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Abstract

We study whether the nonlinear behavior of the real exchange rate can help us account
for the lack of predictability of the nominal exchange rate. We construct a smooth nonlinear
error-correction model that allows us to test the hypotheses of nonlinear predictability of the
nominal exchange rate and nonlinear behavior on the real exchange rate in the context of a
fully specified cointegrated system. Using a panel of 19 countries and three numeraires, we
find evidence of nonlinear predictability of the nominal exchange rate and of nonlinear mean
reversion of the real exchange rate. Out-of-sample Theil’s U -statistics show a higher forecast
precision of the nonlinear model than the one obtained with a random walk specification.
Although the robustness of the out-of-sample results over different forecast windows is some-
what limited, we are able to obtain significant predictability gains—from a parsimonious
structural model with PPP fundamentals—even at short-run horizons.
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1 Introduction

During the last three decades a growing amount of literature has shown a poor empirical relation

between economic fundamentals and the exchange rate. In their seminal work, Meese and Rogoff

(1983) show that the relation between economic fundamentals and the nominal exchange rate

is so weak that the short-term forecast of the future behavior of the exchange rate is usually

outperformed by naive random walk specifications. As documented in the work of Cheung,

Chinn, and Garcia Pascual (2005), Diebold and Nason (1990) and Meese and Rose (1991), this

puzzling behavior—commonly denoted as lack of exchange rate predictability—has remained

through most of the recent floating period.

The finding of Mark (1995) that an empirical significant relation between economic funda-

mentals and the exchange rate exists at long horizons, from 1 to 4 years, has also been brought

into question. Berben and van Dijk (1998), Kilian (1999), and Berkowitz and Giorgianni (2001)

show that the results of high and significant predictability in long horizons can be explained as

lack of cointegration between fundamentals and the exchange rate. Furthermore, according to

Faust, Rogers, and Wright (2003), Mark’s original results have largely disappeared as a result

of data revisions and data accumulation through time.

There are several interpretations one can give to these findings. The most common one is that

of a dismal performance of our economic models. A second and more recent interpretation comes

from Engel and West (2005), who show that under certain conditions the standard linear models

of exchange rates and fundamentals behave as (near) random walks. A third interpretation—and

more related to this paper—is that linear models provide a poor approximation to the behavior

of economic time series and that richer and more general statistical models are needed. Indeed,

several theoretical models that take into account the existence of fixed and variable transaction

costs across countries conclude that the mean reversion of the real exchange rate should be

nonlinear.

Using the purchasing power parity (PPP) model, in this paper we study whether smooth

nonlinearities can account for the lack of exchange rate predictability. Building on the work

of Granger and Swanson (1996), we construct a generalized cointegrated system that nests the

possibilities of having predictability or unpredictability of the nominal exchange rate, as well as

linear or nonlinear behavior on the real exchange rate.

For comparison purposes, we follow Mark and Sul (2001) and estimate the model for three
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different numeraires—U.S., Japan and Switzerland—using a panel dataset of 19 countries in

the post-Bretton Woods period. We perform t-tests of the predictability and nonlinear mean

reversion hypotheses and construct Theil’s U -statistics that measure the relative out-of-sample

accuracy of the nonlinear forecast of the nominal exchange rate versus the random walk. Across

numeraires, the t-tests reveal significant nonlinear behavior of the real exchange rate and non-

linear predictability of the nominal exchange rate, while the U -statistics show evidence of an

improved forecast precision of the nonlinear error-correction model relative to the random walk.

Contrary to recent results by Engel, Mark, and West (2007) and others, our out-of-sample results

are significant for many countries at short-term horizons.

Following Rogoff and Stavrakeva (2008), we verify the robustness of the out-of-sample results

over different forecast windows. Using a joint test based in the average U -statistic, as Mark and

Sul (2001), we find that our nonlinear model significantly outperforms the random walk over

different forecast windows for one-quarter-ahead forecasts when the U.S. is the numeraire, and

for four- and eight-quarter-ahead forecasts when either Japan or Switzerland is the numeraire.

Nevertheless, for individual exchange rates we find that the nonlinear model consistently (and

significantly) dominates the random walk over different forecast windows for only four countries

(out of 18) in the one-quarter-ahead U.S. case, for nine countries in the four-quarter-ahead Japan

case, and for four countries in the four-quarter-ahead Switzerland case. It is also important to

mention that in general, the predictability of the nominal exchange rate breaks down in forecast

windows starting by the end of 2008 and during 2009. This result is, however, not surprising

as it coincides with the most tense period of the recent (unprecedented) financial crisis. In that

period of such worldwide economic instability, it would be naive to expect that exchange rates

follow traditional economic fundamentals.

In our out-of-sample analysis, we choose the driftless random walk as our benchmark model.

Hence, in order to verify that we are comparing our nonlinear model against the best of the

naive specifications, we provide an extensive out-of-sample comparison of the random walk with

drift versus the random walk without drift. We show that for each of the three numeraires, the

driftless random walk is generally a better predictor than the random walk with drift.

The paper is organized as follows. In Section 2 we discuss the theoretical and empirical

arguments in favor of a nonlinear specification of the real exchange rate. In Section 3 we show

how to construct the smooth nonlinear error-correction model based on a nonlinear specification
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of the real exchange rate and the existence of a cointegrated system. We will start with a simple

standard linear model and then build up step by step into our more general nonlinear model. In

Section 4 we estimate the smooth error-correction model and then compare its forecast accuracy

against the random walk. In Section 5 we perform the robustness analysis of the out-of sample

results. Finally, Section 6 concludes.

