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Abstract—In this manuscript, we survey the new and exciting 

approach of Smartphone based robotics for research and 
education. The increases in the computational power and sensing 
of smartphones, plus the recent availability of interface boards, 
have made this trend popular across a wide range of enthusiasts. 
As an example, we show how we built an Android based robotic 
platform composed of an Android phone, an off-the-shelf 
input/output interface board, a R/C vehicle and additional 
sensors and actuators. The total cost of the platform, excluding 
the phone, was just $350. Our Android based robot has been used 
for both undergraduate education and research purposes. In our 
research, we showed that the behavior of our Android based 
robot could be entirely driven by a neural network that ran on 
the phone as the robot performed a foraging task outdoors. We 
believe that Smartphone based robotic platforms such as ours are 
ideal candidates for inexpensive robotics research and education, 
and have a bright future in robotics. 

 
Index Terms— Robot, Smartphones, Android phones 

I. INTRODUCTION 
HILE the field of robotics is continuously expanding at a 
remarkable rate and better performing robots are 

created every year, robotics still remains out of reach for many 
students and researchers. The main reasons for this difficulty 
are the high complexity of the hardware and software of 
robots, and their typically high cost.  

We believe that the computing power, sensing capabilities 
and intuitive programming interfaces of modern smartphones 
afford an inexpensive yet highly capable robotic platform. 
Smartphone based robots are becoming increasingly popular, 
with many exciting applications emerging in both academia 
and industry. As a case in point, we provide a detailed 
description of a simple robotic platform based on this 
approach. We present examples where this robotic platform 
has been used for education and research purposes, as well as 
discuss potential future projects.  

A. Robotic platforms for education and research 
A large number of robotic platforms are available for research 
and education (see Table 1 for a non-exhaustive list). Robotic 
platforms such as the Lego Mindstorms NXT and more recent 
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EV3, iRobot Create, VEX, TETRIX, SRV-1 and Bioloid (see 
rows 1-6 of Table 1) are simple and inexpensive enough to be 
used in education and robotic research. These platforms come 
in kits or preassembled and can be used by educators, and 
students to program behaviors. However, these platforms have 
difficulties working outdoors on uneven terrain, and usually 
do not have powerful onboard computers and a large suite of 
sensors. Robots such as the Khepera, Koala and Pioneer (see 
rows 7-10 of Table 1) are very popular in the research 
community. While they are more capable than the above 
platforms, the base models are also more expensive and 
additional equipment, such as onboard computers, cameras 
and sensors, drastically increase the total cost. Humanoid 
robots such as the NAO and the DARwIn-OP are also 
becoming more affordable and they are now used for research 
and education. Kits provided by competitions, such as the 
FIRST Robotics Competition and other robotic platforms 
provide enough modularity and flexibility to be used for 
education and research although they do not use onboard 
computers, sensors and cameras of the same caliber as recent 
smartphones. Other robots can be utilized for research and 
education purposes, however a full review of such platforms is 
beyond the scope of this manuscript.  
 

 
Table 1. Popular robotic platforms used for education and research. Prices 
are shown for the base models/kits. 
 

A new and exciting alternative to these platforms is to build 
a robotic platform with a smartphone acting as an onboard 

IRobot Create $130 

VEX Robotics (VEX IQ; VEX) $250; $400 

Lego Mindstorms NXT 2.0 $280 

Robotis (Bioloid; DARwIn-OP) $350; $12,000 

TETRIX $380 

Surveyor (SRV-1) $495 

K-Team Corporation 
(K-Junior; Kilobot; Khepera; Koala) $800; $1,200 (for 10); $3,200; $8,400 

Adept MobileRobots 
(AmigoBot; Pioneer DX; Pioneer AT) $1,695; $4,000; $6,495 

Scout (Dr Robot) $8,750 

Aldebaran Robotics (NAO) $15,600 
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computer, as well as a sensing and interacting device. The 
computational power of handheld devices, such as mobile 
phones and tablets, increases every year at a remarkable rate. 
Even though smartphones have compact form factors, they are 
currently equipped with powerful quad-core processors and 
graphical processing units, video cameras, location providers 
(GPS, Wi-Fi, Cell-ID), long lasting batteries, and a multitude 
of sensors such as acceleration and orientation sensors. They 
also have an impressive suite of communication options 
(Bluetooth, Wi-Fi, Wi-Fi Direct, 3G, 4G), are powered by 
small long-lasting batteries, run modern operating systems 
(OS), and are reasonably priced. For software development, 
smartphone OS’s provide a Software Development Kit (SDK) 
that enables programmers to readily create applications. 
Programmers often share their applications with the 
community enabling rapid prototyping and development.  For 
these reasons, we believe that smarthphones are promising 
candidates for onboard computing and sensing in autonomous 
robots. 

B. Smartphone based robots and vehicles 
A growing interest in having smartphones interacting with 

peripheral devices such as motors, servos and sensors led to 
the recent creation of electronic interface boards that can be 
purchased online or built at a small cost. These boards serve as 
communication bridges between AndroidTM smartphones and 
external devices. The two main boards available to the public 
are the IOIO ($39.95; Sparksfun item 11343) and the Arduino 
ADK Rev3 ($73.40), although other boards exist (e.g. 
Amarino, Microbridge, PropBridge). 

