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A Proofs of Lemmas and Propositions

Proof of Proposition 1. The variable η̂(ϕ) denotes the value for η that makes a firm with pro-

ductivity ϕ indifferent between offshoring or not. In the Bellman equation (15), this implies that

πo(ϕ)

δ
− η̂(ϕ) [ρπn(ϕ) + fo] = πn(ϕ) + (1− δ)E

[
V (ϕ, η′)

]
.

Solving for η̂(ϕ) we obtain

η̂(ϕ) =
1

ρπn(ϕ) + fo

(
πo(ϕ)

δ
− πn(ϕ)

)
− 1− δ
ρπn(ϕ) + fo

E
[
V (ϕ, η′)

]
. (A-1)

Given η̂(ϕ), we can rewrite the value function as

V (ϕ, η) =

{
πo(ϕ)
δ − η [ρπn(ϕ) + fo] if η ≤ η̂(ϕ)

πo(ϕ)
δ − η̂(ϕ) [ρπn(ϕ) + fo] if η > η̂(ϕ).

From this expression, we can then get that

E
[
V (ϕ, η′)

]
=
πo(ϕ)

δ
− E

[
min

{
η′, η̂(ϕ)

}]
[ρπn(ϕ) + fo] . (A-2)

Plugging in equation (A-2) into equation (A-1), we find that

η̂(ϕ) = z(ϕ) + (1− δ)E
[
min

{
η′, η̂(ϕ)

}]
, (A-3)

where z(ϕ) = πo(ϕ)−πn(ϕ)
ρπn(ϕ)+fo

. Note that z(ϕ) ≥ 0, as πo(ϕ) ≥ πn(ϕ) for every ϕ.
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Let us now show that E [min {η′, η̂(ϕ)}] = η̂(ϕ)−
∫ η̂(ϕ)

0 F (η)dη:

E
[
min

{
η′, η̂(ϕ)

}]
=Pr(η′ ≤ η̂(ϕ))E[η′|η′ ≤ η̂(ϕ)] + Pr(η′ > η̂(ϕ))η̂(ϕ)

=F [η̂(ϕ)]E[η′|η′ ≤ η̂(ϕ)] + [1− F [η̂(ϕ)]]η̂(ϕ)

=η̂(ϕ)− F [η̂(ϕ)]
[
η̂(ϕ)− E[η′|η′ ≤ η̂(ϕ)]

]
=η̂(ϕ)− F [η̂(ϕ)]

[∫ η̂(ϕ)

0
(η̂(ϕ)− η)

dF (η)

F [η̂(ϕ)]

]

=η̂(ϕ)−
∫ η̂(ϕ)

0
(η̂(ϕ)− η)dF (η)

=η̂(ϕ)−
∫ η̂(ϕ)

0
F (η)dη (by integration by parts).

Substituting the previous expression into equation (A-3), we obtain that the cutoff adjustment

factor solves the equation

η̂(ϕ) =
z(ϕ)

δ
− 1− δ

δ

∫ η̂(ϕ)

0
F (η)dη. (A-4)

To show that the solution is unique, let

G[η̂(ϕ)] = η̂(ϕ) +
1− δ
δ

∫ η̂(ϕ)

0
F (η)dη − z(ϕ)

δ
, (A-5)

so that G[η̂(ϕ)] = 0 is equivalent to equation (A-4). We know that η̂(ϕ) ∈ [0,∞) and from equation

(A-5) we obtain that G(0) = − z(ϕ)
δ ≤ 0. Note also that G[η̂(ϕ)] → ∞ as η̂(ϕ) → ∞. Therefore,

given that G[η̂(ϕ)] is continuous, there is at least one solution for G[η̂(ϕ)] = 0 in the interval [0,∞).

Using Leibniz’s rule, we get G′[η̂(ϕ)] = 1 + 1−δ
δ F [η̂(ϕ)] > 0 for every η̂(ϕ). Hence, as G[η̂(ϕ)] is

strictly increasing, the solution is unique.

Proof of Proposition 2. Note that πn(ϕ) = πo(ϕ) = 0 for ϕ ≤ ϕo. Then, z(ϕ) = 0 if ϕ ≤ ϕo.

From equation (A-4), note that if z(ϕ) = 0, the equilibrium η̂(ϕ) solves the equation

η̂(ϕ) = −1− δ
δ

∫ η̂(ϕ)

0
F (η)dη.

As η̂(ϕ) ≥ 0 and −1−δ
δ

∫ η̂(ϕ)
0 F (η)dη ≤ 0, it follows that the solution is η̂(ϕ) = 0. As η is a

continuous random variable in the interval [0,∞), it must be the case that F (0) = 0. Therefore,

Λ(ϕ) = F [η̂(ϕ)] = 0 if ϕ ≤ ϕo.

As Λ(ϕ) = 0 when z(ϕ) = 0, to prove that Λ(ϕ) → 0 as ϕ → ∞, it is enough to show that

z(ϕ)→ 0 as ϕ→∞. Note that we can rewrite z(ϕ) as

z(ϕ) =

πo(ϕ)
πn(ϕ) − 1

ρ+ fo
πn(ϕ)

. (A-6)
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The limit of πs(ϕ), for s ∈ {n, o}, as ϕ→∞ is given by

lim
ϕ→∞

πs(ϕ) = lim
ϕ→∞

Ω

(
ϕ

ϕs
e

)
− 2 +

1

Ω
(
ϕ
ϕs
e
)
 γψ =∞.

Hence, using L’Hôpital’s rule we can write the limit of z(ϕ) as

lim
ϕ→∞

z(ϕ) =
1

ρ

[
lim
ϕ→∞

π′o(ϕ)

π′n(ϕ)
− 1

]
. (A-7)

We then get

lim
ϕ→∞

π′o(ϕ)

π′n(ϕ)
= lim

ϕ→∞

1− 1

Ω
(
ϕ
ϕo
e
)

1− 1

Ω
(
ϕ
ϕn

e
) = 1,

so that limϕ→∞ z(ϕ) = 0.

Now, Λ′(ϕ) = f [η̂(ϕ)]η̂′(ϕ), where f(·) is the probability density function for η. For η̂′(ϕ), we

derive equation (16) with respect to ϕ and use Leibniz’s rule to get η̂′(ϕ) = z′(ϕ)
δ+(1−δ)Λ(ϕ) . Hence,

Λ′(ϕ) =
f [η̂(ϕ)]z′(ϕ)

δ + (1− δ)Λ(ϕ)
. (A-8)

Given that f [η̂(ϕ)] and the denominator are both positive, it is the case that the sign of Λ′(ϕ) is

identical to the sign of z′(ϕ). I focus then on z′(ϕ).

Using the envelope theorem we obtain that π′s(ϕ) = wsys(ϕ)
ϕ2 for ϕ ≥ ϕs. Given that πs(ϕ) =

µs(ϕ)wsys(ϕ)
ϕ , it follows that π′s(ϕ) = πs(ϕ)

ϕµs(ϕ) . In the interval (ϕo, ϕn), πn(ϕ) = 0 so that z(ϕ) = πo(ϕ)
fo

.

Thus, we have

z′(ϕ) =
π′o(ϕ)

fo
=

πo(ϕ)

foϕµo(ϕ)
> 0 (A-9)

for ϕ ∈ (ϕo, ϕn). Therefore, Λ(ϕ) is strictly increasing in the interval (ϕo, ϕn), so that a maximum

for Λ(ϕ) cannot exist in that region. Given that Λ(ϕ) is continuous, if a maximum of Λ(ϕ) exists,

it must be in the region where ϕ ≥ ϕn. I will prove that this is the case.

If ϕ ≥ ϕn, we get

z′(ϕ) =

{
πo(ϕ) [µo(ϕ)− µn(ϕ)]

ϕ [ρπn(ϕ) + fo]
2 [µo(ϕ)]2 [1 + µn(ϕ)]

}
[fo − ρµo(ϕ)µn(ϕ)γψ] . (A-10)

Note that if ϕ = ϕn (which yields µn(ϕn) = 0), equation (A-10) collapses to equation (A-9). As

µo(ϕ) > µn(ϕ) for every ϕ ∈ [ϕn,∞), the first term is always positive. The second term gives the

sign of z′(ϕ) and in particular, it determines the value of ϕ that maximizes z(ϕ)—and hence Λ(ϕ).