2 Nonlinearities of the Real Exchange Rate

The idea that the mean reversion of the real exchange rate may be nonlinear has both theoretical

and empirical motivations. Theoretical support can be found in the work of Benninga and

Protopapadakis (1988), Dumas (1992), Sercu, Uppal, and Van Hulle (1995), O’Connell and Wei

(2002) and Ohanian and Stockman (1997). The standard argument is that the existence of

fixed and/or variable transactions costs across countries generates a positive relation between

the magnitude of PPP deviations and the degree of mean reversion. When the real exchange

rate is close to its equilibrium level, the difference in effective prices across countries is close to

zero, and the real exchange can freely move in any direction according to random shocks in the

economy. However, when the real exchange rate deviation from its equilibrium level gets larger,

the difference in effective prices across countries gets also larger, and there will be a higher

degree of mean reversion due to the existence of arbitrage trade among countries.

For example, let us consider the simple continuous time model with two countries and one

good of O’Connell and Wei (2002). In the presence of only iceberg transaction costs, they show

the existence of an equilibrium where the real exchange rate is confined between two reflecting

barriers that delimit a range of no-arbitrage. Whenever the real exchange rate gets outside the

reflecting barriers, there is a minimal amount of trade that rebounds the real exchange rate

into the closest reflecting barrier. If there are fixed costs rather than iceberg costs, the authors

find that instead of two reflecting barriers there would be two resetting barriers in equilibrium.

Whenever the real exchange rate hits one of the resetting barriers, trade is conducted in an

amount sufficiently large to get the difference in effective prices across countries equal to zero.

Having together both iceberg and fixed costs in the model generates an equilibrium with four

barriers. Whenever the real exchange rate hits the outer barriers, it is instantly reset by trade

to the closest inner barrier. The bottom line of these models is that we should expect a higher

degree of mean reversion in the real exchange rate when the difference in effective prices across
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countries is larger.

There are two branches of empirical literature studying the predictions of these models. The

first branch focuses on cross-country differences in effective prices of single goods or commodities.

These studies—e.g., Obstfeld and Taylor (1997) and Imbs, Mumtaz, Ravn, and Rey (2003)—use

highly nonlinear statistical specifications and find strong evidence of nonlinearities. A common

specification in this kind of papers is the Threshold Autoregressive (TAR) model. Letting yt

denote the difference in effective prices of a single commodity across two countries, the TAR

specification is given by

∆yt =


λout(yt−1 + c) + εt if yt−1 < −c

λinyt−1 + εt if − c ≤ yt−1 ≤ c

λout(yt−1 − c) + εt if yt−1 > c,

where c > 0.

Note that this statistical specification closely resembles the predictions of the model of

O’Connell and Wei (2002) with iceberg transaction costs. When the difference in effective prices

is small (i.e., less than c), there is no mean reversion in the price differential, as represented

with the a priori selection of a random walk model with λin = 0. When instead the difference in

prices gets large (i.e., larger than c), we should expect a large degree of mean reversion towards

the reflecting barriers according to the estimated parameter λout < 0. In general, these studies

conclude that highly nonlinear models such as TAR provide a good description of the behavior

of single goods price differentials and find estimates of mean reversion, λout, larger in absolute

value than the ones obtained using standard linear models.

The second branch of the empirical literature focuses on the study of cross-country differences

in effective prices of large bundles of commodities, e.g., deviations from PPP—measured with

the Consumer Price Index (CPI). In these papers it is argued that aggregation in goods and time

generates a smooth nonlinear mean reversion rather than a one point threshold autoregression

specification (see Dumas (1994) and Taylor and Peel (2000)). The statistical model that has

been used in this literature—e.g., Taylor, Peel, and Sarno (2001) and Kilian and Taylor (2003)—

is the Smooth Transition Autoregressive (STAR) model of Granger and Teräsvirta (1993) and

Teräsvirta (1994). Here we consider the parsimonious representation proposed by Kilian and
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Taylor (2003) in which

zt = exp(γz2t−1) [ρ1zt−1 + ρ2zt−2] + u1t, (1)

where zt denotes the logarithm of the real exchange rate measured in terms of the CPI and u1t

is white noise. As Kilian and Taylor, let us impose the restriction that ρ = ρ1 = 1 − ρ2. The

statistical properties of this specification are very intuitive. Provided γ < 0, the degree of mean

reversion of the real exchange rate is a smooth function on the level of the log real exchange rate.

In order to see this, note that we can interpret equation (1) as a smooth transition between two

extreme statistical models. On the one hand, whenever zt−1 → 0, we have a statistical model

that tends to zt = ρzt−1+(1−ρ)zt−2+u1t so that the real exchange rate behaves as a random walk

with no mean reversion. On the other hand, whenever |zt−1| → ∞, we have a log real exchange

rate that tends in the limit to white noise (given by zt = u1t) and complete mean reversion is

present. In general, we will have a level of mean reversion between these two extreme points. As

|zt−1| goes from zero to infinity, we will have a degree of mean reversion that smoothly increases

from no mean reversion to complete mean reversion.

Taylor, Peel, and Sarno (2001) and Kilian and Taylor (2003) show that the STAR model

provides a good description of the behavior of the real exchange rate. They show that the

linearity hypothesis, H0 : γ = 0, is rejected for most industrialized countries and suggest that

the model can account for several of the PPP puzzles in the literature, including the lack of

power in standard unit root tests and the high persistence of small shocks in the real exchange

rate around equilibrium (see Rogoff (1996)).

In this paper we study whether the Smooth Transition model can also account for the lack of

predictability of the nominal exchange rate observed in standard linear models. We will do this

by including equation (1) in a generalized cointegrated system following the procedure suggested

by Granger and Swanson (1996). The resulting model will be a Smooth Transition Error-

Correction model where the mean reversion of the nominal exchange rate toward its economic

fundamentals will be a smooth function of the effective price differential across countries.