An increasing number of projects realized by hobbyists, 
students or teachers, which utilize these electronic boards, are 
available in Open Source repositories (see Table 2). A 
significant number of these projects involve remote-controlled 
(R/C) cars, or other four wheeled based robots, controlled by 
Android phones via IOIO or Arduino boards. Most of them 
involve remote controlled functionalities, occasionally with 
video, sensory and location feedback to another phone or a 
computer. For example, a group of high school students built 
sailboats controlled by Android phones via IOIO boards. A 
group of hobbyists (Cellbots team) developed open source 
platforms for Android phones that can be used to control 
different robotic platforms such as the IRobot Create, Lego 
Mindstorms, VEX Pro, and Arduino based Truckbot or 
Tankbot. These examples show that existing robots can be 
used as bases, and Android phones as onboard computers. A 
company called Robots Everywhere develops Open Source 
control software for Android based robots. Interestingly, some 
of these projects emerge from developing countries, where the 
use of Smartphone based robots is attractive due to their low 
cost and high computational power. For example, a group in 
Thailand created Android based robots using IOIOs that are 
fast and can play soccer with ping-pong balls (see Table 2, 
Android Soccer Robot).  

Our group has built a remote controlled vehicle, named The 
Android Car, using a R/C car, an Android phone, a phone 
holder and IOIO. The vehicle can be controlled over Wi-Fi 
and stream video and sensory information back to a computer 

(see Table 2 and Figure 1). As will be described below, we are 
using an upgraded version of this platform for teaching and for 
research in computational neuroscience. 

 

 
Figure 1. The Android Car built using a R/C car, an Android phone, a phone 
holder and IOIO, could be controlled over Wi-Fi and stream video and 
sensory information back to a computer. The phone was connected to the 
IOIO via a USB cable. See Table 2, The Android Car. 

 
Smartphone robots and applications are becoming 

increasingly prevalent in research projects (see Table 2). 
Scientists at NASA and MIT built free-flying satellites called 
SPHERES that are self-contained with power, propulsion, 
computing and navigation equipment. These devices were 
tested in the International Space Station and were equipped 
with Android phones. More recently, NASA launched three 
nanosatellites in orbit around Earth called PhoneSats. These 
satellites used smartphones as control systems and a UHF 
radio beacon to transmit data and images to the ground. The 
smartphones monitored the cameras, accelerometers, 
magnetometers, and gyroscopes, which were onboard the 
satellites. In the field of human-robot interaction, researchers 
at MIT built a robot companion equipped with a smartphone 
named DragonBot. This cloud-connected robot utilizes the 
smartphone for motor control, 3D animation, image streaming, 
data capture, and is used to study human/robot interaction and 
potentially help kids learn. It has five physical degrees of 
freedom and an animated face that can display a wide range of 
emotional expressions. Other smartphone based robots have 
been developed to help remote users to communicate with 
each other through the robotic interface, which utilizes facial 
expressions and body gestures [1]. Researchers at Georgia 
Tech are working on a musical robotic swarm composed of 
cell-phone based robots that can communicate with humans 
and with each other and coordinate their movement in order to 
explore real time algorithmic musical composition and 
performance [2]. Android phones have also been used 
successfully with the LEGO Mindstorms NXT for 
robotics/software engineering classes [3]. 

Smartphone based robots are finding their way into 
commercial applications (see Table 2). For example, Romo is 
a small robot using an iPhone as an onboard computer. It can 
be trained to perform face tracking, controlled using another 
iOS device over Wi-Fi, or over Internet for telepresence. A 
simple SDK is also provided to users in order to create their 
own apps. Similarly, Botiful is a small telepresence robot built 
for Android phones. Double is a tall telepresence robot using 
an iPad as a computing and interacting device. Shimi is a 



robotic musical companion that reacts to songs played by a 
smartphone when connected to it. Kibot and Albert are robotic 
companions that can play with children and help them learn. 
These companion or telepresence robots are an interesting 
market. However, they are not modular and not suitable for 
many education or research purposes.  

II. ANDROID BASED ROBOTIC PLATFORM 
Similar to the examples discussed above and in Table 2, our 

group has developed a smartphone robot platform for 
hobbyists, students and researchers. We believe our platform 
provides flexibility over other available options making it 
attractive to a wide range of enthusiasts. In this section and in 
section III, we describe the components of the platform and 
instructions on how to construct a smartphone robot. The 
robot is constructed from an Android phone, IOIO board, 
which is connected via Bluetooth or USB, a R/C vehicle and 
additional sensors and actuators (see Figures 2 through 5). The 
robot takes advantage of the sensors on the phone (e.g., 
camera, accelerometers, GPS), as well as additional sensors 
external to the phone (e.g. IR sensors, Hall Effect Sensors) via 
the IOIO. The Android phone interacts with actuators, such as 
speed controllers or pan/tilt units, via the IOIO board. 