Letting ϕ̂ denote the argument that maximizes z(ϕ), it follows that ϕ̂ solves the equation

fo − ρµo(ϕ̂)µn(ϕ̂)γψ = 0. (A-11)
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To show that this is indeed a maximum and that is unique, note that µo(ϕ)µn(ϕ) is strictly

increasing in the interval [ϕn,∞) because µ′s(ϕ) > 0, for s ∈ {n, o}, with µo(ϕ)µn(ϕ) = 0 if

ϕ = ϕn (because µn(ϕn) = 0) and µo(ϕ)µn(ϕ) → ∞ as ϕ → ∞. Hence, z′(ϕ) > 0 if ϕ ∈ [ϕn, ϕ̂),

and z′(ϕ) < 0 if ϕ ∈ (ϕ̂,∞). Note also that given ϕn and ϕo, a lower fo implies a lower ϕ̂ (so

that ρµo(ϕ̂)µn(ϕ̂)γψ is smaller). As fo approaches zero, it follows that µn(ϕ̂) must get closer to

zero; that is, ϕ̂ → ϕn from the right. The opposite happens with ρ: as ρ declines, the level of ϕ̂

increases.

Proof of Lemma 1. To obtain NE note first from equation (6) that the log price of a producing

firm with productivity ϕ and offshoring status s, for s ∈ {n, o}, is ln ps(ϕ) = ln p̂ − µs(ϕ). Hence,

the average log price of firms with offshoring status s is given by ln ps = ln p̂− µ̄s, where

µ̄s =

∫ ∞
ϕs

µs(ϕ)hs(ϕ | ϕ ≥ ϕs)dϕ

is the average markup of this group of firms. Substituting the expressions for ln pn and ln po into

the overall average log price, ln p = Nn
N ln pn + No

N ln po, we get

ln p̂− ln p =
Nn

N
µ̄n +

No

N
µ̄o.

Now, from equation (3) we know that ln p̂− ln p = 1
γN , which then implies that 1

γ = Nnµ̄n +Noµ̄o.

Plugging in our expressions for Nn and No from (21) and (22) into the previous equation, we solve

for NE as

NE =
δ

γ
[
(1− Γ̄)(1−Hn(ϕn))µ̄n + Γ̄µ̄o

] . (A-12)

Proof of Lemma 2. We have to prove that ζγ > 0, ζψ > 0, and that ζfo < 0. This is equivalent

to proving that dϕo
dγ > 0, dϕo

dψ > 0, and dϕo
dfo

< 0, respectively. Taking the total derivative of the free

entry condition (π̄E = fE) with respect to γ, we obtain

dϕo
dγ

= −
∂π̄E
∂γ

∂π̄E
∂ϕo

,

with similar expressions for dϕo
dψ and dϕo

dfo
. Under the sufficient condition that fo

ρ is large enough, it

is the case that ∂π̄E
∂ϕo

< 0 (see section C). It is left to show that ∂π̄E
∂γ > 0, ∂π̄E

∂ψ > 0, and ∂π̄E
∂fo

< 0.

I show first that ∂π̄E
∂γ > 0. Using the expression for π̄E on the left side of (27), I obtain

∂π̄E
∂γ

=
π̄E
γ

+

∫ ∞

ϕo

{
[δ + (1− δ)Λ(ϕ)] Λ(ϕ)

[
E[η|η ≤ η̂(ϕ)]fo

γ
− (ρπn(ϕ) + fo)

∂E[η|η ≤ η̂(ϕ)]

∂γ

]
+ [πo(ϕ)− πn(ϕ)− δE[η|η ≤ η̂(ϕ)](ρπn(ϕ) + fo)]

∂Λ(ϕ)

∂γ

}
g(ϕ)

[δ + (1− δ)Λ(ϕ)]
2 dϕ. (A-13)
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To obtain ∂E[η|η≤η̂(ϕ)]
∂γ , note that using integration by parts, we can write E[η|η ≤ η̂(ϕ)] as

E[η|η ≤ η̂(ϕ)] = η̂(ϕ)− 1

Λ(ϕ)

∫ η̂(ϕ)

0
F (η)dη. (A-14)

Hence, the partial derivative of equation (A-14) with respect to γ is given by

∂E[η|η ≤ η̂(ϕ)]

∂γ
=

1

Λ(ϕ)2

(∫ η̂(ϕ)

0
F (η)dη

)
∂Λ(ϕ)

∂γ
.

Using equations (A-14) and (16), we rewrite the previous expression as

∂E[η|η ≤ η̂(ϕ)]

∂γ
=

[
z(ϕ)− δE[η|η ≤ η̂(ϕ)]

(δ + (1− δ)Λ(ϕ)) Λ(ϕ)

]
∂Λ(ϕ)

∂γ
. (A-15)

Finally, substituting equation (A-15) into equation (A-13), ∂π̄E
∂γ simplifies to

∂π̄E
∂γ

=
π̄E
γ

+

∫ ∞
ϕo

1

γ

[
Λ(ϕ)E[η|η ≤ η̂(ϕ)]fo
δ + (1− δ)Λ(ϕ)

]
g(ϕ)dϕ, (A-16)

which is unambiguously greater than zero (both components are positive).

For ∂π̄E
∂ψ , we follow the same steps as with ∂π̄E

∂γ and obtain similar expressions: we only to replace

γ with ψ in equations (A-13), (A-15), and (A-16). Hence, we get ∂π̄E
∂ψ > 0.

Lastly, I show that ∂π̄E
∂fo

< 0. We get

∂π̄E
∂fo

=

∫ ∞

ϕo

{
− [δ + (1− δ)Λ(ϕ)] Λ(ϕ)

[
E[η|η ≤ η̂(ϕ)] + (ρπn(ϕ) + fo)

∂E[η|η ≤ η̂(ϕ)]

∂fo

]
+ [πo(ϕ)− πn(ϕ)− δE[η|η ≤ η̂(ϕ)](ρπn(ϕ) + fo)]

∂Λ(ϕ)

∂fo

}
g(ϕ)

(δ + (1− δ)Λ(ϕ))
2 dϕ. (A-17)

As with ∂E[η|η≤η̂(ϕ)]
∂γ , I get ∂E[η|η≤η̂(ϕ)]

∂fo
=
[
z(ϕ)−δE[η|η≤η̂(ϕ)]
(δ+(1−δ)Λ(ϕ))Λ(ϕ)

]
∂Λ(ϕ)
∂fo

. Hence, after substituting the

previous expression into equation (A-17), we get

∂π̄E
∂fo

= −
∫ ∞
ϕo

[
Λ(ϕ)E[η|η ≤ η̂(ϕ)]

δ + (1− δ)Λ(ϕ)

]
g(ϕ)dϕ, (A-18)

which is strictly less than zero.

Proof of Proposition 3. For an increase in γ and ψ, or for a decline in fo, we have to prove

that there exists a cutoff level, ϕ̃, such that the offshoring probability, Λ(ϕ), declines if ϕ < ϕ̃ and

increases if ϕ > ϕ̃.

With respect to γ and ψ shocks, it is enough to work with the response of Λ(ϕ) to γ, as the

derivatives with respect to ψ are similar (we only need to replace γ with ψ). Thus, we obtain dΛ(ϕ)
dγ

and derive the conditions that determine its sign.
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In (28) the term in brackets is positive, and therefore, we only need to focus on dz(ϕ)
dγ , where

z(ϕ) = πo(ϕ)−πn(ϕ)
ρπn(ϕ)+fo

, and πs(ϕ) = µs(ϕ)2

1+µs(ϕ)γψ for ϕ ≥ ϕs (and zero otherwise). We obtain

dz(ϕ)

dγ
=

{
[µo(ϕ)− µn(ϕ)]ψ

[ρπn(ϕ) + fo]2[1 + µo(ϕ)][1 + µn(ϕ)]

}
× {ρµo(ϕ)µn(ϕ)γψζγ + fo[µo(ϕ) + µn(ϕ) + µo(ϕ)µn(ϕ)]− foζγ} ,

where µs(ϕ) = 0 if ϕ ≤ ϕs, and is greater than zero otherwise, for s ∈ {n, o}. The first term in

brackets is non-negative, and strictly positive as long as ϕ > ϕo. Then, for ϕ > ϕo, the sign of
dz(ϕ)
dγ is determined by the sign of

Υ1(ϕ) = ρµo(ϕ)µn(ϕ)γψζγ + fo[µo(ϕ) + µn(ϕ) + µo(ϕ)µn(ϕ)]− foζγ .