3 The Smooth Transition Error-Correction Model

It is a common approach in the empirical literature to directly specify a cointegrated system

either in terms of the error-correction model or in the common trend representation of Stock
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and Watson (1988). Granger and Swanson (1996) argue that we can generalize a cointegrated

system if we instead specify the model in terms of the cointegrated variables and the stochastic

trends using the following specification

zt = α′xt (2)

wt = λ′xt, (3)

where xt is a n×1 vector of nonstationary variables, zt is a r×1 vector of cointegrated variables,

with r < n, and wt is a (n− r)× 1 I(1) vector, such as

wt = wt−1 + ηt. (4)

The triangular representation of Phillips is a special case of this specification. Consider for

example the case at hand with xt = (st ft)
′, where st is the logarithm of the nominal exchange

rate—defined as the local price of one unit of the numeraire’s currency—and ft represents the

economic fundamentals. In the PPP model, economic fundamentals are defined as

ft = pt − p∗t , (5)

where pt and p∗t are the log prices at the local and the numeraire country, respectively.

Assuming that the cointegrated variable zt—the logarithm of the real exchange rate—follows

an AR(2) process, the triangular representation is given either by

zt = st − ft, zt = ρ1zt−1 + ρ2zt−2 + u1t (6)

∆st = ηt (7)

or

zt = st − ft, zt = ρ1zt−1 + ρ2zt−2 + u1t (8)

∆ft = ηt, (9)

where u1t and ηt are possibly correlated white noise processes. Under the assumption that wt is

given by equation (4), both representations are consistent with the specification of equations (2)
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and (3) since α = (1 − 1)′ and λ = (1 0)′ or λ = (0 1)′ generate equations (6)-(7) and (8)-(9),

respectively.

A drawback of the triangular representation is that it assumes a priori whether the nominal

exchange rate is predictable or not. In equation (7) we state that the nominal exchange rate is

a random walk, while in equations (8) and (9) we state that the exchange rate is predictable.

The exact form of the predictability implied by equations (8) and (9) is derived by computing

the corresponding error-correction model. Taking first differences in both equations and solving

the system in terms of ∆st we obtain that

∆st = (ρ1 − 1)zt−1 + ρ2zt−2 + (u1t + ηt), (10)

where the future movement in the nominal exchange rate depends on previous realizations of

the real exchange rate.

In order to circumvent an a priori assumption about the predictability of the nominal ex-

change rate, we follow Granger and Swanson (1996) and instead of assuming a λ equal to either

(0 1)′ or (1 0)′, we assume a λ equal to (λ1 λ2)
′, where λ1, λ2 ∈ R. It can be shown by tak-

ing first differences to equations (2) and (3) that when λ = (λ1 λ2)
′ and α = (1 − 1)′, the

cointegrated system has a vector error-correction representation given by

∆st = −r (1− ρ1 − ρ2) zt−1 − rρ2∆zt−1 + u2t, (11)

where r = λ2
λ1+λ2

and u2t = λ2u1t+ηt
λ1+λ2

. The predictability of the nominal exchange rate can now

be tested using H0 : r = 0 versus HA : r > 0. As long as r > 0, we have a system in which

the mean reversion of the real exchange rate towards its equilibrium relies, at least partially, in

movements of the nominal exchange rate. On the other side, when r = 0 the mean reversion of

the real exchange rate relies exclusively on future movements in the difference in prices.

It is now straightforward to generalize the linear error-correction representation into a non-

linear error-correction representation. Let the cointegrated system be determined by equations

(2) and (3) with α = (1 − 1)′, λ = (λ1 λ2)
′, and the real exchange rate be given by the STAR

specification of equation (1). Taking first differences of equations (2) and (3) and solving the
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system for ∆st, we obtain the Smooth Transition Error-Correction (STEC) model

∆st = −r
[
1− (ρ1 + ρ2) exp(γz2t−1)

]
zt−1 − rρ2 exp(γz2t−1)∆zt−1 + u2t. (12)

This equation is a generalization of the linear error-correction equation (11) in the sense that

the linear model is just the STEC model restricted to γ = 0. Using the restriction ρ = ρ1 = 1−ρ2

of the STAR specification of Kilian and Taylor (2003), the STEC model is reduced to the

parsimonious specification

∆st = −r
[
1− exp(γz2t−1)

]
zt−1 − r(1− ρ) exp(γz2t−1)∆zt−1 + u2t. (13)

This equation is the building block of our work.1 The parameter r maintains the same

role as in the linear model. An r = 0 implies that mean reversion in the real exchange rate

relies exclusively in the difference in prices, while an r > 0 implies that mean reversion in

the real exchange rate relies at least partially in the nominal exchange rate. Then, we can

test the hypothesis of predictability of the nominal exchange rate using H0 : r = 0 versus

HA : r > 0. The degree of nonlinearity in the mean reversion of the real exchange rate depends

on γ. Given γ < 0, the mean reversion of the nominal exchange rate towards its fundamentals

will be increasing in the absolute value of the difference in effective prices across countries—i.e.,

the error-correction parameter of equation (13) is an increasing function of |zt−1|. Also, the

larger the γ (in absolute value), the higher the degree of nonlinearities. Hence, we can test for

nonlinearities using H0 : γ = 0 versus HA : γ < 0.

