects: hobbyists/students hardware and/or software (top), research (middle), commercial (bottom). Both The Android
Car and the Android Robotic Platform (in red) were completed at the Cognitive Anteater Robotics Laboratory, University of California Irvine.

Robot/Project Name Cost More information

Robots Everywhere
Cellbots
IOIO based projects
IOIO based sailing boat
Android Soccer Robot
Arduino based projects
The Android Car

unknown
$30 to $300
$100 to $400 (estimations)
$1200 (phone included)
unknown
$200 to $700
$200

http://robots-everywhere.com/site/
http://www.cellbots.com/
http://pinterest.com/ytaibt/ioio
https://groups.google.com/forum/#!topic/ioioscript/VhwsoO218Pc
http://www.youtube.com/watch?v=qY4b5sIrGKw
http://letsmakerobots.com/taxonomy/term/7469
http://www.youtube.com/watch?v=n6ypGlTCbKk
http://www.socsci.uci.edu/~jkrichma/ABR/index.html

NASA - MIT SPHERES
NASA PhoneSats
MIT DragonBot
GEORGIA TECH project
Android Based
Robotic Platform

unknown
$3500-$7000 (phone included)
$1000 (phone included)
unknown
$350

http://www.nasa.gov/mission_pages/station/main/spheres_smartphone.html
http://www.phonesat.org/
http://www.adamsetapen.com/
http://www.gtcmt.gatech.edu/research-projects/swarm-robotics
http://www.socsci.uci.edu/~jkrichma/ABR/index.html

Romo
Botiful
Shimi
Double
Albert
iRiver Kibot

$150
S299
S200
S2499
unknown
$40 (+ $30/month 2 years KT)

http://www.romotive.com/
http://www.botiful.me/
http://tovbot.com/t/AboutShimi
http://www.doublerobotics.com/
http://tsmartrobot.com/
http://armdevices.net/2012/01/21/iriver-kibot-this-robot-takes-care-of-children/

an older less expensive phone. For example, the HTC Google
Nexus One can be found unlocked for less than $200, and is a
suitable onboard computer. This phone has a 1 GHz
Qualcomm Scorpion CPU, 512MB of RAM memory, a
microSD card reader (supports up to 32 GB), and a 1400 mAh
Li-ion battery. It can provide a number of sensory inputs such
as a capacitive touch screen, a 3-axis accelerometer, a digital
compass, a satellite navigation system (aGPS), a proximity
sensor, an ambient light sensor, push buttons, a trackball and a
5.0 megapixel rear camera with a LED flash. For connectivity,
it includes a 3.5mm TRRS audio connector, and hardware
supporting Bluetooth 2.1, micro USB 2.0, Wi-Fi IEEE
802.11b/g/n, 2G/3G networks. A researcher may desire more
features and computational power. In this case, a recent phone
such as the Samsung Galaxy S3 might be considered. This
phone can be found unlocked for around $400, has a 1.4 GHz
quad-core Cortex-A9 CPU, 1-2GB of RAM, a microSD card
reader (supports up to 64 GB), and a 2,100 mAh Li-ion
battery. For sensing, it has a multi-touch capacitive
touchscreen, 3 push buttons, satellite navigation systems
(aGPS, GLONASS), a barometer, a gyroscope, an
accelerometer, a digital compass, an 8.0 megapixel rear
camera with a LED flash, and a 1.9 megapixel front camera.
For connectivity, it includes a 3.5mm TRRS audio connector,
and hardware supporting Bluetooth 4.0, Wi-Fi (802.11
a/b/g/n), Wi-Fi Direct, 2G/3G networks, Micro-USB, NFC,
and DLNA.
2) Software