By Lemma 2 (ζγ > 0), we get that Υ1(ϕ)→ −foζγ < 0 as ϕ→ ϕo from the right. Also Υ1(ϕ)→∞

as ϕ → ∞ (because µs(ϕ) → ∞ as ϕ → ∞ for s ∈ {n, o}). Therefore, given that Υ1(ϕ) is

continuous, there is at least one solution for Υ1(ϕ) = 0 in the interval (ϕo,∞). Given that µ′s(ϕ) > 0

if ϕ ≥ ϕs, for s ∈ {n, o}, it follows that Υ1(ϕ) is strictly increasing in ϕ. Therefore, the solution

to Υ1(ϕ) = 0, ϕ̃, is unique. Note that if ϕ ∈ (ϕo, ϕ̃), then Υ1(ϕ) < 0 and dz(ϕ)
dγ < 0. On the other

hand, if ϕ > ϕ̃, then Υ1(ϕ) > 0 and dz(ϕ)
dγ > 0.

For shocks to fo, we also get that sgn
(
dΛ(ϕ)
dfo

)
= sgn

(
dz(ϕ)
dfo

)
. We get

dz(ϕ)

dfo
=

{
[µo(ϕ)− µn(ϕ)]γψ

[ρπn(ϕ) + fo]2[1 + µo(ϕ)][1 + µn(ϕ)]fo

}
× {ρµo(ϕ)µn(ϕ)γψζfo − fo[µo(ϕ) + µn(ϕ) + µo(ϕ)µn(ϕ)]− foζfo} .

Similar to the previous part, the sign of dz(ϕ)
dfo

is determined by

Υ2(ϕ) = ρµo(ϕ)µn(ϕ)γψζfo − fo[µo(ϕ) + µn(ϕ) + µo(ϕ)µn(ϕ)]− foζfo .

By Lemma 2 (ζfo < 0), Υ2(ϕ) → −foζfo > 0 as ϕ → ϕo from the right. Also, Υ2(ϕ) → −∞ as

ϕ→∞. Given that Υ2(ϕ) is continuous, there is at least one solution for Υ2(ϕ) = 0 in the interval

(ϕo,∞). Given that µ′s(ϕ) > 0 if ϕ ≥ ϕs, for s ∈ {n, o}, it follows that Υ2(ϕ) is strictly decreasing

in ϕ. Therefore, the solution to Υ2(ϕ) = 0, ϕ̃, is unique. Note that if ϕ ∈ (ϕo, ϕ̃), then Υ2(ϕ) > 0

and dz(ϕ)
dfo

> 0. On the other hand, if ϕ > ϕ̃, then Υ2(ϕ) < 0 and dz(ϕ)
dfo

< 0.

B The Model with Alternative Preferences

The benchmark model assumes an endogenous-markup structure that generates an inverted-U

relationship between firm-level productivity and offshoring likelihood. This section shows that the
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same result holds if we use the quasilinear-quadratic preferences of Melitz and Ottaviano (2008),

but it can only be generated in a CES setting (i.e., with exogenous markups) under a very strong

condition.

B.1 CES Preferences

B.1.1 Preferences, Pricing, and Production

As before, the utility function of the representative household is U = q1−ψ
h Qψ, where qh is the

consumption of the homogeneous good, and Q is a consumption aggregator of differentiated goods.

In contrast to the benchmark model, Q is now given by the constant-elasticity-of-substitution (CES)

consumption aggregator

Q =

(∫
i∈∆

q
θ−1
θ

i di

) θ
θ−1

, (B-1)

where θ > 1 denotes the elasticity of substitution between varieties, and ∆ is the set of varieties

available for purchase.

As in the benchmark model, the homogeneous good is the numéraire, the domestic wage is 1,

and the total expenditure in differentiated goods of the representative household is ψ < 1. The

demand of the representative household for differentiated good i is then given by

qi =
p−θi
P 1−θψ, (B-2)

where pi is the price of good i and P =
[∫
i∈∆ p

1−θ
i di

] 1
1−θ

is the price of the CES aggregator Q.

Households are located in the unit interval, and hence the market demand for differentiated

good i is identical to the demand of the representative household. Assuming that the marginal

cost of producer i is constant and given by ci, CES preferences imply that this producer’s profit-

maximizing price is given by pi = (1 + µ)ci, where µ = 1
θ−1 is the producer’s proportional markup

over the marginal cost. Markups are exogenous in the CES case.

As in section 3.1.2, a firm knows its productivity only after paying a sunk entry cost of fE . The

firm then can decide between using only domestic labor (L) or use also foreign labor (L∗). Recall

that the foreign wage, w∗, is less than the domestic wage. In particular, the production function

of a producer with productivity ϕ and offshoring status s is given by ys(ϕ) = ϕLs, where

Ls =

{
L if s = n

min
{

L
1−κ ,

L∗

κλ

}
if s = o.

As before, the price of Ls, denoted by ws, is either wn = 1 or wo = 1−κ+κλw∗. The marginal cost

of a firm with productivity ϕ and offshoring status s is ws
ϕ . We assume that λ is small enough so
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that the marginal cost of a firm with productivity ϕ is always lower if the firm offshores: wo
ϕ < wn

ϕ .

Therefore, the price set by a firm with productivity ϕ and offshoring status s is

ps(ϕ) = (1 + µ)
ws
ϕ
, (B-3)

for s ∈ {n, o}.

An extra assumption of the CES model is that firms incur a fixed cost of operation, f , from

selling in the market. This assumption is necessary to pin down Melitz-type cutoff productivity

levels in a CES setting.1 Using the price equation along with the demand function for each variety,

we obtain that the profit function of a producing firm with productivity ϕ and offshoring status s

is

πs(ϕ) =
1

θ

(
P

ps(ϕ)

)θ−1

ψ − f. (B-4)

Hence, we define the cutoff productivity level for firms with offshoring status s as ϕs = inf{ϕ :

πs(ϕ) > 0} for s ∈ {n, o}. The zero-profit-condition for firms with offshoring status s is then given

by

ϕs =

(
fθ

ψ

) 1
θ−1
(

θ

θ − 1

)
ws
P
. (B-5)

A firm with productivity ϕ and offshoring status s does not produce if ϕ < ϕs.

Combining the expressions for ϕn and ϕo that stem from equation (B-5), we obtain

ϕo = woϕn, (B-6)

which is identical to equation (12) for the translog case. As before, this is one of the two expressions

we need to solve for the equilibrium cutoff productivity levels. Moreover, using equation (B-5) to

substitute for P , along with equation (B-3), we obtain that the equilibrium output of a firm with

productivity ϕ and offshoring status s is

ys(ϕ) =

{
0 if ϕ < ϕs(

ϕθ

ϕθ−1
s

)
f
µws

if ϕ ≥ ϕs.
(B-7)

Similarly, we can rewrite the profit function for this firm as

πs(ϕ) =

0 if ϕ < ϕs[(
ϕ
ϕs

)θ−1
− 1

]
f if ϕ ≥ ϕs,

(B-8)

for s ∈ {n, o}.

1Otherwise, firms will always find it profitable to produce a positive amount.
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B.1.2 The Offshoring Decision

The offshoring decision is described as in section 3.2. Proposition 1 holds but z(ϕ) = πo(ϕ)−πn(ϕ)
ρπn(ϕ)+fo

has different different properties than z(ϕ) in the translog case. This creates a difference in the

behavior of Λ(ϕ), and in particular, Proposition 2 no longer holds. The following proposition

describes the properties of the firm-level offshoring probability in the CES case.