4 Estimation of the STEC Model

4.1 The Data

We estimate the STEC model using the same panel of countries as Mark and Sul (2001) but

with an updated sample. Hence, we obtain quarterly time series for nominal exchange rates

and price levels from 1973.Q1 through 2009.Q4 for 19 countries: Australia, Austria, Belgium,

Canada, Denmark, Finland, France, Germany, Great Britain, Greece, Italy, Japan, Korea, the

1Note that even though the STEC model in equation (12) nests a linear model, our parsimonious STEC model
in equation (13) does not. This result follows because an error-correction representation cannot exist when γ = 0
and ρ = ρ1 = 1−ρ2 since the real exchange rate would not be stationary and the system would not be cointegrated.
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Netherlands, Norway, Spain, Sweden, Switzerland and the United States.2 All series are from

the IMF’s International Financial Statistics and are measured at the end of the quarter. Prices

correspond to CPI levels and are seasonally adjusted with a one-side moving average of the

present observation and three lagged variables. Nominal exchange rates are reported as the

price of one U.S. dollar.3

4.2 Econometric Specification and Estimation Results

Our econometric specification is given by

zi,t = exp(γz2i,t−1) [ρzi,t−1 + (1− ρ)zi,t−2] + ui1t (14)

∆si,t = −r
[
1− exp(γz2i,t−1)

]
zi,t−1 − r(1− ρ) exp(γz2i,t−1)∆zi,t−1 + ui2t, (15)

where i = 1, 2, ..., L indexes countries and (ui1t u
i
2t)
′ are independent and identically distributed

processes with variance-covariance matrix given by Σ2L×2L. As in Mark and Sul (2001), we

estimate the model for three numeraires: the United States, Japan and Switzerland. For each

numeraire, we define si,t as the log of the country i’s currency price of one unit of the currency

of the numeraire, and zi,t as the demeaned log of the real exchange rate between country i and

the numeraire. We use a demeaned measure of the log of the real exchange rate to account for

the different factors that cause relative purchasing power parity deviations in equilibrium—e.g.,

Harrod-Balassa-Samuelson effects. We abstract from cointegration tests.4 Since the model is

nonlinear, there are not closed form solutions for the estimators and numerical methods are

needed. We estimate the model by constrained maximum likelihood with γ < 0.

Note that we restrict γ, ρ, and r to be equal across country pairs. These restrictions in

the parameter space will provide us with two significant gains. First, they will increase the

precision of our estimates by increasing the size of the effective sample used for the estimation

of the parameters. Second, they will allow us to substantially reduce the time needed for the

nonlinear estimation of the model, making the out-of-sample bootstraps of the following sections

2Mark and Sul (2001) estimate their linear model of nominal exchange rates for both monetary and PPP
fundamentals. As we focus on nonlinearities of the real exchange rate, our estimation is based exclusively on PPP
fundamentals.

3As in Engel, Mark, and West (2007) and Rogoff and Stavrakeva (2008), starting in 1999 the exchange rates
for the Euro area countries differ only by a constant of proportionality.

4Mark and Sul (2001) show that nominal exchange rates and PPP fundamentals are cointegrated in their
version of this dataset (see their Table 1). See also the references cited therein regarding the stationarity of the
real exchange rate.
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Table 1: STEC Model Estimation Results

Numeraire Coefficient t-stat p-value

US
γ -0.456 -11.250 0.000
ρ 1.014 128.700 0.000
r 0.833 51.530 0.000

Japan
γ -0.381 -18.640 0.000
ρ 0.934 58.570 0.000
r 0.950 155.900 0.000

Switzerland
γ -1.409 -18.530 0.000
ρ 0.926 56.890 0.000
r 0.957 228.900 0.000

For γ̂, the p-value is the proportion of the bootstrap distribu-
tion (for the t-statistic) to the left of the calculated t-statistic.
For ρ̂ and r̂, the p-value is the proportion of the bootstrap
distribution (for the t-statistic) to the right of the calculated
t-statistic.

computationally feasible.5 These a priori restrictions in the parameters do not seem to come at a

high cost. Allowing a different γ for each country pair generates similar results to those presented

in this paper.6 Moreover, unrestricted estimation of the model reveals that the estimates of r

and ρ are remarkably similar across country pairs for each of the three numeraires.

Table 1 presents the estimation results. Note that under the null γ = 0, all the variables in

the model are nonstationary and the distribution of γ̂ is not standard. Therefore, the p-value

we present for the estimate of γ for each numeraire corresponds to the bootstrapped p-value

of the t-statistic under the null that γ equals zero.7 The asymptotic distributions of ρ̂ and r̂

and their t-statistics are standard (so that we can interpret these statistics in the usual way).

Nevertheless, in order to control for a possible small sample bias, we also obtain bootstrapped

p-values for these estimators’ t-statistics.

We find that across numeraires the hypotheses of linearity of the real exchange rate (H0 : γ =

0) and unpredictability of the nominal exchange rate (H0 : r = 0) are rejected even at a 1% level.

5The estimation of the unrestricted model requires up to 3 hours, while the estimation of the restricted model
requires only a few seconds.

6A previous version of this paper included the estimation of the STEC model allowing for a different γ for
each country pair. These results are available upon request.

7We perform one bootstrap for each numeraire. Each bootstrap is computed using the following procedure.
First, we estimate the data generating process (DGP) under the null (given by equations (14) and (15), with the
restriction γ = 0). Second, we construct 1,000 artificial datasets with 100+T observations—where T equals 148
and represents the number of quarterly observations in our sample period. We use zeros as initial values and build
up the datasets using the recursive procedure of the DGP and independent draws from a multivariate normal
distribution with variance-covariance matrix given by Σ̂2L×2L (estimated with sample moments of the residuals
of the DGP). Then, for each dataset we discard the first 100 observations, compute the t-statistic (using MLE)
and count the number of times in which this statistic is lower than the real sample t-statistic. The bootstrapped
p-value is just the result of this count divided by 1000.
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All the estimates of r are relatively close to one, indicating that—no matter the numeraire—

most of the mean reversion of the real exchange rate is conducted through future movements in

the nominal exchange rate. In other words, we find that whenever the difference between the

nominal exchange rate and its fundamentals is low, we should expect to see a nominal exchange

rate that behaves much like a driftless random walk, while in those cases where the difference is

large we should expect to see strong future adjustments on the nominal exchange rate toward

its fundamentals. On the other hand, the estimates of γ are always negative—with values of

about -0.38 and lower—and imply the existence of substantial nonlinear mean reversion on the

real exchange rate.