Our Android Robotic Platform is an inexpensive do-it-
yourself (DIY) smartphone based robotic platform using off-
the-shelf components and open source software libraries that 
could easily be built by students, hobbyists or researchers, but 
still perform complex computations and tasks. Our goal was to 
minimize both expenses and time spent on building robots, 
allowing users to focus on more fundamental research and 
robotic problems. The platform also had to be modular and 
flexible enough to support different sensors and actuators that 
could be incorporated and relocated very easily. Furthermore, 
the platform had to be able to traverse a wide range of indoor 
and outdoor terrains. We believe that three main off-the-shelf 
components can be used in order to fulfill these requirements: 
1) A smartphone running the Android operating system used 
as onboard computers and sensing devices; 2) an electronic 

board (e.g. IOIO, Arduino ADK) used to interact with 
peripheral devices such as servos, motors and sensors not 
included in the phone; 3) a R/C vehicle, or inexpensive robotic 
base. Due to the variability in complexity of these 
components, the total cost to build such a robotic platform can 
change, especially depending on the phone and vehicle used.  

In the following sections, we will describe a robotic 
platform that can be built for approximately $350 (excluding 
the phone). The main difference, compared with other 
smartphone based robots, is that our platform is more modular, 
and can be used outdoors on uneven terrain. 

 

 
Figure 2. Diagram showing the main components of the Android based 
robotic platform and their interactions. The robotic platform gets sensory 
input from the phone’s internal sensors, as well as external sensors via the 
IOIO board. The Android phone sends commands to the robot’s actuators via 
the IOIO board. The Android phone interacts with the IOIO board through a 
USB cable or a Bluetooth connection. 

A. Android phone 
1) Hardware 

An important advantage of using a smartphone for an 
onboard computer is that the size of a robot can be kept 
relatively small, yet still have great features. Its cost can also 
be minimal since the phone itself can handle computation, 
sensing and battery power.  

Many different phones are now available on the market. 
Before purchasing an Android phone to be used as an onboard 
computer for a robot, one has to consider the uses and needs of 
that particular robot. A hobbyist or student may consider using 

Table 2. Smartphone based robotic projects: hobbyists/students hardware and/or software (top), research (middle), commercial (bottom). Both The Android 
Car and the Android Robotic Platform (in red) were completed at the Cognitive Anteater Robotics Laboratory, University of California Irvine. 
 

Robot/Project Name Cost More information  

Robots Everywhere  
Cellbots 
IOIO based projects 
IOIO based sailing boat 
Android Soccer Robot 
Arduino based projects 
The Android Car 

unknown 
$30 to $300 
$100 to $400 (estimations) 
$1200 (phone included) 
unknown 
$200 to $700 
$200 

http://robots-everywhere.com/site/ 
http://www.cellbots.com/ 
http://pinterest.com/ytaibt/ioio 
https://groups.google.com/forum/#!topic/ioioscript/VhwsoO218Pc 
http://www.youtube.com/watch?v=qY4b5sIrGKw 
http://letsmakerobots.com/taxonomy/term/7469 
http://www.youtube.com/watch?v=n6ypGlTCbKk 
http://www.socsci.uci.edu/~jkrichma/ABR/index.html 

NASA  - MIT SPHERES 
NASA PhoneSats 
MIT DragonBot 
GEORGIA TECH project 
Android Based  
Robotic Platform 

unknown 
$3500-$7000 (phone included) 
$1000 (phone included) 
unknown 
$350 

http://www.nasa.gov/mission_pages/station/main/spheres_smartphone.html 
http://www.phonesat.org/ 
http://www.adamsetapen.com/ 
http://www.gtcmt.gatech.edu/research-projects/swarm-robotics 
http://www.socsci.uci.edu/~jkrichma/ABR/index.html 

Romo 
Botiful 
Shimi 
Double 
Albert 
iRiver Kibot 

$150 
S299 
S200 
S2499 
unknown 
$40 (+ $30/month 2 years KT) 

http://www.romotive.com/ 
http://www.botiful.me/ 
http://tovbot.com/t/AboutShimi 
http://www.doublerobotics.com/ 
http://tsmartrobot.com/ 
http://armdevices.net/2012/01/21/iriver-kibot-this-robot-takes-care-of-children/ 



an older less expensive phone. For example, the HTC Google 
Nexus One can be found unlocked for less than $200, and is a 
suitable onboard computer.  This phone has a 1 GHz 
Qualcomm Scorpion CPU, 512MB of RAM memory, a 
microSD card reader (supports up to 32 GB), and a 1400 mAh 
Li-ion battery. It can provide a number of sensory inputs such 
as a capacitive touch screen, a 3-axis accelerometer, a digital 
compass, a satellite navigation system (aGPS), a proximity 
sensor, an ambient light sensor, push buttons, a trackball and a 
5.0 megapixel rear camera with a LED flash. For connectivity, 
it includes a 3.5mm TRRS audio connector, and hardware 
supporting Bluetooth 2.1, micro USB 2.0, Wi-Fi IEEE 
802.11b/g/n, 2G/3G networks. A researcher may desire more 
features and computational power. In this case, a recent phone 
such as the Samsung Galaxy S3 might be considered. This 
phone can be found unlocked for around $400, has a 1.4 GHz 
quad-core Cortex-A9 CPU, 1-2GB of RAM, a microSD card 
reader (supports up to 64 GB), and a 2,100 mAh Li-ion 
battery. For sensing, it has a multi-touch capacitive 
touchscreen, 3 push buttons, satellite navigation systems 
(aGPS, GLONASS), a barometer, a gyroscope, an 
accelerometer, a digital compass, an 8.0 megapixel rear 
camera with a LED flash, and a 1.9 megapixel front camera. 
For connectivity, it includes a 3.5mm TRRS audio connector, 
and hardware supporting Bluetooth 4.0, Wi-Fi (802.11 
a/b/g/n), Wi-Fi Direct, 2G/3G networks, Micro-USB, NFC, 
and DLNA. 
2) Software 