The Android operating system is open source and Linux-
based. Programmers can develop software for Android in Java
using the SDK [4-6] or in native language (C/C++) using the
native development kit (NDK) [7, 8]. It is also possible for
developers to modify the Linux kernel if needed.
Implementation of an Android application can be achieved
using the Eclipse IDE with the Android Development Tools
(ADT) plug-in [9]. Using this SDK, the developer has easy
access to different functionalities of an Android phone such as
graphical interfaces, multi-threading, networking, data storage,
multimedia, sensors, location provider, speech-to-text, text-to-
speech, and more. Since Android phones can connect to the
Internet, cloud based applications can also be used when high
performance computing is needed. In the field of robotics, this
feature can allow the development of cloud based robotics
applications. When developing an application that is CPU-
intensive but doesn’t allocate much memory, an alternative
programming option is to use the Android NDK. With the
NDK, a programmer can create an Android Java application
that interacts with native code (C/C++) using the Java Native
Interface (JNI). Programming in C/C++ on an Android
platform can result in an increase of performance, but also
increases complexity. The NDK also enables usage of existing
C/C++ libraries. However, an effort has been made to export
popular libraries (e.g., computer vision library OpenCV) to
Java [10] so that they can be incorporated in Android
applications. The robot operating system ROS [11] is also
available for Android in Java. It was developed at Google in
cooperation with Willow Garage, and enables integration of
Android and ROS compatible robots. Recently, the Accessory
Development Kit (ADK) was made available for hardware
manufacturers and hobbyists to build accessories for Android.

Such accessories use the Android Open Accessory (AOA)
protocol to communicate with Android devices, over a USB
cable or through a Bluetooth connection (supported from
Android 2.3.4).

B. Remote-Controlled Vehicle
The actuating platform can be kept relatively cheap and

small by using an off-the-shelf remote control (R/C) vehicle as
a robot chassis. R/C vehicles span a wide range of cost and
sophistication and come in many formats. These vehicles can
be on-road cars, off-road trucks, tanks, boats, airplanes,
helicopters and quad-copters. They can be classified in two
main categories: toy grade or hobby grade. The toy grade
vehicles are less expensive but also less robust, less powerful,
and are harder to modify or repair. Hobby grade R/C vehicles
can be purchased in kit, or fully assembled and ready to run
(RTR). They can be easily modified and each individual part
is accessible and can be replaced. These R/C vehicles provide
a speed controller regulating motors and servomotors used for
forward or backward movement, and for steering. They are
powered by combustion engines (nitro, gas) or electric motors
(brushed or brushless) with electric batteries (nickel-cadmium,
nickel metal hydride, or lithium polymer cells). Some electric
cars can even be powered by solar energy or use hydrogen fuel
cells. Compared to typical wheeled robot platforms, R/C cars
are affordable, extremely fast, assembled and ready to use, and
have hydraulic suspensions that are ideal to minimize
vibrations when driving outdoors. This is an important factor
to consider when creating a robot supporting a video camera
that has to drive on uneven roads, dirt tracks or grass.

C. IOIO
In order to control a R/C vehicle from an Android phone,

we used the IOIO board to link the phone to the motor and
servo of the vehicle. The IOIO can send PWM signals to the
speed controller of the vehicle in order to regulate its motors
and servomotors. The IOIO can also read values from digital
and analog sensors, such as infrared sensors (IR) or Hall
Effect Sensors. The IOIO provides connectivity to an Android
device via a Bluetooth or USB connection and is fully
controllable from within an Android application using a
simple Java API. The newer IOIO-OTG can also be
connected via USB as a host or an accessory to an Android
device or a computer. When connected to an Android device,
the IOIO-OTG can act as a USB host and supply charging
current to the device. If connected to a computer, the IOIO
acts as a virtual serial port and can be powered by the host.
Compared to the other boards with similar functionality (e.g.,
Arduino ADK, Amarino, Microbridge, PropBridge), we chose
the IOIO because it provides a high-level Java API for
controlling the board's functions without having to write
embedded-C code for the board. It supports all Android OS
versions, whereas other boards only support the most recent
Android OS. The IOIO is inexpensive $39.95 with a small
footprint (~ 8cm by 3cm), is fully open-source, and has great
technical support with an active discussion group and an
extensive documentation Wiki.