Proposition B.1. (The probability of offshoring with CES preferences)

There is an inverted-U relationship between ϕ and Λ(ϕ) if and only if fo < ρf , with the max-

imum at ϕn; otherwise, Λ(ϕ) is non-decreasing in ϕ. Λ(ϕ) = 0 for ϕ ≤ ϕo, and Λ(ϕ) → Λ if

ϕ→∞, where Λ = F (η̂) > 0 and η̂ is the unique solution to

δη̂ + (1− δ)
∫ η̂

0
F (η)dη =

1

ρ

[(
ϕn
ϕo

)θ−1

− 1

]
. (B-9)

Proof. If ϕ ≤ ϕo, so that πn(ϕ) = πo(ϕ) = 0, then z(ϕ) = η̂(ϕ) = Λ(ϕ) = 0. If ϕ → ∞ then

Λ(ϕ)→ Λ = F (η̂), where—from equation (16)—it must be the case that η̂ solves

δη̂ + (1− δ)
∫ η̂

0
F (η)dη = lim

ϕ→∞
z(ϕ).

To obtain limϕ→∞ z(ϕ) we use again equation (A-6), but now πs(ϕ) is given by (B-8). Given that

limϕ→∞ πs(ϕ) → ∞, equation (A-7) continues to hold. We obtain π′s(ϕ) = (θ−1)fϕθ−2

ϕθ−1
s

for ϕ ≥ ϕs

and therefore

lim
ϕ→∞

π′o(ϕ)

π′n(ϕ)
=
π′o(ϕ)

π′n(ϕ)
=

(
ϕn
ϕo

)θ−1

> 1.

Plugging in the previous result into equation (A-7), we obtain

lim
ϕ→∞

z(ϕ) =
1

ρ

[(
ϕn
ϕo

)θ−1

− 1

]
.

The solution for η̂ is unique because the right-hand side of (B-9) is a positive constant, and the

left-hand side is strictly increasing in η̂ (taking the value of zero if η̂ = 0).

For the shape of Λ(ϕ) in the interval [ϕo,∞), it is enough to focus on z′(ϕ) because (A-8)

continues to hold. In the interval (ϕo, ϕn), πn(ϕ) = 0 so that z(ϕ) = πo(ϕ)
fo

and thus

z′(ϕ) =
π′o(ϕ)

fo
=

(θ − 1)fϕθ−2

foϕ
θ−1
o

> 0.

Therefore, Λ(ϕ) is strictly increasing in the interval (ϕo, ϕn). For ϕ ≥ ϕn, let us first rewrite π′s(ϕ)

as

π′s(ϕ) =
θ − 1

ϕ
[πs(ϕ) + f ] .
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ϕ
ϕo ϕn

Λ(ϕ)

Λ

0

fo < ρf

fo = ρf

fo > ρf

Figure B.1: Probability of offshoring in the CES case

Thus, we get

z′(ϕ) =
(θ − 1)[πo(ϕ)− πn(ϕ)]

ϕ[ρπn(ϕ) + fo]2
[fo − ρf ] . (B-10)

The last term in brackets determines the sign of z′(ϕ) and hence of Λ′(ϕ): for ϕ ≥ ϕn, Λ(ϕ) is

increasing if fo > ρf , decreasing if fo < ρf , and remains constant at Λ if fo = ρf (because in that

case z(ϕ) = 1
ρ

[(
ϕn
ϕo

)θ−1
− 1

]
for every ϕ ≥ ϕn). Therefore, there is an inverted-U relationship

between ϕ and Λ(ϕ) if and only if fo < ρf , with the maximum at ϕn.

Figure B.1 shows a graphical description of Proposition B.1. The offshoring probability increases

with ϕ in the range [ϕo, ϕn) because, as in the translog model, these firms are only subject to

adjustment costs unrelated to productivity, ηfo. The differences with respect to the translog case

occur for producing non-offshoring firms (with ϕ ≥ ϕn), with ρf serving as the threshold for fo

that determines whether Λ(ϕ) is increasing or decreasing in productivity. Importantly, the model

with translog preferences generates an inverted-U relationship without the need to assume any fixed

costs of operation (i.e., with f = 0).2

B.1.3 Distribution of Firms and Equilibrium

The expressions for Γ(ϕ), ho(ϕ), hn(ϕ), Nn, No, and N follow identically as in equations (18)-(23)

in section 3.3. To obtain NE , note first that with CES preferences the aggregate price, P , can be

written as

P =
[
Nnp̄

1−θ
n +Nop̄

1−θ
o

] 1
1−θ

, (B-11)

2Assuming f > 0 in the model of section 3 will reinforce the inverted-U shape, without adding any additional
insights.
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where p̄s = ps(ϕ̄s) is the average price of firms with offshoring status s, with

ϕ̄s =

[∫ ∞
ϕs

ϕθ−1hs(ϕ | ϕ ≥ ϕs)dϕ
] 1
θ−1

(B-12)

denoting these firms’ average productivity, for s ∈ {n, o}. Solving for P in equation (B-5), and

plugging in the resulting expression into (B-11), along with equations (21), (22), (B-3), and (B-6),

we can solve for the mass of entrants as

NE =
δψ

fθ
[
(1− Γ̄)(1−Hn(ϕn))(ϕ̄n/ϕn)θ−1 + Γ̄(ϕ̄o/ϕo)θ−1

] . (B-13)

We can also obtain market shares of non-offshoring and offshoring firms. From equation (B-2),

the share of a firm with productivity ϕ and offshoring status s in the total expenditure on differen-

tiated goods is given by σs(ϕ) = ps(ϕ)1−θ

P 1−θ . Aggregating over firms with the same offshoring status,

we obtain that the market share of firms with status s is σs = Nsp̄
1−θ
s

P 1−θ , with σn + σo = 1.

The free-entry condition in equation (27) closes the model and therefore, Definition 1 of equilib-

rium continues to apply. Of course, πn(ϕ) and πo(ϕ) are now given by (B-8), which then generate

differences in η̂(ϕ), Λ(ϕ), Γ(ϕ), hn(ϕ), and ho(ϕ).

B.2 Quasilinear-Quadratic Preferences

This section shows that the inverted-U shape relationship between firm-level productivity and

offshoring likelihood can also be obtained if we instead use the quasilinear-quadratic preferences of

Melitz and Ottaviano (2008), which also imply a demand structure with endogenous markups. As

in the translog case, we do not have to assume fixed costs of production.

The model follows almost identically the benchmark translog model, with the main differences

being in the expressions for firm-level profits and markups. These are respectively given by

πs(ϕ) =
w2
s

4ς

(
1

ϕs
− 1

ϕ

)2

(B-14)

µs(ϕ) =
1

2

(
ϕ

ϕs
− 1

)
(B-15)

for ϕ ≥ ϕs (and zero otherwise) and s ∈ {n, o}, with ς denoting a parameter that indicates the

degree of substitutability between differentiated goods (a higher ς implies more substitutability).

It follows that

π′s(ϕ) =
w2
s

2ςϕ2

(
1

ϕs
− 1

ϕ

)
> 0 (B-16)

and µ′s(ϕ) = 1
2ϕs

> 0, so that for ϕ ≥ ϕs firm-level profits and markups are strictly increasing in

productivity.
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I will now show that Proposition 2 holds word-by-word for the quasilinear-quadratic preferences.

The proof that Λ(ϕ) = 0 if ϕ ≤ ϕo follows exactly as in the proof of Proposition 2. To prove that

Λ(ϕ)→ 0 as ϕ→∞, it is sufficient to prove that limϕ→∞ z(ϕ) = 0. From (B-14) we can see that

lim
ϕ→∞

πs(ϕ) =
w2
s

4ςϕ2
s

(B-17)

for s ∈ {n, o}. Importantly, equation (12) holds (i.e., ϕo = woϕn) and thus limϕ→∞ πo(ϕ) =

limϕ→∞ πn(ϕ), which then implies that limϕ→∞
πo(ϕ)
πn(ϕ) = 1. It then follows from (A-6) that z(ϕ)→ 0

as ϕ→∞.