The Android operating system is open source and Linux-
based. Programmers can develop software for Android in Java 
using the SDK [4-6] or in native language (C/C++) using the 
native development kit (NDK) [7, 8]. It is also possible for 
developers to modify the Linux kernel if needed. 
Implementation of an Android application can be achieved 
using the Eclipse IDE with the Android Development Tools 
(ADT) plug-in [9]. Using this SDK, the developer has easy 
access to different functionalities of an Android phone such as 
graphical interfaces, multi-threading, networking, data storage, 
multimedia, sensors, location provider, speech-to-text, text-to-
speech, and more. Since Android phones can connect to the 
Internet, cloud based applications can also be used when high 
performance computing is needed. In the field of robotics, this 
feature can allow the development of cloud based robotics 
applications. When developing an application that is CPU-
intensive but doesn’t allocate much memory, an alternative 
programming option is to use the Android NDK. With the 
NDK, a programmer can create an Android Java application 
that interacts with native code (C/C++) using the Java Native 
Interface (JNI). Programming in C/C++ on an Android 
platform can result in an increase of performance, but also 
increases complexity. The NDK also enables usage of existing 
C/C++ libraries. However, an effort has been made to export 
popular libraries (e.g., computer vision library OpenCV) to 
Java [10] so that they can be incorporated in Android 
applications. The robot operating system ROS [11] is also 
available for Android in Java. It was developed at Google in 
cooperation with Willow Garage, and enables integration of 
Android and ROS compatible robots.  Recently, the Accessory 
Development Kit (ADK) was made available for hardware 
manufacturers and hobbyists to build accessories for Android. 

Such accessories use the Android Open Accessory (AOA) 
protocol to communicate with Android devices, over a USB 
cable or through a Bluetooth connection (supported from 
Android 2.3.4). 

B. Remote-Controlled Vehicle 
The actuating platform can be kept relatively cheap and 

small by using an off-the-shelf remote control (R/C) vehicle as 
a robot chassis. R/C vehicles span a wide range of cost and 
sophistication and come in many formats. These vehicles can 
be on-road cars, off-road trucks, tanks, boats, airplanes, 
helicopters and quad-copters. They can be classified in two 
main categories: toy grade or hobby grade. The toy grade 
vehicles are less expensive but also less robust, less powerful, 
and are harder to modify or repair. Hobby grade R/C vehicles 
can be purchased in kit, or fully assembled and ready to run 
(RTR). They can be easily modified and each individual part 
is accessible and can be replaced. These R/C vehicles provide 
a speed controller regulating motors and servomotors used for 
forward or backward movement, and for steering. They are 
powered by combustion engines (nitro, gas) or electric motors 
(brushed or brushless) with electric batteries (nickel-cadmium, 
nickel metal hydride, or lithium polymer cells). Some electric 
cars can even be powered by solar energy or use hydrogen fuel 
cells. Compared to typical wheeled robot platforms, R/C cars 
are affordable, extremely fast, assembled and ready to use, and 
have hydraulic suspensions that are ideal to minimize 
vibrations when driving outdoors. This is an important factor 
to consider when creating a robot supporting a video camera 
that has to drive on uneven roads, dirt tracks or grass.  

C. IOIO 
In order to control a R/C vehicle from an Android phone, 

we used the IOIO board to link the phone to the motor and 
servo of the vehicle. The IOIO can send PWM signals to the 
speed controller of the vehicle in order to regulate its motors 
and servomotors. The IOIO can also read values from digital 
and analog sensors, such as infrared sensors (IR) or Hall 
Effect Sensors. The IOIO provides connectivity to an Android 
device via a Bluetooth or USB connection and is fully 
controllable from within an Android application using a 
simple Java API.  The newer IOIO-OTG can also be 
connected via USB as a host or an accessory to an Android 
device or a computer. When connected to an Android device, 
the IOIO-OTG can act as a USB host and supply charging 
current to the device. If connected to a computer, the IOIO 
acts as a virtual serial port and can be powered by the host. 
Compared to the other boards with similar functionality (e.g., 
Arduino ADK, Amarino, Microbridge, PropBridge), we chose 
the IOIO because it provides a high-level Java API for 
controlling the board's functions without having to write 
embedded-C code for the board. It supports all Android OS 
versions, whereas other boards only support the most recent 
Android OS. The IOIO is inexpensive $39.95 with a small 
footprint (~ 8cm by 3cm), is fully open-source, and has great 
technical support with an active discussion group and an 
extensive documentation Wiki. 