1) Hardware
The main function of the IOIO is to interact with peripheral

devices. It can do so with 48 I/O pins, and digital
inputs/outputs, PWM, analog inputs, I2C, SPI, TWI, and
UART interfaces. The IOIO board contains a single MCU that
acts as a USB host and interprets commands from an Android
app. The IOIO supports 3.3V and 5V inputs and outputs. It has
two on-board voltage regulators. It contains a switching
regulator that can take 5V-15V input and output up to 3A of
stable 5V, and a linear regulator that feeds off the 5V line and
outputs up to 500mA of stable 3.3V. Furthermore, the
hardware of the IOIO is fully open source with a permissive
license, therefore, the schematics (Eagle files) can be
downloaded in order to build the board and even modify it.
2) Software

A high-level Java API is provided with the IOIO that
provides simple functions to connect to the IOIO from an
Android application. The application can read values from
digital or analog inputs, and write values to the IOIO outputs.
Currently, analog input pins of the IOIO are sampled at 1KHz.
Since the IOIO software is fully open source, a developer can
perform low level embedded programming in order to modify
the firmware for example. Communication between the phone
and the IOIO can be made over Bluetooth, or USB using the
Android Debug Bridge protocol (ADB) or the more recent
Open Accessory protocol. Using the ADB protocol, the one-
way average latency is ~4ms and effective throughput is
~300KB/s. Using the open accessory protocol improves the
latency to around ~1ms. The jitter (i.e. variance in latency) is
also much smaller, and the effective throughput increases to
~600KB/s. Although more convenient, Bluetooth latency is
significantly higher than USB (on the order of 10's of ms), and
the bandwidth (data rate) of Bluetooth is significantly lower
than USB connections (order of 10's of KB/sec).

D. Sensors and Actuators
While Android phones provide a large set of sensors and

cameras, autonomous robots usually need additional sensors in
order to perform a diversity of tasks. Using the Android based
platform, robots can be equipped with additional sensors, such
as infrared sensors, sonars, touch sensors, whiskers and
bumpers. Speed sensors can also be added to the platform
when accurate odometry is required. Moreover, gas sensors
can be equipped on the robot so it could detect gazes and
chemical compounds such as smoke, carbon monoxide,
alcohols, propane, methane and more. Additional actuators
can also be added to our platform in order to perform more
complex task. For example, the phone can be mounted on a
pan-tilt unit whose servos are controlled by the phone through
the IOIO. A robotic arm or gripper could also be mounted on
the platform and controlled by the IOIO.

III. BUILDING AN ANDROID BASED ROBOTIC PLATFORM

A. Hardware
We will now describe the steps needed to build an Android

based robot platform such as the one shown in Figure 3. A
video describing the construction of the platform can also be
found online (see Table 2, Android Robotic platform).

Figure 3. Android based robotic platform composed of IOIO, four infrared
sensors, and a robotic head mounted onto a perforated steel base. The base is
installed on the chassis of a R/C truck. The robotic head is composed of a
rectangular tube, two servos for the pan and tilt unit, and a phone holder
made of foam.

We built two robots, a small one using a XTM Rage 1/18th

4WD R/C truck ($119.95, max speed: 20 mph), and a larger
one using a Hobby People Vertex 4WD 1/10 ($139.95, max
speed: 24 mph) R/C truck. For each robot, a sheet of
perforated steel was used as a base to support the IOIO, a
phone holder, sensors and actuators. The use of a perforated
base facilitates the addition, removal and relocation of sensors
and actuators on the robot, making the platform highly
modular. The IOIO was mounted directly on the base using
spacers. We then created mounts for infrared sensors using
aluminum angles. These angles were cut and drilled as shown
in Figure 4. The IR sensor mounts were screwed to the base
using thumbnuts, which enabled their orientation to be easily
adjusted. The IR sensors were from the Sharp GP2 series
($14.50) and responded with a voltage proportional to the
distance of an object, ranging from 20 cm to 150 cm.