4.3 Out-of-Sample Predictability

We now perform out-of-sample tests of the hypothesis that the nominal exchange rate is unpre-

dictable, that is, H0 : r = 0 versus HA : r > 0. We consider bootstrapped out-of-sample tests

based on Theil’s U -statistic, where the U -statistic is computed as the ratio of the Root Mean

Square Error (RMSE) of the out-of-sample forecast of the nonlinear model to the RMSE of the

out-of-sample forecast of the driftless random walk.8 As in Mark and Sul (2001), we also present

a joint test of predictability by taking the mean value—across country pairs—of the individual

U -statistics.

The root mean square errors of the STEC and random walk models used to compute the

U -statistics are based on out-of-sample forecasts at short (one- and four-quarter-ahead) and

long (eight- and sixteen-quarter-ahead) horizons for the sample period 1985.Q1-2009.Q4. The

procedure to compute the out-of-sample forecasts is as follows. Let k represent the number of

periods—i.e., quarters—ahead for the forecast. When k = 1, we estimate the models with data

through 1984.Q4 and compute the forecasts for 1985.Q1. Then we estimate the models with

data through 1985.Q1, compute the forecasts for 1985.Q2 and so on. For k > 1 we estimate the

models with data through 1985.Q1−k and then compute the forecasts for 1985.Q1. Once the

forecasts for 1985.Q1 are constructed, we move up one quarter and estimate the models with

data through 1985.Q2−k in order to compute the forecasts for 1985.Q2 and so on up to 2009.Q4.

Let ŝi,t+k denote the STEC model forecast for the nominal exchange rate k periods ahead.

8According to Rogoff and Stavrakeva (2008), bootstrapped out-of-sample tests such as the Theil’s U and the
Diebold-Mariano/West tests are “more powerful and better sized” than new asymptotic out-of-sample tests such
as the Clark-West and Clark-McCracken tests.
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From equation (15) we can see that the computation of the one-period-ahead STEC forecast is

straightforward and given by

ŝi,t+1 = si,t − r̂
[
1− exp(γ̂z2i,t)

]
zi,t − r̂(1− ρ̂) exp(γ̂z2i,t)∆zi,t. (16)

However, the computation of STEC forecasts at longer horizons is more problematic since it

requires the knowledge of the distribution function of the error ui1, denoted by Φ(ui1). For

example, consider the case of the two-period-ahead forecast ŝi,t+2 = si,t + ∆̂si,t+1 + ∆̂si,t+2,

where

∆̂si,t+1 = −r̂
[
1− exp(γ̂z2i,t)

]
zi,t − r̂(1− ρ̂) exp(γ̂z2i,t)∆zi,t (17)

∆̂si,t+2 =

∫ (
−r̂
[
1− exp(γ̂z2i,t+1)

]
zi,t+1 − r̂(1− ρ̂) exp(γ̂z2i,t+1)∆zi,t+1

)
dΦ(ui1), (18)

given that

zi,t+1 = exp(γz2i,t) [ρzi,t + (1− ρ)zi,t−1] + ui1t+1.

Then, in order to get ŝi,t+2 we must first know Φ(ui1) so that we can compute the integral in

equation (18).

There are several approaches to estimate this integral. Here we consider the parametric and

nonparametric techniques presented in Granger and Teräsvirta (1993). The parametric approach

estimates the integral by assuming normality in the distribution of the errors. For example, in

our two-period-ahead forecast we have that

∆̂si,t+2 =
1

J

J∑
j=1

(
−r̂
[
1− exp(γ̂ẑ2i,t+1,j)

]
ẑi,t+1,j − r̂(1− ρ̂) exp(γ̂ẑ2i,t+1,j)∆ẑi,t+1,j

)
, (19)

where

ẑi,t+1,j = exp(γ̂z2i,t) [ρ̂zi,t + (1− ρ̂)zi,t−1] + ûi1t+1,j ,

and ûi1t+1,j is one of J independent draws from a multivariate normal distribution with variance-

covariance Σ̂2L×2L. The nonparametric approach follows a similar procedure but instead of

assuming normality in the errors it resamples them from the residuals of the STEC model.

In this paper we use a J equal to 1000 and follow both the parametric and nonparametric

approaches. In all cases the results are remarkably similar and our conclusions do not change.
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In order to preserve space we present throughout the paper only the results based on the non-

parametric approach.9

The data generating process (DGP) implied by the STEC model under the null that the

nominal exchange rate is unpredictable (i.e., under r = 0) is given by

zi,t = exp(γz2i,t−1) [ρzi,t−1 + (1− ρ)zi,t−2] + ui1t (20)

∆si,t = ui2t. (21)

If the null is true, the driftless random walk model should be more accurate than the STEC

model—the random walk should have a lower RMSE than the STEC model—and therefore

the U -statistics should be larger than one. On the other hand, whenever the exchange rate is

predictable (i.e., r > 0) we should have more forecast accuracy with the STEC model so that the

U -statistics should be lower that one. The p-value of each U -statistic—including the average

U -statistic—is calculated by bootstrapping its distribution under the DGP in equations (20)

and (21).10

Tables 2 and 3 present the out-of-sample predictability results in the short and long run,

respectively. The results are remarkable. Looking at the number of U -statistics smaller than

one in both tables, we see that with a single exception (the one-quarter-ahead forecast with

Switzerland as numeraire) the STEC model outperforms the driftless random walk for 15 or

more exchange rates (out of 18). No matter the horizon, country pair, or numeraire considered,

the STEC model is generally better.