1) Hardware 
The main function of the IOIO is to interact with peripheral 

devices. It can do so with 48 I/O pins, and digital 
inputs/outputs, PWM, analog inputs, I2C, SPI, TWI, and 
UART interfaces. The IOIO board contains a single MCU that 
acts as a USB host and interprets commands from an Android 
app. The IOIO supports 3.3V and 5V inputs and outputs. It has 
two on-board voltage regulators. It contains a switching 
regulator that can take 5V-15V input and output up to 3A of 
stable 5V, and a linear regulator that feeds off the 5V line and 
outputs up to 500mA of stable 3.3V. Furthermore, the 
hardware of the IOIO is fully open source with a permissive 
license, therefore, the schematics (Eagle files) can be 
downloaded in order to build the board and even modify it.  
2) Software 

A high-level Java API is provided with the IOIO that 
provides simple functions to connect to the IOIO from an 
Android application. The application can read values from 
digital or analog inputs, and write values to the IOIO outputs. 
Currently, analog input pins of the IOIO are sampled at 1KHz. 
Since the IOIO software is fully open source, a developer can 
perform low level embedded programming in order to modify 
the firmware for example. Communication between the phone 
and the IOIO can be made over Bluetooth, or USB using the 
Android Debug Bridge protocol (ADB) or the more recent 
Open Accessory protocol. Using the ADB protocol, the one-
way average latency is ~4ms and effective throughput is 
~300KB/s. Using the open accessory protocol improves the 
latency to around ~1ms. The jitter (i.e. variance in latency) is 
also much smaller, and the effective throughput increases to 
~600KB/s. Although more convenient, Bluetooth latency is 
significantly higher than USB (on the order of 10's of ms), and 
the bandwidth (data rate) of Bluetooth is significantly lower 
than USB connections (order of 10's of KB/sec). 

D. Sensors and Actuators 
While Android phones provide a large set of sensors and 

cameras, autonomous robots usually need additional sensors in 
order to perform a diversity of tasks. Using the Android based 
platform, robots can be equipped with additional sensors, such 
as infrared sensors, sonars, touch sensors, whiskers and 
bumpers. Speed sensors can also be added to the platform 
when accurate odometry is required. Moreover, gas sensors 
can be equipped on the robot so it could detect gazes and 
chemical compounds such as smoke, carbon monoxide, 
alcohols, propane, methane and more. Additional actuators 
can also be added to our platform in order to perform more 
complex task. For example, the phone can be mounted on a 
pan-tilt unit whose servos are controlled by the phone through 
the IOIO. A robotic arm or gripper could also be mounted on 
the platform and controlled by the IOIO. 

III. BUILDING AN ANDROID BASED ROBOTIC PLATFORM  

A. Hardware 
We will now describe the steps needed to build an Android 

based robot platform such as the one shown in Figure 3. A 
video describing the construction of the platform can also be 
found online (see Table 2, Android Robotic platform).  

 

 
Figure 3. Android based robotic platform composed of IOIO, four infrared 
sensors, and a robotic head mounted onto a perforated steel base. The base is 
installed on the chassis of a R/C truck. The robotic head is composed of a 
rectangular tube, two servos for the pan and tilt unit, and a phone holder 
made of foam. 

 
We built two robots, a small one using a XTM Rage 1/18th 

4WD R/C truck ($119.95, max speed: 20 mph), and a larger 
one using a Hobby People Vertex 4WD 1/10 ($139.95, max 
speed: 24 mph) R/C truck. For each robot, a sheet of 
perforated steel was used as a base to support the IOIO, a 
phone holder, sensors and actuators. The use of a perforated 
base facilitates the addition, removal and relocation of sensors 
and actuators on the robot, making the platform highly 
modular. The IOIO was mounted directly on the base using 
spacers. We then created mounts for infrared sensors using 
aluminum angles. These angles were cut and drilled as shown 
in Figure 4. The IR sensor mounts were screwed to the base 
using thumbnuts, which enabled their orientation to be easily 
adjusted. The IR sensors were from the Sharp GP2 series 
($14.50) and responded with a voltage proportional to the 
distance of an object, ranging from 20 cm to 150 cm.  

 

 
Figure 4. Construction phases of mounts for infrared sensors. An aluminum 
angle was cut and drilled to the dimensions of the IR sensors. Thumbnuts and 
screws were used to mount the IR sensors to the perforated base. 
  

    
 

    



 We made a rudimentary phone holder of polystyrene foam 
and glued it to an aluminum angle perforated to allow the 
phone holder to be screwed to the base of the robot. While this 
phone holder might not be the most robust or elegant form 
factor, it is inexpensive and can be easily built. The phone was 
actuated by a pan and tilt kit (Lynxmotion $29.93) and 
mounted on an aluminum rectangular tube. We assembled the 
servos of the pan and tilt unit, cut the rectangular tube and 
made a hole to the dimensions of the lower servo. Two holes 
were drilled on the lower part in order to screw the head to the 
base. The phone holder was screwed to the pan and tilt unit 
that was mounted onto the rectangular tube. The head and IR 
sensors were then mounted on the base of the robot (see 
Figure 3).  
 The electric speed controller (ESC) of the car received 
power directly from the car’s battery (see Figure 5). We first 
disconnected the servo and the ESC from the RF receiver on 
the R/C car. The ESC was then connected to the IOIO to 
provide power (Vin input) and receive a PWM signal to 
control the car’s motor (PWM output). The servo of the car 
was connected to the IOIO that provided power (5V output) 
and a PWM signal for control (PWM output). The IR sensors 
were powered by the IOIO (5V) and were connected to the 
IOIO analog inputs to transmit their values. The servos of the 
pan and tilt unit also received power (5V) and PWM signals 
from the IOIO. The IOIO board was connected to the Android 
phone via USB or Bluetooth. 
 