To verify that Λ(ϕ) has a single maximum in (ϕo,∞) we focus on z′(ϕ) because (A-8) also

applies for this case. From (B-14), (B-15), and (B-16), it is also the case that π′s(ϕ) = πs(ϕ)
ϕµs(ϕ) .

In the interval (ϕo, ϕn), equation (A-9) holds and hence Λ(ϕ) is strictly increasing in that range.

Given the continuity of Λ(ϕ), the maximum of Λ(ϕ) (if it exists) must be in the interval [ϕn,∞).

If ϕ ≥ ϕn, we obtain

z′(ϕ) =

{
πo(ϕ)(ϕn − ϕo)

2ϕ [ρπn(ϕ) + fo]
2 [µo(ϕ)]2 ϕ2

o

}{
fo (ϕo + ϕn − ϕ)− ρ(ϕ− ϕn)

4ςϕ2
n

(
1− ϕo

ϕ

)}
︸ ︷︷ ︸

R(ϕ)

. (B-18)

As in the translog case, if ϕ = ϕn equation (B-18) collapses to equation (A-9). The first term

in braces is always positive because ϕn > ϕo. The second term in braces, R(ϕ), determines the

sign of z′(ϕ). Note that if ϕ = ϕn, R(ϕn) = foϕo > 0. On the other hand, it is easy to see that

R(ϕ)→ −∞ if ϕ→∞. Moreover,

R′(ϕ) = −
[
fo +

ρ(ϕ2 − ϕoϕn)

4ςϕ2
nϕ

2

]
< 0

because ϕ ≥ ϕn > ϕo and hence, R(ϕ) is strictly decreasing in ϕ, for ϕ ≥ ϕn. Therefore, there

exists a unique level of ϕ, ϕ̂, so that

fo (ϕo + ϕn − ϕ̂)− ρ(ϕ̂− ϕn)

4ςϕ2
n

(
1− ϕo

ϕ̂

)
= 0. (B-19)

That is, ϕ̂ is the level of ϕ that yields the unique maximum of z(ϕ) and Λ(ϕ). Note from (B-19)

that as fo declines, ϕ̂ declines towards ϕn. The same happens when ρ increases.

To sum up, Proposition 2 holds if we instead use the quasilinear-quadratic preferences of Melitz

and Ottaviano (2008). More generally, all the theoretical results obtained with translog preferences

can be replicated with quasilinear-quadratic preferences.

C Existence and Uniqueness of Equilibrium

Using (19) and (20) we can rewrite a potential entrant’s expected value of entry as

π̄E =

∫ ∞

ϕo

1

δ + (1− δ)Λ(ϕ)

{
[1− Λ(ϕ)]πn(ϕ) + Λ(ϕ)

[
πo(ϕ)

δ
− E[η|η ≤ η̂(ϕ)][ρπn(ϕ) + fo]

]}
g(ϕ)dϕ,

(C-1)
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where Λ(ϕ) = F [η̂(ϕ)], η̂(ϕ) solves (16), and πs(ϕ) is given by (13), for s ∈ {n, o}. As is usual

in Melitz-type heterogeneous-firm models, we assume that limϕo→ϕmin π̄E > fE , where ϕmin is the

lowest bound of the productivity distribution. Given that limϕo→∞ π̄E = 0 and π̄E is continuous,

an equilibrium exists. If π̄E is strictly decreasing in ϕo, uniqueness of equilibrium is ensured. I now

describe conditions that are sufficient to obtain uniqueness.

After substituting ϕo = woϕn into (C-1), I obtain

dπ̄E
dϕo

= −γψ
ϕo

∫ ∞

ϕo

1

δ + (1− δ)Λ(ϕ)

{
[1− Λ(ϕ)]µn(ϕ)

1 + µn(ϕ)
+

Λ(ϕ)µo(ϕ)

δ[1 + µo(ϕ)]
− Λ(ϕ)E[η|η ≤ η̂(ϕ)]ρµn(ϕ)

1 + µn(ϕ)

}
g(ϕ)dϕ

(C-2)

where µs(ϕ) is given by (11) if ϕ ≥ ϕs, and is zero otherwise, for s ∈ {n, o}. The novelty in

(C-2) when compared to standard heterogeneous-firm models is the last term inside the braces,

which accounts for the reduction in adjustments costs when the cutoff productivity levels increase:

when ϕo and ϕn increase, profits of surviving offshoring and non-offshoring firms decline, but that

also implies that the expected adjustment cost declines. For uniqueness of equilibrium, the decline

in expected adjustment costs should not be larger than the expected decline of offshoring and

non-offshoring profits; otherwise, there would be cases in which the value of entry rises in spite of

increases in the cutoff levels. In the following I discuss weak conditions that ensure that dπ̄E
dϕo

< 0.

Using (16), (17), (13), (A-11), and E[η|η < η̂(ϕ)] = η̂(ϕ)−
∫ η̂(ϕ)

0 F (η)dη, we can rewrite (C-2)

as
dπ̄E
dϕo

= − γψ
δϕo

∫ ∞
ϕo

µn(ϕ)

1 + µn(ϕ)

{
1 + ρ

∫ η̂(ϕ)

0
F (η)dη − L(ϕ)

}
g(ϕ)dϕ, (C-3)

where

L(ϕ) =
Γ(ϕ)[µo(ϕ)− µn(ϕ)][1 + µn(ϕ)][µo(ϕ)µn(ϕ)− µo(ϕ̂)µn(ϕ̂)]

µn(ϕ)[1 + µo(ϕ)][µ2
n(ϕ) + µo(ϕ̂)µn(ϕ̂)(1 + µn(ϕ))]

, (C-4)

with ϕ̂ denoting the value of ϕ that maximizes z(ϕ) and Λ(ϕ)—see the proof of Proposition 1. A

sufficient (but not necessary) condition for dπ̄E
dϕo

< 0 is that

T (ϕ) =
µn(ϕ)

1 + µn(ϕ)

{
1 + ρ

∫ η̂(ϕ)

0
F (η)dη − L(ϕ)

}
> 0

for every ϕ > ϕo. For ϕ ∈ (ϕo, ϕn], so that µn(ϕ) = 0, T (ϕ) collapses to

T (ϕ) =
Γ(ϕ)µo(ϕ)

1 + µo(ϕ)
> 0.

For ϕ ∈ (ϕn, ϕ̂] we know that µo(ϕ)µn(ϕ) ≤ µo(ϕ̂)µn(ϕ̂) (recall that µ′s(ϕ) > 0 if ϕ ≥ ϕs) and

hence L(ϕ) ≤ 0 and T (ϕ) > 0. For ϕ > ϕ̂, note first that L(ϕ) > 0 and thus, to satisfy T (ϕ) > 0

we need to describe conditions such that L(ϕ) < 1 + ρ
∫ η̂(ϕ)

0 F (η)dη. We can rewrite (C-4) as

L(ϕ) = Γ(ϕ)

[
1 + µn(ϕ)

1 + µo(ϕ)

] [
1− µn(ϕ)

µo(ϕ)

] [
1− µo(ϕ̂)µn(ϕ̂)

µo(ϕ)µn(ϕ)

] [
µ2
n(ϕ)

µ2
n(ϕ) + [1 + µn(ϕ)]µo(ϕ̂)µn(ϕ̂)

]
µ2
o(ϕ)

µ2
n(ϕ)

. (C-5)
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where Γ(ϕ) and all the terms in brackets are less than 1. The last term, µ2
o(ϕ)

µ2
n(ϕ)

> 1, is strictly

decreasing in the interval (ϕ̂,∞), and approaches 1 as ϕ → ∞. Given that limϕ→∞
µn(ϕ)
µo(ϕ) = 1, it

follows that limϕ→∞ L(ϕ) = 0; thus, it is always the case that T (ϕ) > 0 when ϕ approaches either

ϕ̂ or infinity. For other values in the (ϕ̂,∞) range, note from (C-5) that L(ϕ) is decreasing in

µo(ϕ̂)µn(ϕ̂). Now, from (A-11) we know that

µo(ϕ̂)µn(ϕ̂) =
fo
ργψ

, (C-6)

and therefore, L(ϕ) is decreasing in fo. It follows that we can ensure that L(ϕ) < 1+ρ
∫ η̂(ϕ)

0 F (η)dη

(so that T (ϕ) > 0) for every ϕ > ϕ̂ if we assume that fo is sufficiently large. In the paper we assume

that this is the case.