As shown in Table 2, the statistical significance of the results is good in short-run horizons

(one- and four-quarters ahead). In all cases, the joint test provides significance levels of 2.1% or

lower for the better forecast accuracy of the STEC model. For individual exchange rates, the

best out-of-sample predictability results of the paper come from four-quarter-ahead forecasts,

9Results based on the parametric approach are available upon request.
10We perform one bootstrap for each numeraire. The procedure for each bootstrap is as follows. First, we

estimate the DGP under the null (given by equations (20) and (21), with the restriction γ ≤ 0). Second, we
construct 1,000 artificial datasets with 100+T observations—where T equals 148 and represents the number of
quarterly observations in our sample period. We use zeros as initial values and build up the datasets using the
recursive procedure of the DGP and independent draws from a multivariate normal distribution with variance-
covariance matrix given by Σ̂2L×2L(estimated with sample moments of the residuals of the DGP). Then, for each
dataset we discard the first 100 observations, compute the out-of-sample forecasts of the two competing models,
their RMSE, and then the individual and average U -statistics. Finally, in order to compute each p-value we
just count the number of times in which the U -statistic from the artificial samples is lower than the real sample
U -statistic and then divide this number by 1000.
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where the STEC model is significantly better at a 10% level for 17 (out of 18) countries when the

U.S. is the numeraire, and for 14 countries when Japan or Switzerland are the numeraires. For

one-quarter-ahead forecasts, the STEC model is significantly better than the driftless random

walk (at a 10% level) for 12 exchange rates when the U.S. is the numeraire, and for 6 and 8

countries when Japan and Switzerland (respectively) are the numeraires.

As seen in Table 3, for long-run horizons (eight- and sixteen-quarters ahead) the U -statistics

are on average lower than in the short run—implying more forecast accuracy of the STEC model

over the random walk in the long run than in the short run. Moreover, the joint test reveals sta-

tistical significance at a 4% level for 5 of the 6 cases (the remaining case is statistically significant

at a 10% level). For individual exchange rates, the results are very good for eight-quarter-ahead

forecasts when the U.S. or Switzerland are the numeraires (the STEC model is significantly

better at a 10% level for 14 and 13 exchange rates, respectively). For sixteen-quarter-ahead

forecasts, the STEC model is significantly better (at a 10% level) for 9 exchange rates when

the U.S. is the numeraire, and for 10 exchange rates when Switzerland is the numeraire. When

Japan is the numeraire, the significance of the long-run results for individual exchange rates are

not as good (the STEC model is significantly better only for 7 and 4 exchange rates for eight-

and sixteen-quarter-ahead forecasts).

In comparison with the out-of-sample one- and sixteen-quarter-ahead results of Mark and

Sul (2001), the STEC model has a better performance than their linear PPP estimation—in

terms of U -statistics values and their significance—for one-quarter-ahead forecasts when the

U.S. and Japan are the numeraires. The opposite is true when Switzerland is the numeraire.

With respect to sixteen-quarter-ahead forecasts, the U -statistics of Mark and Sul are very low

and highly significant when the U.S. and Switzerland are the numeraires. There is, however, an

important caveat in Mark and Sul’s results. As noted also by Engel, Mark, and West (2007),

Mark and Sul base their out-of-sample results in a comparison against a random walk with

drift, which turns out to perform worse than a driftless random walk. We look further into the

comparison of the driftless random walk and the random walk with drift in the following section.

5 Out-of-Sample Predictability Robustness

The out-of-sample results of the previous section show that no matter the horizon or the nu-

meraire, the STEC model is generally a better forecaster than the driftless random walk. In this

16



section we verify the robustness of these results in two dimensions. First, we follow Rogoff and

Stavrakeva (2008) and analyze the statistical significance of our results over different forecast

windows. Second, we compare the driftless random walk against the random walk with drift to

verify that we are comparing our STEC model against the best of the naive specifications.

5.1 Predictability over Different Forecast Windows

In their evaluation of recent models of exchange rate forecasting, Rogoff and Stavrakeva (2008)

propose a simple, yet strict, way to test “how consistently reliable” a forecast is. The test consists

in looking at how the estimated model compares to the driftless random walk over different

forecast windows. In our Tables 2 and 3, for example, we present out-of-sample results based

on a forecast window given by 1985.Q1-2009.Q4. The Rogoff-Stavrakeva proposal consists in

obtaining the information of Tables 2 and 3 for each of the remaining possible forecast windows:

from 1985.Q2-2009.Q4 to 2009.Q3-2009.Q4.11

5.1.1 Joint Test

We begin by looking into the joint test based on the average U -statistic. For the initial forecast

window, we obtained in the tables above that the STEC model was on average (significantly)

better than the driftless random walk for each of the three numeraires over every horizon. In

Figure 1 we present graphs for the bootstrapped p-values of the joint test for the different forecast

windows (for each numeraire over the different forecast horizons). The x-axis represents the first

quarter of the forecast window (so that the first plotted point for each line corresponds to a

p-value—for the average U -statistic—in Table 2 or 3).