 
Figure 5. Schematic showing the electrical circuitry of the Android based 
robot. Sensors and actuators are connected to the IOIO except for the motor 
of the R/C powered by the ESC. Only two sensors are shown here but more 
can be added to the platform. If more sensors and actuators are used, they 
should be powered separately (not from the IOIO) since the IOIO can only 
provide 3A maximum on the 5V output pins.  

B. Software 
In addition to the Android Robot Platform, we developed 

software to monitor and control a group of robots deployed in 
a large area. Specifically, an Android Java application was 
created to connect remotely to a server over Wi-Fi. The 
application captured and sent sensory data streams (e.g., 
video, accelerometer, compass, and GPS), and received 
commands from a host computer. The Android app consisted 
of different components. A main program with a GUI called 
an Activity. Listeners and Callback objects that were updated 

by the Android OS every time the output data of the 
accelerometer, compass, gyroscope, GPS or camera changes. 
A main thread consisting of a loop that collected data (sensors, 
GPS, camera, IRs), performed necessary computation (e.g. 
image processing), sent data to the server, read the TCP 
socket, and updated the IOIO motor commands. This thread 
performed video streaming by capturing frames from the 
camera, which were then converted from YUV to RGB using 
OpenCV, compressed into JPEG images, sliced into UDP 
packets, and sent over Wi-Fi to the server. Finally, the 
Android app executed another thread connected to the IOIO to 
open, read and write values on specific pins. 

 
Table 3.  Mean update cycle in milliseconds, with standard deviation, of each 
component of the app. Four experiments were conducted on a Galaxy S III 
running the app for 5 minutes each time. 

 
 The Android application was able handle to multiple 
threads and respond to different sensors with minimal delays. 
The app’s performance was measured on a Samsung Galaxy S 
III by running the app for 5 minutes under four different 
conditions (see Table 3). First, we recorded the mean update 
cycles when using only the camera (see Table 3, I). The 
camera callback was updated at 21Hz on average and the main 
thread at 100Hz. In this experiment, the size of each frame 
was set to 176 x 144 and the JPEG quality to 75.  We then 
recorded the update cycles when using the sensors and GPS of 
the phone (see Table 3, II). The sensor listeners for the 
compass, accelerometer and gyroscope were updated at 100Hz 
in average, the GPS listener at 1Hz, and the main thread at 
100Hz. We also recorded the update cycles when using the 
IOIO that read values from four IR sensors and sent PWM 
commands to the servo and motor of the RC car (see Table 3, 
III). In this case, both the IOIO and the main threads were 
updated at 91Hz in average. Finally, we recorded the update 
cycles when all the components were running concurrently 
(see Table 3, IV). The camera callback was updated at 20Hz, 
the sensor listeners at 102Hz, the GPS listener at 1Hz, and the 
IOIO and main threads at 104Hz in average. Even when 
running all the components, the app still showed good 
performance. These experiments demonstrated that an app 
programmed entirely in Java using the Android API, OpenCV 
and IOIO libraries, could run quite well even when executing 
many components at the same time.  The update frequencies 

Update cycle 

mean s.d. 

I Camera  
Main thread 

47 ms (21 Hz) 
10 ms (100 Hz) 

8.4 ms 
5.8 ms 

II 

Accelerometer 
Compass 
Gyroscope 
GPS  
Main thread 

10 ms (100 Hz) 
10 ms (100 Hz) 
10 ms (100 Hz) 
997 ms (1 Hz) 

10.5 ms (100 Hz) 

2 ms 
2 ms 
2 ms 

23.3 ms 
5 ms 

III IOIO thread 
Main thread 

11 ms (91 Hz) 
11 ms (91 Hz) 

8.4 ms 
6 ms 

IV 

Camera  
Accelerometer 
Compass 
Gyroscope 
GPS  
IOIO thread 
Main thread 

49 ms (20 Hz) 
9.8 ms (102 Hz) 
9.8 ms (102 Hz) 
9.8 ms (102 Hz) 
1000 ms (1 Hz) 

9.6 ms (104 HZ) 
9.6 ms (104 Hz) 

6.1 ms 
1.4 ms 
1.4 ms 
1.4 ms 

20.1 ms 
6.5 ms 
5.7 ms 



of each component are adequate for robotics purposes. 
However, we are still working on improving the performance 
of our app especially for image processing and streaming (e.g. 
using FFmpeg). We have to emphasize that at this point, we 
did not try to close programs and services running in the 
background in order to optimize the scheduling done by the 
Android OS. Programming certain parts of the app in C/C++ 
using the NDK should also improve performance. 
 To remotely control multiple robots, monitor their video 
and sensory information, and allow for direct communication 
between robots, we developed a C++ application that can run 
on a desktop computer or laptop (see Figures 6 and 7).  
 

      
Figure 7. Server program running on a computer. Left - multiple 
phones/robots can connect to the server and stream data such as video feed. 
Right - Interface for one robot. Using this window, users can start/stop 
streaming the video, sensory information coming from the compass, 
accelerometer, and IR sensors connected to the IOIO. They can also control 
remotely the robot using the keyboard or allow the robot to run in 
autonomous mode. 
 