Figure 4. Construction phases of mounts for infrared sensors. An aluminum
angle was cut and drilled to the dimensions of the IR sensors. Thumbnuts and
screws were used to mount the IR sensors to the perforated base.

 We made a rudimentary phone holder of polystyrene foam
and glued it to an aluminum angle perforated to allow the
phone holder to be screwed to the base of the robot. While this
phone holder might not be the most robust or elegant form
factor, it is inexpensive and can be easily built. The phone was
actuated by a pan and tilt kit (Lynxmotion $29.93) and
mounted on an aluminum rectangular tube. We assembled the
servos of the pan and tilt unit, cut the rectangular tube and
made a hole to the dimensions of the lower servo. Two holes
were drilled on the lower part in order to screw the head to the
base. The phone holder was screwed to the pan and tilt unit
that was mounted onto the rectangular tube. The head and IR
sensors were then mounted on the base of the robot (see
Figure 3).
 The electric speed controller (ESC) of the car received
power directly from the car’s battery (see Figure 5). We first
disconnected the servo and the ESC from the RF receiver on
the R/C car. The ESC was then connected to the IOIO to
provide power (Vin input) and receive a PWM signal to
control the car’s motor (PWM output). The servo of the car
was connected to the IOIO that provided power (5V output)
and a PWM signal for control (PWM output). The IR sensors
were powered by the IOIO (5V) and were connected to the
IOIO analog inputs to transmit their values. The servos of the
pan and tilt unit also received power (5V) and PWM signals
from the IOIO. The IOIO board was connected to the Android
phone via USB or Bluetooth.

Figure 5. Schematic showing the electrical circuitry of the Android based
robot. Sensors and actuators are connected to the IOIO except for the motor
of the R/C powered by the ESC. Only two sensors are shown here but more
can be added to the platform. If more sensors and actuators are used, they
should be powered separately (not from the IOIO) since the IOIO can only
provide 3A maximum on the 5V output pins.

B. Software
In addition to the Android Robot Platform, we developed

software to monitor and control a group of robots deployed in
a large area. Specifically, an Android Java application was
created to connect remotely to a server over Wi-Fi. The
application captured and sent sensory data streams (e.g.,
video, accelerometer, compass, and GPS), and received
commands from a host computer. The Android app consisted
of different components. A main program with a GUI called
an Activity. Listeners and Callback objects that were updated

by the Android OS every time the output data of the
accelerometer, compass, gyroscope, GPS or camera changes.
A main thread consisting of a loop that collected data (sensors,
GPS, camera, IRs), performed necessary computation (e.g.
image processing), sent data to the server, read the TCP
socket, and updated the IOIO motor commands. This thread
performed video streaming by capturing frames from the
camera, which were then converted from YUV to RGB using
OpenCV, compressed into JPEG images, sliced into UDP
packets, and sent over Wi-Fi to the server. Finally, the
Android app executed another thread connected to the IOIO to
open, read and write values on specific pins.

Table 3. Mean update cycle in milliseconds, with standard deviation, of each
component of the app. Four experiments were conducted on a Galaxy S III
running the app for 5 minutes each time.

 The Android application was able handle to multiple
threads and respond to different sensors with minimal delays.
The app’s performance was measured on a Samsung Galaxy S
III by running the app for 5 minutes under four different
conditions (see Table 3). First, we recorded the mean update
cycles when using only the camera (see Table 3, I). The
camera callback was updated at 21Hz on average and the main
thread at 100Hz. In this experiment, the size of each frame
was set to 176 x 144 and the JPEG quality to 75. We then
recorded the update cycles when using the sensors and GPS of
the phone (see Table 3, II). The sensor listeners for the
compass, accelerometer and gyroscope were updated at 100Hz
in average, the GPS listener at 1Hz, and the main thread at
100Hz. We also recorded the update cycles when using the
IOIO that read values from four IR sensors and sent PWM
commands to the servo and motor of the RC car (see Table 3,
III). In this case, both the IOIO and the main threads were
updated at 91Hz in average. Finally, we recorded the update
cycles when all the components were running concurrently
(see Table 3, IV). The camera callback was updated at 20Hz,
the sensor listeners at 102Hz, the GPS listener at 1Hz, and the
IOIO and main threads at 104Hz in average. Even when
running all the components, the app still showed good
performance. These experiments demonstrated that an app
programmed entirely in Java using the Android API, OpenCV
and IOIO libraries, could run quite well even when executing
many components at the same time. The update frequencies

Update cycle

mean s.d.