As we can observe in Figure 1a, when the U.S. is the numeraire, the p-values for the average

U -statistic over the different forecast horizons are below 0.1 (with a couple of exceptions where

the p-values are just above the 0.1 line) for the forecast windows with starting quarter between

1985 and 2003. From around 2003, the STEC model is not a reliable forecaster for four- and

eight-quarter-ahead horizons. The same happens with sixteen-quarter-ahead forecasts starting

in 2005. Nevertheless, the one-quarter-ahead forecast is robust to the different forecast windows

up to the last quarter of 2008. At that time, it jumps above the 0.1 line and remains there for

the last quarters. The fact that the reliability of the one-quarter-ahead forecast breaks down

11In the worst case scenario, the estimated model could be significantly better than the random walk in the
initial window, but not significantly better for the rest of the forecast windows.
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Figure 1: Joint test p-values: one quarter ahead (solid), four quarters ahead (dot),
eight quarters ahead (dash), sixteen quarters ahead (long dash)
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by the end of 2008 and during 2009 should not be surprising, given the unprecedented world

economic turmoil unleashed by the events in the U.S. financial system during September 2008.

In Figure 1b we see the evolution of the p-values when Japan is the numeraire. We ob-

tain contrasting results. On the one hand, one- and sixteen-quarter-ahead forecasts perform

poorly over most of the forecast windows. On the other hand, the four- and eight-quarter-ahead

forecasts are remarkably reliable: the p-value is always below 0.1 for the eight-quarter-ahead

forecast and only one time just above 0.1 (for the last forecast window) for the four-quarter-

ahead forecast. In Figure 1c we observe that the same is true for four- and eight-quarter-ahead

forecasts when Switzerland is the numeraire. Also, for Switzerland, the one-quarter-ahead fore-

cast is mostly reliable (with the exception of the forecast windows between 2003 and 2005, and

between 2008 and 2009), while the sixteen-quarter-ahead forecast performs poorly for forecast

windows starting in 1994.

To sum up, on average the STEC model is consistently and significantly better than the

driftless random walk for one-quarter-ahead horizons when the U.S. is the numeraire, and for

four- and eight-quarter-ahead horizons when either Japan or Switzerland is the numeraire.

5.1.2 Individual Exchange Rates

Let us now look into the bootstrapped p-values for individual exchange rates. To preserve space,

we focus on the short-run cases that are robust over different forecast windows for the joint test:

one-quarter-ahead forecasts when the U.S. is the numeraire, and four-quarter-ahead forecasts

when Japan and Switzerland are the numeraires.

Figure 2 shows the one-quarter-ahead U.S. case. In Figure 2a we show those countries that

are robust throughout most of the forecast windows, while Figure 2b shows some other countries

that perform well for some forecast windows but do poorly for some others.12

The one-quarter-ahead predictability for the exchange rates (against the U.S. dollar) of

Australia, Canada and Sweden is quite robust (and for Finland to a lesser degree). As in the

joint test, the predictability breaks down by the end of 2008 and during 2009, but again, it is

not surprising that the exchange did not follow PPP fundamentals during the most unstable

economic period in the U.S. since the Great Depression. It is interesting to note that Australia,

Canada, and Sweden are the same countries for which Rogoff and Stavrakeva (2008) find robust

12The forecastability results for the countries that are not in Figure 2 (Greece, Japan, Korea, Spain, and
Switzerland) are in general poor.
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Figure 2: Individual p-values with the U.S. as numeraire (one quarter ahead)
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predictability with their method of cross-country shocks with forecast “pooling.” The difference

is that Rogoff and Stavrakeva’s method relies on ad hoc weighting procedures, while the STEC

model is based exclusively on fundamentals under a nonlinear structural model.

Figure 2b includes Euro area countries and Denmark, Great Britain, and Norway. The figure

shows a typical example on why the Rogoff and Stavrakeva proposal of checking forecastability

over different windows is highly relevant. Note that for our original forecast window (the first

point in every line), all countries (but Norway) are below the 10% significance level line. However,

for windows starting half a year later and up to 1993, only Italy’s forecastability remains robust.

From 1993, the forecastability for Great Britain and Norway becomes significant (up to the

2008 crisis). Note also that from 2001 and up to 2008, the euro forecastability is statistically

significant for all the Euro area countries in the Figure, suggesting (as we should expect) a close

relationship between these countries’ price levels.

Figure 3 shows the countries with better four-quarter-ahead forecastability when Japan and

Switzerland are the numeraires. As we can see in Figure 3a, when Japan is the numeraire,

the STEC model robustly outperforms the driftless random walk for half the countries in our

sample (again, the predictability breaks down towards the end of our sample period). These are

all European countries, seven from the Euro area plus Denmark and Great Britain. In Figure

3b we observe that the results are not as good when Switzerland is the numeraire, with only

four countries with significant forecastability throughout most of the sample period.

Hence, although our parsimonious model based in economic fundamentals is on average

better than the random rank even in short-run horizons, the number of individual exchange

rates for which the significance of the predictability is robust (to different forecast windows)

remains low.

5.2 Driftless Random Walk versus Random Walk with Drift

There has been a debate on whether or not we should include a drift in the random walk

specification for out-of-sample forecast accuracy comparisons. As first shown by Meese and

Rogoff (1983), the most important argument in favor of the driftless random walk specification

is that it is a far more accurate out-of-sample predictor of the nominal exchange rate—in U.S.

dollars—than the random walk with drift. On the other hand, Engel and Hamilton (1990) find

that conventional in-sample statistics of the price of the dollar against some major currencies

21



0
.2

.4
.6

.8
1

1985 1989 1993 1997 2001 2005 2009

Austria Belgium
Denmark France
Germany Great Britain
Italy Netherlands
Spain 10% significance

(a) Numeraire: Japan

0
.2

.4
.6

.8
1

1985 1989 1993 1997 2001 2005 2009

Austria
Great Britain
Italy
Japan
10% significance

(b) Numeraire: Switzerland

Figure 3: Individual p-values with Japan and Switzerland as numeraires (four quarters ahead)

22



reject the hypothesis that the drift has been constant across pre-selected periods of time, so that

it is arbitrary to set the drift equal to zero. In this paper, we focus exclusively on out-of-sample

forecast accuracy and therefore we worry only about comparing our STEC model against the

best of the random walk specifications. Given that in the previous sections we have used the

driftless random walk as our competing model, we devote this section to verify if indeed the

driftless random walk is better than the random walk with drift.