 This program was developed using the Qt libraries, and can 
run on Windows, Mac OS and Linux. A phone can connect to 
the server using a TCP socket. Once connected, a user can use 
the GUI of the server to remotely start or stop the video 
camera, sensors, GPS, and the IOIO in order to read the values 
of the IR sensors and control the robot. Data is streamed to the 
server over UDP sockets. Start and stop commands are sent 
from the server to a phone over the TCP socket. PWM values 
used to control the robot remotely if needed are also sent over 
the TCP socket. The server received 20 frames per seconds 
during experiment I (see Table 3), displaying the video 
feedback in near real time over Wi-Fi. We had similar results 
when two phones were connected to the server. More 
experiments will be conducted in the future to make sure that 
the program can scale up when connected to more robots. The 

software (Android app and server program) is available online 
(see Table 2, Android Robotic Platform). 

IV. APPLICATIONS TO EDUCATION AND RESEARCH 
In this section, we describe two applications of our Android 

Robotic Platform, one developed by students in an 
undergraduate course on Android programming, and the other 
developed for computational neuroscience research. These 
case studies give an idea of the type of applications that can be 
used with our platform, and highlight the features of the 
platform. 

A. Autonomous Android Vehicle 
Using our platform, students in an undergraduate Android 

programming course programmed robots to recognize, track, 
and follow a specified color object, as well as have the ability 
to avoid obstacles (see Figure 8).  

 

 
Figure 8. Autonomous Android vehicle tracking and following a green ball 
transported by a remotely controlled vehicle. 

 
The source code, videos and information can be found 

online (see Table 2, Android Robotic Platform). Their 
Android application used the camera of a Samsung Galaxy S 
II, with OpenCV libraries in order to find the contours of a 
green ball. In their case, commands (PWM signals) were sent 
from the Smartphone to the R/C car’s speed controller and 
steering servo through the IOIO, and the IOIO sent the values 
of four infrared sensors used for obstacle avoidance, to the 
Smartphone. The pan and tilt unit was also controlled from the 

 
Figure 6. Schematic of the server-client model of the Android based robots connected to a computer. A phone connects to the server using a TCP socket. Once 
connected, a user can use the GUI of the server to remotely start or stop threads that control the video camera, sensors, GPS and the IOIO that controls the 
robot and read sensors values. Data is streamed to the server over different UDP sockets.  The pulse width of the PWM signals can also be sent by the server 
to control a robot remotely. 



IOIO and was used to scan the environment when the robot 
lost sight of the ball, and to track the ball as it moved. The 
students also used a second robot that was controlled remotely 
using a Motorola Droid RAZR and IOIO board. The phone 
was connected to the IOIO over Bluetooth, and the phone’s 
accelerometers were used to control the car by tilting the 
phone in different directions. This car was used to carry the 
green ball around and be followed by the autonomous robot.  

The project was a success and confirmed that this platform 
could be used for education by undergraduate computer 
science and engineering students. We have to emphasize that 
the performance of the tracking algorithm used was not of 
major importance for this project. However, in multiple 
demonstrations, the follower robot found the leader robot, and 
tracked it while simultaneously avoiding obstacles. 

B. Android Based Robot Controlled by a Neural Network 
For our own research in computational neuroscience, an 

autonomous Android robot performed a task known in 
cognitive sciences as a reversal learning task [12]. In such a 
task, subjects learn an association very well, and then due to a 
change in conditions, they need to forget what they learned 
previously and learn a new association. 

In our instantiation of this task, the Android robot had to 
learn the locations of valuable resources. The robot had an 
energy level that decreased over time. After some exploring 
the robot learned the rewarding location and headed to that 
location when its energy level was low. The experiment was 
conducted outdoors on an open grass field where two GPS 
locations were chosen (L1 and L2) and only one location 

contained resources (see Figure 10, right). The robot would 
“consume” resources when it was at the rewarding location. It 
took three visits to consume all the resources. After the third 
visit, a reversal was introduced by placing the resources at the 
other location. The experiment consisted of ten trials and the 
locations were selected at different places on the open field for 
each trial.  

A neural network running on the Android phone controlled 
the robot and received the GPS location, compass reading 
(azimuth) and the values of the IR sensors as inputs. The 
neural network was composed of 60 firing rate neurons and 67 
synapses (connections). The neural activities and synaptic 
connections were updated every 100ms, due to the limitations 
of the phone used (HTC Incredible 1) and the long update 
cycles of the GPS (1Hz). It processed the sensory information 
in order to learn where the reward was located and select a 
location to attend to, and outputted the signals controlling the 
motor and servo of the robot. The neural network driving the 
behavior of the robot was composed of three main groups (see 
Figure 9): sensory input, action selection and motor output 
(see [12] for more details). The locations area consisted of two 
neurons, one for each location (L1 and L2). The neural activity 
of this area was based on the distances between the location of 
the robot and L1 and L2. Four infrared sensors were connected 
to the IOIO and were used to detect obstacles. Four neurons 
encoded the value of these IR sensors and sent signals to the 
servos of the robot. The action selection group was based on 
the known functional neuroanatomy for attentional pathways. 
It consisted of a decremental and an incremental attention 
area, and an action selection area (Location Selection in 

 
Figure 9. Neural architecture driving the behavior of the robot. It was composed of three main groups:  sensory input, action selection and motor output. 
Solid line items represent neural implementation (neurons and connections). See [12] for more details. 
 