I Camera
Main thread

47 ms (21 Hz)
10 ms (100 Hz)

8.4 ms
5.8 ms

II

Accelerometer
Compass
Gyroscope
GPS
Main thread

10 ms (100 Hz)
10 ms (100 Hz)
10 ms (100 Hz)
997 ms (1 Hz)

10.5 ms (100 Hz)

2 ms
2 ms
2 ms

23.3 ms
5 ms

III IOIO thread
Main thread

11 ms (91 Hz)
11 ms (91 Hz)

8.4 ms
6 ms

IV

Camera
Accelerometer
Compass
Gyroscope
GPS
IOIO thread
Main thread

49 ms (20 Hz)
9.8 ms (102 Hz)
9.8 ms (102 Hz)
9.8 ms (102 Hz)
1000 ms (1 Hz)

9.6 ms (104 HZ)
9.6 ms (104 Hz)

6.1 ms
1.4 ms
1.4 ms
1.4 ms

20.1 ms
6.5 ms
5.7 ms

of each component are adequate for robotics purposes.
However, we are still working on improving the performance
of our app especially for image processing and streaming (e.g.
using FFmpeg). We have to emphasize that at this point, we
did not try to close programs and services running in the
background in order to optimize the scheduling done by the
Android OS. Programming certain parts of the app in C/C++
using the NDK should also improve performance.
 To remotely control multiple robots, monitor their video
and sensory information, and allow for direct communication
between robots, we developed a C++ application that can run
on a desktop computer or laptop (see Figures 6 and 7).

Figure 7. Server program running on a computer. Left - multiple
phones/robots can connect to the server and stream data such as video feed.
Right - Interface for one robot. Using this window, users can start/stop
streaming the video, sensory information coming from the compass,
accelerometer, and IR sensors connected to the IOIO. They can also control
remotely the robot using the keyboard or allow the robot to run in
autonomous mode.

 This program was developed using the Qt libraries, and can
run on Windows, Mac OS and Linux. A phone can connect to
the server using a TCP socket. Once connected, a user can use
the GUI of the server to remotely start or stop the video
camera, sensors, GPS, and the IOIO in order to read the values
of the IR sensors and control the robot. Data is streamed to the
server over UDP sockets. Start and stop commands are sent
from the server to a phone over the TCP socket. PWM values
used to control the robot remotely if needed are also sent over
the TCP socket. The server received 20 frames per seconds
during experiment I (see Table 3), displaying the video
feedback in near real time over Wi-Fi. We had similar results
when two phones were connected to the server. More
experiments will be conducted in the future to make sure that
the program can scale up when connected to more robots. The

software (Android app and server program) is available online
(see Table 2, Android Robotic Platform).

IV. APPLICATIONS TO EDUCATION AND RESEARCH
In this section, we describe two applications of our Android

Robotic Platform, one developed by students in an
undergraduate course on Android programming, and the other
developed for computational neuroscience research. These
case studies give an idea of the type of applications that can be
used with our platform, and highlight the features of the
platform.

A. Autonomous Android Vehicle
Using our platform, students in an undergraduate Android

programming course programmed robots to recognize, track,
and follow a specified color object, as well as have the ability
to avoid obstacles (see Figure 8).

Figure 8. Autonomous Android vehicle tracking and following a green ball
transported by a remotely controlled vehicle.