To sum up, the assumption of a large enough fo is sufficient to obtain T (ϕ) > 0 for every

ϕ > ϕo, with the last being a sufficient but not necessary condition for dπ̄E
dϕo

< 0.3

D The Model with Trade in Final Goods

This section contains details for the extension with trade in final goods. These details are omitted

in the main text of the paper to avoid repetition with respect to the benchmark model, and to

preserve space.

D.1 Prices, Markups, and Cutoff Productivity Levels

Given market segmentation, constant marginal costs, and translog preferences for differentiated

goods, we obtain that the prices set by a North firm with productivity ϕ and offshoring status s,

for s ∈ {n, o}, in the domestic (D) and export (X) markets are

pD,s(ϕ) = [1 + µD,s(ϕ)]
ws
ϕ

and pX,s(ϕ, τ) = [1 + µX,s(ϕ, τ)]
τws
ϕ
,

where

µD,s(ϕ) = Ω

(
ϕp̂

ws
e

)
− 1 and µX,s(ϕ, τ) = Ω

(
ϕp̂∗

τws
e

)
− 1. (D-1)

Given these pricing equations and each market’s demand function, we obtain that this firm’s profit

functions from selling in the domestic and export markets are

πD,s(ϕ) =
µD,s(ϕ)2

1 + µD,s(ϕ)
γψ and πX,s(ϕ, τ) =

µX,s(ϕ, τ)2

1 + µX,s(ϕ, τ)
γψw∗. (D-2)

3Importantly, note that we do not make any assumptions regarding the distributions of productivity, G(ϕ), and
the cutoff adjustment factor, F (η). Numerically, with several common distributions for G(ϕ) and F (η) (Pareto,
lognormal, Weibull, Frechet, exponential, and Gamma distributions), I was not able to find a single case for which
dπ̄E
dϕo

< 0 was not holding even with fo approaching zero.
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Similarly, the prices set by a South firm with productivity ϕ in the domestic and export markets

are, respectively, p∗D(ϕ) = [1 + µ∗D(ϕ)] w
∗

A∗ϕ and p∗X(ϕ, τ) = [1 + µ∗X(ϕ, τ)] τw
∗

A∗ϕ , where

µ∗D(ϕ) = Ω

(
A∗ϕp̂∗

w∗
e

)
− 1 and µ∗X(ϕ, τ) = Ω

(
A∗ϕp̂

τw∗
e

)
− 1. (D-3)

This firm’s profit functions from selling in each market are then given by

π∗D(ϕ) =
µ∗D(ϕ)2

1 + µ∗D(ϕ)
γψw∗ and π∗X(ϕ, τ) =

µ∗X(ϕ, τ)2

1 + µ∗X(ϕ, τ)
γψ. (D-4)

Using the markup functions from (D-1) and (D-3), we define the cutoff productivity levels for

North firms with offshoring status s selling domestically as

ϕD,s = inf{ϕ : µD,s(ϕ) > 0} =
ws
p̂
, (D-5)

for s ∈ {n, o}. In the same way, the cutoff productivity level for South firms selling domestically is

given by

ϕ∗D = inf{ϕ : µ∗D(ϕ) > 0} =
w∗

A∗p̂∗
. (D-6)

For exporting, the firm’s decision to export depends on both ϕ and τ . There are some firms,

however, whose value of ϕ is so low that they will never export no matter their τ draw (even if τ

equals 1). Let ϕX,s denote the productivity level so that no firm with productivity below ϕX,s and

status s will ever export. If follows that ϕX,s and the South equivalent ϕ∗X are given by

ϕX,s = inf{ϕ : µX,s(ϕ, 1) > 0} =
ws
p̂∗
, (D-7)

ϕ∗X = inf{ϕ : µ∗X(ϕ, 1) > 0} =
w∗

A∗p̂
. (D-8)

Thus, a North firm with productivity ϕ and iceberg cost τ exports if and only if ϕ ≥ τϕX,s, while

a South firm exports if and only if ϕ ≥ τϕ∗X .

Combining the six zero-cutoff-markup conditions that stem from equations (D-5)-(D-8), we

obtain

ϕ∗X = w∗ϕD,n/A
∗, (D-9)

ϕX,n = A∗ϕ∗D/w
∗, (D-10)

ϕD,o = woϕD,n, (D-11)

ϕX,o = woϕX,n. (D-12)

Also, we can use the zero-cutoff-markup conditions to replace p̂ and p̂∗ in the markups equations

in (D-1) and (D-3). Thus, we can conveniently rewrite the markup in the domestic and export

15



markets of a North firm with offshoring status s as

µD,s(ϕ) = Ω

(
ϕ

ϕD,s
e

)
− 1 if ϕ ≥ ϕD,s, (D-13)

µX,s(ϕ, τ) = Ω

(
ϕ

τϕX,s
e

)
− 1 if ϕ ≥ τϕX,s, (D-14)

for s ∈ {n, o}. Similarly, we rewrite the markup in each market of a South firm as

µ∗D(ϕ) = Ω

(
ϕ

ϕ∗D
e

)
− 1 if ϕ ≥ ϕ∗D, (D-15)

µ∗X(ϕ, τ) = Ω

(
ϕ

τϕ∗X
e

)
− 1 if ϕ ≥ τϕ∗X . (D-16)

D.2 Free-Entry Conditions and Equilibrium

As in Melitz (2003), firm enter in each country up to the point that the expected value of entry

equals a sunk entry cost. In terms of the homogeneous good, the sunk cost is fE for North firms,

and f∗E for South firms. North and South firms draw their productivity from the same productivity

distribution with support [ϕmin,∞), with pdf g(ϕ) and cdf G(ϕ). They also draw iceberg costs

from the same distribution, with pdf m(τ), cdf M(τ), and support [1,∞).

Given ho(ϕ, τ) and hn(ϕ, τ) in (38) and following similar steps to those in section 3.4, we obtain

that the free-entry condition in the North is

(1− Γ̄)

∫ ∞
ϕmin

∫ ∞
1

πn(ϕ, τ)

δ
hn(ϕ, τ)dτdϕ+

Γ̄

∫ ∞
ϕmin

∫ ∞
1

{
πo(ϕ, τ)

δ
− E[η | η ≤ η̂(ϕ, τ)] [ρπn(ϕ, τ) + fo]

}
ho(ϕ, τ)dτdϕ = fE , (D-17)

where the left-hand side is the expected value of entry for a North potential entrant.

In the South firms never offshore, but they are also subject to the exogenous death shock with

rate δ. Hence, as long as it is alive, a South firm with productivity ϕ makes a per-period profit of

π∗(ϕ, τ) = π∗D(ϕ) + π∗X(ϕ, τ), where

π∗D(ϕ) =

[
µ∗D(ϕ)2

1 + µ∗D(ϕ)

]
γψw∗1{ϕ ≥ ϕ∗D} and π∗X(ϕ, τ) =

[
µ∗X(ϕ, τ)2

1 + µ∗X(ϕ, τ)

]
γψ1{ϕ ≥ τϕ∗X}.

Therefore, the free-entry condition in the South is simply given by∫ ∞
ϕmin

∫ ∞
1

π∗(ϕ, τ)

δ
g(ϕ)m(τ)dτdϕ = f∗E , (D-18)

where the left-hand side is the expected value of entry for a South potential entrant. We can now

define the equilibrium in this model.