Figure 9). These areas had two neurons, one for each location 
(L1 and L2). The main function of the action selection group 
was to learn that a location was predictive of a reward, and to 
choose a location to attend to, causing the robot to stop at a 
novel location, or to go back to the reward location when the 
robot’s energy was low. Reinforcement learning caused the 
robot to remember where the reward was located in order to 
go back to it when its energy level decreased. The motor 
output group consisted of a pre-motor/speed area composed of 
one neuron for each location (L1 and L2), a pre-motor/bearing 
error area composed of 37 neurons (10 degree resolution), and 
three motor neurons: one to move forward, one to turn right 
and one to turn left. The activity of the motor neurons was 
mapped into the pulse width of the PWM signals controlling 
the robot’s motor and servo. 

The robot successfully performed the task in roughly 8.5 
minutes. Experimental trials are described below and can be 
seen on a video online (see Table 2, Android Robotic 
Platform). We set up the experiment so that the robot always 
started at location L2. The robot initially learned that no 
resources were present at this location and started to move. If 
the robot went back to this location again, it would not stop 
since learned that L2 did not contain a reward. During this 
time, the robot’s energy level kept decreasing. Once the robot 
found location L1 where the reward was located, it stopped 
and stayed still until its energy level was fully replenished. 
During this time, the robot learned to associate resources with 
the location L1. Once its energy level was full, the robot 
started to move again and explore its environment.  When its 
energy level was low, the robot would go back to the location 
L1 associated with the reward. The robot consumed all the 
resources present at L1, by visiting L1 three times, in 3.1 
minutes on average. A reversal was then introduced by placing 
resources at location L2. However, the robot persisted in going 
back to L1 for ~2 minutes until it finally switched back to an 
explorative behavior. The robot then found and learned that 
the resources were now at the location L2. As before, when its 
energy level was low, the robot would go back to the location 
L2. The robot consumed all the resources present at L2 in 3.3 
minutes on average.  

In sum, these results show that the robot managed to 
perform the task in a short amount of time during which it 
initially learned a stimulus-reward association, and then 
demonstrated the ability to switch strategy when a reversal 
was introduced. The robot also exhibited perseverative 
behavior in accordance with the behavior observed in rats [13, 
14] and monkeys [15] performing a reversal learning task. 
Importantly, for the present article, this work showed that the 
Android based robot can support complex research projects. 
The behavior of the robot was entirely driven by a neural 
network that ran on the phone in real-time, with no previous 
offline training. The robot managed to perform a reversal 
learning task successfully by increasing its attention to 
relevant location and decreasing its attention to irrelevant 
ones.  

     
Figure 10. Left – Android based robotic platform with four infrared sensors 
and a protection case for the IOIO. Right - open grass field with both 
locations L1 and L2, where the experiment was conducted. 

V. DISCUSSION 
In this manuscript, we presented a promising trend in 

robotics, which leverages smartphone technology. These 
smartphone robots are ideal for hobbyists, educators, students, 
and researchers. We described different smartphone based 
robotic projects, and we also demonstrated the relatively easy 
and inexpensive construction of an Android based robotic 
platform. Our experience and analyses show that these phones 
can handle multiple sensors and perform complex tasks in real 
time. 
 We do want to emphasize that the platform presented in this 
manuscript represents only one example of an Android based 
robotic platform and many different variants exist. Android 
phones can also be used with other robotic platforms, proving 
the high potential of using smartphones in robotics (see Table 
2, Cellbots). Compared with other smartphone based robotic 
platforms, our platform is more modular as sensors and 
actuators can be easily added, removed or relocated on the 
robot, and it can also be used outdoors. The cost of our 
platform is also lower than “classical” robotic platforms with 
similar features and onboard computing power. In the future, 
the hardware of our platform will be improved by reinforcing 
the chassis structure, and by adding additional sensors (speed, 
touch, gas, thermal, etc.) necessary for mapping and for 
disaster victim identification. Additionally, the use of different 
chassis (wheels, tracked, or legged vehicles) and steering 
mechanisms (front wheels steering, differential steering) will 
be considered.  
 Because of their accessibility and extensibility, we believe 
that smartphone based robots will be used extensively in many 
different configurations and environments. For example, the 
use of inexpensive but capable robots will be highly beneficial 
for swarm robotics to create a heterogeneous swarm where 
groups of different robots would carry out different tasks, 
similar to the Swarmanoid [16].  Our own group is currently 
working on swarm robotics approaches to search and rescue 
operations. The overall strategy is to create robots capable of 
mapping and identifying victims in a disaster zone, and 
interact with human operators. This robotic swarm could also 
be modified for environmental monitoring such as pollution or 
fire detection. The combination of the powerful and efficient 
hardware of modern Android phones, as well as sensing and 
interacting devices for robotics, makes Android phones ideal 
onboard computers. In addition, an API which provides easy 
access to sensors, cameras, wireless connectivity, text to 
speech and voice recognition functionalities, open source 



software and libraries such as OpenCV and ROS, as well 
cloud based applications facilitates programming. GPUs on 
smartphones are also improving rapidly and will soon be 
adequate to perform more complex algorithms through parallel 
computation. Furthermore, the low cost and high availability 
of Android phones make them very attractive for developing 
countries where Android based robotics will surely boost 
robotics research and education. To summarize, we believe 
that Android based robotic platforms will be used extensively 
for multidisciplinary, innovative and affordable projects in 
research and education. In addition, this approach to robotics 
will stimulate the creativity of electrical, mechanical and 
software engineers, as well as robotics students and hobbyists. 
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