The source code, videos and information can be found

online (see Table 2, Android Robotic Platform). Their
Android application used the camera of a Samsung Galaxy S
II, with OpenCV libraries in order to find the contours of a
green ball. In their case, commands (PWM signals) were sent
from the Smartphone to the R/C car’s speed controller and
steering servo through the IOIO, and the IOIO sent the values
of four infrared sensors used for obstacle avoidance, to the
Smartphone. The pan and tilt unit was also controlled from the

Figure 6. Schematic of the server-client model of the Android based robots connected to a computer. A phone connects to the server using a TCP socket. Once
connected, a user can use the GUI of the server to remotely start or stop threads that control the video camera, sensors, GPS and the IOIO that controls the
robot and read sensors values. Data is streamed to the server over different UDP sockets. The pulse width of the PWM signals can also be sent by the server
to control a robot remotely.

IOIO and was used to scan the environment when the robot
lost sight of the ball, and to track the ball as it moved. The
students also used a second robot that was controlled remotely
using a Motorola Droid RAZR and IOIO board. The phone
was connected to the IOIO over Bluetooth, and the phone’s
accelerometers were used to control the car by tilting the
phone in different directions. This car was used to carry the
green ball around and be followed by the autonomous robot.

The project was a success and confirmed that this platform
could be used for education by undergraduate computer
science and engineering students. We have to emphasize that
the performance of the tracking algorithm used was not of
major importance for this project. However, in multiple
demonstrations, the follower robot found the leader robot, and
tracked it while simultaneously avoiding obstacles.

B. Android Based Robot Controlled by a Neural Network
For our own research in computational neuroscience, an

autonomous Android robot performed a task known in
cognitive sciences as a reversal learning task [12]. In such a
task, subjects learn an association very well, and then due to a
change in conditions, they need to forget what they learned
previously and learn a new association.

In our instantiation of this task, the Android robot had to
learn the locations of valuable resources. The robot had an
energy level that decreased over time. After some exploring
the robot learned the rewarding location and headed to that
location when its energy level was low. The experiment was
conducted outdoors on an open grass field where two GPS
locations were chosen (L1 and L2) and only one location

contained resources (see Figure 10, right). The robot would
“consume” resources when it was at the rewarding location. It
took three visits to consume all the resources. After the third
visit, a reversal was introduced by placing the resources at the
other location. The experiment consisted of ten trials and the
locations were selected at different places on the open field for
each trial.

A neural network running on the Android phone controlled
the robot and received the GPS location, compass reading
(azimuth) and the values of the IR sensors as inputs. The
neural network was composed of 60 firing rate neurons and 67
synapses (connections). The neural activities and synaptic
connections were updated every 100ms, due to the limitations
of the phone used (HTC Incredible 1) and the long update
cycles of the GPS (1Hz). It processed the sensory information
in order to learn where the reward was located and select a
location to attend to, and outputted the signals controlling the
motor and servo of the robot. The neural network driving the
behavior of the robot was composed of three main groups (see
Figure 9): sensory input, action selection and motor output
(see [12] for more details). The locations area consisted of two
neurons, one for each location (L1 and L2). The neural activity
of this area was based on the distances between the location of
the robot and L1 and L2. Four infrared sensors were connected
to the IOIO and were used to detect obstacles. Four neurons
encoded the value of these IR sensors and sent signals to the
servos of the robot. The action selection group was based on
the known functional neuroanatomy for attentional pathways.
It consisted of a decremental and an incremental attention
area, and an action selection area (Location Selection in

Figure 9. Neural architecture driving the behavior of the robot. It was composed of three main groups: sensory input, action selection and motor output.
Solid line items represent neural implementation (neurons and connections). See [12] for more details.