Definition 1. An equilibrium is a list (ϕD,o, ϕX,o, ϕD,n, ϕX,n, ϕ∗D, ϕ∗X) that solves (D-9), (D-10),

(D-11), (D-12), (D-17), and (D-18).
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In the Melitz model with a homogeneous exporting iceberg cost (i.e., with τ being identical for

every firm), existence and uniqueness of equilibrium require that the pre-entry expected profits from

selling domestically are larger than the pre-entry expected profits from exporting, which is ensured

by assuming that exporters always sell for their domestic market. This is achieved by assuming

that τ is sufficiently large so that the domestic cutoff level is below the unique exporting cutoff

level. In our case with random iceberg exporting costs, we also require larger pre-entry expected

profits from selling domestically than from exporting, which is achieved with a sufficiently large

expected value for τ . In our case, however, there may be firms that export but do not sell for

the domestic market. For example, note from (D-9) and (D-10) that if ϕ∗D < ϕ∗X , it must be the

case that ϕD,s > ϕX,s for s ∈ {n, o}, so that North firms with very low τ draws only sell for the

export market (recall that a North firm with the pair (ϕ, τ) and status s exports if ϕ ≥ τϕX,s).

In addition, and similar to the model without trade in final goods, existence of equilibrium follows

under standard conditions and we ensure uniqueness by assuming that fo is sufficiently large.

D.3 Entrants and the Composition of Firms

Given ho(ϕ, τ) and hn(ϕ, τ) in (38), we can obtain the fraction of North firms with offshoring status

s that sell in each market. Let εr,s denote the fraction of North firms with offshoring status s that

sell for market r, for s ∈ {n, o} and r ∈ {D,X}. It then follows that

εD,s =

∫ ∞
ϕD,s

∫ ∞
1

hs(ϕ, τ)dτdϕ =

∫ ∞
ϕD,s

hs(ϕ)dϕ = 1−Hs(ϕD,s), (D-19)

εX,s =

∫ ∞
ϕX,s

∫ ϕ/ϕX,s

1
hs(ϕ, τ)dτdϕ, (D-20)

where hs(ϕ) is defined as in (39) and Hs(ϕ) is the marginal cdf of ϕ for North firms with offshoring

status s. Similarly, let ε∗r denote the fraction of South firms that sell for market r. Given that

South firms do not offshore, their expressions for ε∗D and ε∗X are simpler:

ε∗D =

∫ ∞
ϕ∗D

∫ ∞
1

g(ϕ)m(τ)dτdϕ = 1−G(ϕ∗D), (D-21)

ε∗X =

∫ ∞
ϕ∗X

∫ ϕ/ϕ∗X

1
g(ϕ)m(τ)dτdϕ =

∫ ∞
ϕ∗X

M(ϕ/ϕ∗X)g(ϕ)dϕ. (D-22)

Since the masses of firms are constant in steady state, the firms that die due to the exogenous

death shock must be exactly replaced by successful entrants so that

δNr,n = εr,n
(
1− Γ̄

)
NE , (D-23)

δNr,o = εr,oΓ̄NE , (D-24)

δN∗r = ε∗rN
∗
E , (D-25)
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for r ∈ {D,X}. Recall from section 5.3 that Nr,s is the mass of North firms with offshoring status

s that produce for market r, N∗r is the mass of South firms selling for market r, NE is the mass

of North entrants every period, and N∗E is the mass of South entrants. Hence, in each of these

equations the left-hand side accounts for firms dying due to the exogenous death shock, while the

right-hand side accounts for successful entrants. To obtain NE and N∗E in terms of the cutoff

productivity levels we follow similar steps as those followed in section 3.3 for the derivation of NE .

The following lemma shows the expressions for NE and N∗E .

Lemma D.1. (North and South entrants)

The measures of NE and N∗E are given by

NE =
δ

γ

[
µ̃∗D − µ̃∗X

(µ̃D,n + µ̃D,o) µ̃∗D − (µ̃X,n + µ̃X,o) µ̃∗X

]
, (D-26)

N∗E =
δ

γ

[
(µ̃D,n − µ̃X,n) + (µ̃D,o − µ̃X,o)

(µ̃D,n + µ̃D,o) µ̃∗D − (µ̃X,n + µ̃X,o) µ̃∗X

]
, (D-27)

where

µ̃D,n =

∫ ∞
ϕD,n

∫ ∞
1

µD,n(ϕ)[1− Γ(ϕ, τ)]g(ϕ)m(τ)dτdϕ = (1− Γ̄)

∫ ∞
ϕD,n

µD,n(ϕ)hn(ϕ)dϕ

µ̃X,n =

∫ ∞
ϕX,n

∫ ϕ/ϕX,n

1
µX,n(ϕ, τ)[1− Γ(ϕ, τ)]g(ϕ)m(τ)dτdϕ

=(1− Γ̄)

∫ ∞
ϕX,n

∫ ϕ/ϕX,n

1
µX,n(ϕ, τ)hn(ϕ, τ)dτdϕ

µ̃D,o =

∫ ∞
ϕD,o

∫ ∞
1

µD,o(ϕ)Γ(ϕ, τ)g(ϕ)m(τ)dτdϕ = Γ̄

∫ ∞
ϕD,o

µD,o(ϕ)ho(ϕ)dϕ

µ̃X,o =

∫ ∞
ϕX,o

∫ ϕ/ϕX,o

1
µX,o(ϕ, τ)Γ(ϕ, τ)g(ϕ)m(τ)dτdϕ = Γ̄

∫ ∞
ϕX,o

∫ ϕ/ϕX,o

1
µX,o(ϕ, τ)ho(ϕ, τ)dτdϕ.

denote the unconditional expected markups for a potential North entrant from selling in market r

under offshoring status s, for r ∈ {D,X} and s ∈ {n, o}, and

µ̃∗D =

∫ ∞
ϕ∗D

µ∗D(ϕ)g(ϕ)dϕ and µ̃∗X =

∫ ∞
ϕ∗X

∫ ϕ/ϕ∗X

1
µ∗X(ϕ, τ)g(ϕ)m(τ)dτdϕ

are the unconditional expected markups for a potential South entrant from selling in market r, for

r ∈ {D,X}.

Proof. Note first from equation (6) that for a North firm with productivity ϕ and offshoring status

s ∈ {n, o}: (i) ln pD,s(ϕ) = ln p̂ − µD,s(ϕ) if ϕ ≥ ϕD,s, and (ii) ln pX,s(ϕ) = ln p̂∗ − µX,s(ϕ, τ) if

ϕ ≥ τϕX,s. Therefore, the average log price of North firms with offshoring status s is ln pD,s =
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ln p̂− µ̄D,s in the domestic market, and ln pX,s = ln p̂∗ − µ̄X,s in the export market, where

µ̄D,s =

∫ ∞
ϕD,s

µD,s(ϕ)hs(ϕ | ϕ ≥ ϕD,s)dϕ = (1/εD,s)

∫ ∞
ϕD,s

µD,s(ϕ)hs(ϕ)dϕ (D-28)

µ̄X,s =(1/εX,s)

∫ ∞
ϕX,s

∫ ϕ/ϕX,s

1
µX,s(ϕ, τ)hs(ϕ, τ)dτdϕ (D-29)

are the average markups of North firms with offshoring status s in the domestic (D) and export

(X) markets, for s ∈ {n, o}. On the other hand, the average log prices of South firms are ln p
∗
D =

ln p̂∗ − µ̄∗D and ln p
∗
X = ln p̂− µ̄∗X where

µ̄∗D =

∫ ∞
ϕ∗D

µ∗D(ϕ)g(ϕ | ϕ ≥ ϕ∗D)dϕ = (1/ε∗D)

∫ ∞
ϕ∗D

µ∗D(ϕ)g(ϕ)dϕ (D-30)

µ̄∗X =(1/ε∗X)

∫ ∞
ϕ∗X

∫ ϕ/ϕ∗X

1
µ∗X(ϕ, τ)g(ϕ)m(τ)dτdϕ (D-31)

are the average markups of South firms selling in each market.