As mentioned above, Engel, Mark, and West (2007) revise the results of Mark and Sul (2001)

for an updated sample (up to 2005.Q4) and show—with the U.S. as numeraire—that the linear

PPP model outperforms the random walk with drift for one-quarter-ahead forecasts for 15 out

of 18 countries, but only for 7 out of 18 when the driftless random walk is used. Results are

better for sixteen-quarter-ahead forecasts, with the PPP model outperforming the random walk

with drift in 17 out of 18 countries, and for 14 out of 18 when compared against the driftless

random walk. Instead of comparing the STEC model against both random walk specifications,

we provide an extensive out-of-sample forecast accuracy comparison of the random walk without

drift versus the random walk with drift. We do this for our updated version of Mark and Sul’s

data (up to 2009.Q4) and for the three numeraires of their original work.

Based on our initial forecast window (1985.Q1-2009.Q4), Table 4 presents out-of-sample U -

statistics across different horizons for our three numeraires. A U -statistic less than one implies

a higher forecast precision of the driftless random walk. As we can observe, the driftless random

walk is generally a better predictor for each of the three numeraires: it is better than the random

walk with drift for 15 or more countries (out of 18) across different horizons when the U.S. and

Switzerland are the numeraires, and for 14 or more countries when Japan is the numeraire. The

average U -statistics show that the relative accuracy of the driftless random walk improves the

longer the forecast horizon. Hence, if we were to compare the STEC model with the random

walk with drift, we would find lower U -statistics for the vast majority of countries. This would

appear to generate large predictability gains coming from economic fundamentals, when it is

actually a lower forecasting performance of the benchmark model.

The better forecast accuracy of the driftless random walk remains over most of the forecast

windows. Figure 4 shows the number of countries for which the driftless random walk is better—

with a U -statistic less than one—than the random walk with drift over the different windows.

As before, the x-axis represents the first quarter of the forecast window (so that the first point
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in each line is a number in the last row of Table 4). Figure 4a shows that when the U.S. is the

numeraire, the driftless random walk outperforms the random walk with drift for 10 or more

countries (at any forecast horizon) for forecast windows starting before 2007. After that year,

it only goes below 9 for eight-quarter-ahead forecasts and it reaches 9 for one-quarter-ahead

forecasts only in the last forecast window. When Japan is the numeraire, the driftless random

walk is better over forecast windows with an initial quarter between 1985 and 2006. After that,

the random walk with drift becomes better. Something similar happens when Switzerland is

the numeraire, with the random walk with drift becoming better only after 2007. Thus, the

driftless random walk dominates the random walk with drift throughout the vast majority of

our windows.

With respect to the individual exchange rates for which the STEC model consistently and

significantly outperforms the driftless random walk (in Section 5.1.2), the driftless random walk is

better than the random walk with drift in almost all forecast windows for almost all cases.13 For

the one-quarter-ahead U.S. case, the driftless random walk is better than the random walk with

drift in every forecast window for Australia, Canada, and Finland. For Sweden, the random walk

with drift becomes slightly better in forecast windows starting between 2007.Q4 and 2008.Q3.

For the robust countries when Japan is the numeraire (in Figure 3a), with the exception of

Great Britain, the random walk with drift only becomes better than the driftless random walk

in forecast windows starting after 2006. Finally, for the countries in Figure 3b with Switzerland

as numeraire, the driftless random walk always dominates for Japan and it dominates up to

windows starting in 2007 for Austria and Italy.14

6 Conclusions

We present a Smooth Transition Error-Correction Model—in the spirit of the generalized cointe-

grated system of Granger and Swanson (1996)—for the relationship between PPP fundamentals

and the nominal exchange rate. Using a panel dataset of 19 countries and estimating the model

for three numeraires, we find strong evidence of nonlinear mean reversion of the real exchange

rate and of nonlinear predictability of the nominal exchange rate.

Out-of-sample statistics show a better forecast accuracy of the STEC model than the driftless

13Individual U -statistics for the comparison of the two random walk specifications are available upon request.
14For Great Britain, the random walk with drift dominates for forecast windows starting around 2003 when

Japan is the numeraire, and for forecast windows starting around 1998 when Switzerland is the numeraire.
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random walk specification across numeraires and horizons. We follow Rogoff and Stavrakeva

(2008) and verify the robustness of the out-of-sample results over different forecast windows. We

find that on average, the STEC model significantly dominates the driftless random walk over

different forecast windows for one-quarter-ahead horizons when the U.S. is the numeraire and

for four- and eight-quarter-ahead horizons when Japan and Switzerland are the numeraires.

These results differ with recent contributions from Engel, Mark, and West (2007) and others,

who find weak (nominal exchange rate) predictability results for short-run horizons—U -statistics

very close to one (about 0.99 or more) and not significant. A possible explanation of the difference

in results might be that nonlinear models with panel data perform better than traditional linear

models in the short run. Moreover, as Rogoff and Stavrakeva (2008), we find robust one-quarter-

ahead predictability when the U.S. is the numeraire for Australia, Canada, and Sweden. The

difference is that in contrast to the forecast pooling method with cross-country shocks of Rogoff

and Stavrakeva, which requires specific weighting procedures, our results come from the direct

estimation of an structural nonlinear model.
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