Figure 9). These areas had two neurons, one for each location
(L1 and L2). The main function of the action selection group
was to learn that a location was predictive of a reward, and to
choose a location to attend to, causing the robot to stop at a
novel location, or to go back to the reward location when the
robot’s energy was low. Reinforcement learning caused the
robot to remember where the reward was located in order to
go back to it when its energy level decreased. The motor
output group consisted of a pre-motor/speed area composed of
one neuron for each location (L1 and L2), a pre-motor/bearing
error area composed of 37 neurons (10 degree resolution), and
three motor neurons: one to move forward, one to turn right
and one to turn left. The activity of the motor neurons was
mapped into the pulse width of the PWM signals controlling
the robot’s motor and servo.

The robot successfully performed the task in roughly 8.5
minutes. Experimental trials are described below and can be
seen on a video online (see Table 2, Android Robotic
Platform). We set up the experiment so that the robot always
started at location L2. The robot initially learned that no
resources were present at this location and started to move. If
the robot went back to this location again, it would not stop
since learned that L2 did not contain a reward. During this
time, the robot’s energy level kept decreasing. Once the robot
found location L1 where the reward was located, it stopped
and stayed still until its energy level was fully replenished.
During this time, the robot learned to associate resources with
the location L1. Once its energy level was full, the robot
started to move again and explore its environment. When its
energy level was low, the robot would go back to the location
L1 associated with the reward. The robot consumed all the
resources present at L1, by visiting L1 three times, in 3.1
minutes on average. A reversal was then introduced by placing
resources at location L2. However, the robot persisted in going
back to L1 for ~2 minutes until it finally switched back to an
explorative behavior. The robot then found and learned that
the resources were now at the location L2. As before, when its
energy level was low, the robot would go back to the location
L2. The robot consumed all the resources present at L2 in 3.3
minutes on average.

In sum, these results show that the robot managed to
perform the task in a short amount of time during which it
initially learned a stimulus-reward association, and then
demonstrated the ability to switch strategy when a reversal
was introduced. The robot also exhibited perseverative
behavior in accordance with the behavior observed in rats [13,
14] and monkeys [15] performing a reversal learning task.
Importantly, for the present article, this work showed that the
Android based robot can support complex research projects.
The behavior of the robot was entirely driven by a neural
network that ran on the phone in real-time, with no previous
offline training. The robot managed to perform a reversal
learning task successfully by increasing its attention to
relevant location and decreasing its attention to irrelevant
ones.

Figure 10. Left – Android based robotic platform with four infrared sensors
and a protection case for the IOIO. Right - open grass field with both
locations L1 and L2, where the experiment was conducted.

V. DISCUSSION
In this manuscript, we presented a promising trend in

robotics, which leverages smartphone technology. These
smartphone robots are ideal for hobbyists, educators, students,
and researchers. We described different smartphone based
robotic projects, and we also demonstrated the relatively easy
and inexpensive construction of an Android based robotic
platform. Our experience and analyses show that these phones
can handle multiple sensors and perform complex tasks in real
time.
 We do want to emphasize that the platform presented in this
manuscript represents only one example of an Android based
robotic platform and many different variants exist. Android
phones can also be used with other robotic platforms, proving
the high potential of using smartphones in robotics (see Table
2, Cellbots). Compared with other smartphone based robotic
platforms, our platform is more modular as sensors and
actuators can be easily added, removed or relocated on the
robot, and it can also be used outdoors. The cost of our
platform is also lower than “classical” robotic platforms with
similar features and onboard computing power. In the future,
the hardware of our platform will be improved by reinforcing
the chassis structure, and by adding additional sensors (speed,
touch, gas, thermal, etc.) necessary for mapping and for
disaster victim identification. Additionally, the use of different
chassis (wheels, tracked, or legged vehicles) and steering
mechanisms (front wheels steering, differential steering) will
be considered.
 Because of their accessibility and extensibility, we believe
that smartphone based robots will be used extensively in many
different configurations and environments. For example, the
use of inexpensive but capable robots will be highly beneficial
for swarm robotics to create a heterogeneous swarm where
groups of different robots would carry out different tasks,
similar to the Swarmanoid [16]. Our own group is currently
working on swarm robotics approaches to search and rescue
operations. The overall strategy is to create robots capable of
mapping and identifying victims in a disaster zone, and
interact with human operators. This robotic swarm could also
be modified for environmental monitoring such as pollution or
fire detection. The combination of the powerful and efficient
hardware of modern Android phones, as well as sensing and
interacting devices for robotics, makes Android phones ideal
onboard computers. In addition, an API which provides easy
access to sensors, cameras, wireless connectivity, text to
speech and voice recognition functionalities, open source

software and libraries such as OpenCV and ROS, as well
cloud based applications facilitates programming. GPUs on
smartphones are also improving rapidly and will soon be
adequate to perform more complex algorithms through parallel
computation. Furthermore, the low cost and high availability
of Android phones make them very attractive for developing
countries where Android based robotics will surely boost
robotics research and education. To summarize, we believe
that Android based robotic platforms will be used extensively
for multidisciplinary, innovative and affordable projects in
research and education. In addition, this approach to robotics
will stimulate the creativity of electrical, mechanical and
software engineers, as well as robotics students and hobbyists.

ACKNOWLEDGMENT
The authors would like to thank Liam Bucci for assistance

in the construction of the Android Based Robotic Platform.
The authors also acknowledge students Kevin Jonaitis, Kyle
Boos and Joshua Ferguson for their work on the Autonomous
Android Vehicle.

REFERENCES
[1] Y. Ji-Dong, et al., "Development of Communication Model for Social

Robots Based on Mobile Service," in Social Computing (SocialCom),
2010 IEEE Second International Conference on, 2010, pp. 57-64.

[2] A. Albin, et al., "Musical abstractions in distributed multi-robot
systems," presented at the IROS 2012, 2012.

[3] S. Goebel, et al., "Using the Android Platform to control Robots," in
Proceedings of 2nd International Conference on Robotics in Education
(RiE 2011), 2011, pp. INNOC - Austrian Society for Innovative
Computer Sciences--142.

[4] J. Steele and N. To, The Android Developer's Cookbook: Building
Applications with the Android SDK: Pearson Education, 2010.

[5] R. Meier, Professional Android 4 Application Development: Wiley,
2012.

[6] Z. Mednieks, et al., Programming Android: Java Programming for the
New Generation of Mobile Devices: O'Reilly Media, Incorporated, 2012.

[7] O. Cinar, Pro Android C++ with the NDK: Apress, 2012.
[8] S. Ratabouil, Android Ndk Beginner's Guide: Packt Publishing, Limited,

2012.
[9] O. Cinar, Android Apps with Eclipse: Apress, 2012.
[10] G. Bradski, "The OpenCV Library," Dr. Dobb's Journal of Software

Tools, 2000.
[11] M. Quigley, et al., "ROS: an open-source Robot Operating System," in

ICRA Workshop on Open Source Software, 2009.
[12] N. Oros and J. L. Krichmar, "Neuromodulation, Attention and

Localization Using a Novel Android™ Robotic Platform," in
Proceedings of the IEEE International Conference on Development and
Learning and Epigenetic Robotics (IEEE ICDL-EpiRob 2012), San
Diego, USA, 2012.

[13] S. Ghods-Sharifi, et al., "Differential effects of inactivation of the
orbitofrontal cortex on strategy set-shifting and reversal learning,"
Neurobiol Learn Mem, vol. 89, pp. 567-73, May 2008.

[14] V. Boulougouris, et al., "Dopamine D2/D3 receptor agonist quinpirole
impairs spatial reversal learning in rats: investigation of D3 receptor
involvement in persistent behavior," Psychopharmacology (Berl), vol.
202, pp. 611-20, Mar 2009.

[15] B. Jones and M. Mishkin, "Limbic lesions and the problem of stimulus--
reinforcement associations," Exp Neurol, vol. 36, pp. 362-77, Aug 1972.

[16] M. Dorigo, et al., "Swarmanoid: a novel concept for the study of
heterogeneous robotic swarms," IEEE Robotics & Automation
Magazine, 2012.