Substituting the equations for ln pD,n, ln pD,o, and ln p
∗
X into the overall average log price in the

North market, ln p =
ND,n
N ln pD,n +

ND,o
N ln pD,o +

N∗X
N ln p

∗
X , we get

ln p̂− ln p =
ND,n

N
µ̄D,n +

ND,o

N
µ̄D,o +

N∗X
N

µ̄∗X . (D-32)

Also, substituting the equations for ln p
∗
D, ln pX,n, and ln pX,o into the overall average log price in

the South market, ln p
∗

=
N∗D
N∗ ln p

∗
D +

NX,n
N∗ ln pX,n +

NX,o
N∗ ln pX,o, we obtain

ln p̂∗ − ln p
∗

=
N∗D
N∗

µ̄∗D +
NX,n

N∗
µ̄X,n +

NX,o

N∗
µ̄X,o. (D-33)

From equation (3) it follows that ln p̂ − ln p = 1
γN , with an analogous expression holding in the

South market, ln p̂∗ − ln p
∗

= 1
γN∗ . Therefore, we can rewrite (D-32) and (D-33) as

1

γ
= ND,nµ̄D,n +ND,oµ̄D,o +N∗X µ̄

∗
X , (D-34)

1

γ
= N∗Dµ̄

∗
D +NX,nµ̄X,n +NX,oµ̄X,o. (D-35)

From the definitions of the unconditional expected markups above and equations (D-28)-(D-31),

note that µ̃r,n = (1− Γ̄)εr,nµ̄r,n, µ̃r,o = Γ̄εr,oµ̄r,o, and µ̃∗r = ε∗rµ̄
∗
r , for r ∈ {D,X}. Lastly, using the

previous equations and substituting the expressions for ND,n, ND,o, NX,n, NX,o, N
∗
D and N∗X from

(D-23)-(D-25) into (D-34) and (D-35) we obtain the system of equations that allows us to obtain

(D-26) and (D-27).

Once we obtain the equilibrium cutoff productivity levels, we obtain NE and N∗E using (D-26)

and (D-27), and then plug them into (D-23)-(D-25) to obtain ND,o, ND,n, NX,o, NX,o, N
∗
D and

N∗X , which are then plugged into N = ND,n +ND,o +N∗X and N∗ = N∗D +NX,n +NX,o.
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Let NP denote the mass of North producing firms, and N∗P the mass of South producing firms.

In contrast to the case without export opportunities, NP is now different from the number of

varieties sold in the North, N . If ϕD,s ≤ ϕX,s, so that exporting firms are a subset of firms selling

to the domestic market, it follows that NP = ND,o + ND,n. However, if ϕD,s > ϕX,s there will be

some low-τ firms that export but do not sell domestically. Let $s denote the fraction of North

exporters with status s, NX,s, whose productivities are between ϕX,s and ϕD,s. It follows that

$s = 1{ϕD,s > ϕX,s}(1/εX,s)
∫ ϕD,s

ϕX,s

∫ ϕ/ϕX,s

1
hs(ϕ, τ)dτdϕ.

Therefore,

NP = ND,o +ND,n +$oNX,o +$nNX,n. (D-36)

Analogously, for South firms we have that

$∗ = 1{ϕ∗D > ϕ∗X}(1/ε∗X)

∫ ϕ∗D

ϕ∗X

M(ϕ/ϕ∗X)g(ϕ)dϕ.

Hence,

N∗P = N∗D +$∗N∗X . (D-37)

We can obtain further useful expressions for different masses of firms. The mass of North

offshoring firms, No, the mass or North non-offshoring firms, and the mass of North exporters, NX ,

are given by

No =ND,o +$oNX,o, (D-38)

Nn =NP −No, (D-39)

NX =NX,o +NX,n. (D-40)

D.4 Average Prices, Average Productivities, and Market Shares

Average productivities, ϕ̄r,s and ϕ̄∗r , and average prices, p̄r,s and p̄∗r , for r ∈ {D,X} and s ∈ {n, o},

follow similar definitions to those of average markups in (D-28)-(D-31). The overall average prices

can then be written as p̄ =
ND,n
N p̄D,n +

ND,o
N p̄D,o +

N∗X
N p̄∗X in the North, and as p̄∗ =

N∗D
N∗ p̄

∗
D +

NX,n
N∗ p̄X,n +

NX,o
N∗ p̄X,o in the South.

We can also obtain the average productivity of all producing North firms with the same off-

shoring status, ϕ̄o and ϕ̄n. All offshoring firms produce, and hence, ϕ̄o is simply given by

ϕ̄o =

∫ ∞
min(ϕD,o,ϕX,o)

ϕho(ϕ)dϕ. (D-41)

If min(ϕD,o, ϕX,o) = ϕD,o, then ϕ̄o = ϕ̄D,o (in that case εD,o = 1 because Ho(ϕD,o) = 0). For

ϕ̄n, we need to describe first the distribution of non-offshoring firms conditional on producing—

recall that hn(ϕ) denotes the marginal pdf of productivity for all non-offshoring firms, producing
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or not. If ϕD,n ≤ ϕX,n, so that exporting non-offshoring firms are a subset of firms that produce

for the domestic market, the conditional distribution is simply hn(ϕ|ϕ ≥ ϕD,n) = (1/εD,n)hn(ϕ)

and ϕ̄n = ϕ̄D,n. If ϕD,n > ϕX,n, however, the conditional distribution is not that simple because

only a subset of non-offshoring firms in the range [ϕX,n, ϕD,n) produce (those that export due to

their low τ draw). In this case the conditional distribution of non-offshoring firms is

hn(ϕ|active) =


0 if ϕ < ϕX,n

[1/(εX,n$n + εD,n)]
∫ ϕ/ϕX,n

1 hn(ϕ, τ)dτ if ϕ ∈ [ϕX,n, ϕD,n)

[1/(εX,n$n + εD,n)]hn(ϕ) if ϕ ≥ ϕD,n.
(D-42)

It follows that

ϕ̄n =
$nNX,n

Nn

[
1

$nεX,n

∫ ϕD,n

ϕX,n

∫ ϕ/ϕX,n

1
ϕhn(ϕ, τ)dτdϕ

]
+
ND,n

Nn
ϕ̄D,n. (D-43)

Using ϕ̄o and ϕ̄n, we obtain the average productivity of all producing North firms, ϕ̄, as

ϕ̄ =
No

NP
ϕ̄o +

Nn

NP
ϕ̄n. (D-44)

As before, the effective productivity of offshoring firms considers the decline in marginal costs

due to offshoring. Hence, the average effective productivity of offshoring firms selling in market r

is ϕ̄Er,o = ϕ̄r,o/wo, for r ∈ {D,X}, the overall average effective productivity of offshoring firms is

ϕ̄Eo = ϕ̄o/wo, and the average effective productivity of all North firms is

ϕ̄E =
No

NP
ϕ̄Eo +

Nn

NP
ϕ̄n. (D-45)

For South firms, their average productivity, ϕ̄∗, equals ϕ̄∗D if ϕ∗D ≤ ϕ∗X . Otherwise, we have

that

ϕ̄∗ =
$∗N∗X
N∗P

[
1

$∗ε∗X

∫ ϕ∗D

ϕ∗X

ϕM(ϕ/ϕ∗X)g(ϕ)dϕ

]
+
N∗D
N∗P

ϕ̄∗D, (D-46)

where the term inside the brackets is the average productivity of South producing firms with

productivities in the range [ϕ∗X , ϕ
∗
D).

Lastly, from equation (7) we know that σD,s(ϕ) = γµD,s(ϕ) and σX,s(ϕ, τ) = γµX,s(ϕ, τ) are the

market share densities in each destination of a North firm with productivity ϕ and offshoring status

s, and σ∗D(ϕ) = γµ∗D(ϕ) and σ∗X(ϕ, τ) = γµ∗X(ϕ, τ) are the market share densities in destination r

of a South firm with productivity ϕ. Aggregating, it follows that the market share in destination r

of North firms with offshoring status s, σr,s, and the market share in destination r of South firms,

σ∗r , are given by

σr,s = γNr,sµ̄r,s and σ∗r = γN∗r µ̄
∗
r ,

for r ∈ {D,X} and s ∈ {n, o}. Of course, it is the case that σD,o + σD,n + σ∗X = 1 and σ∗D + σX,o +

σX,n = 1.
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D.5 The Impact of Trade Liberalization in the South

This section describes the effects of trade liberalization in final goods and of reductions in the

variable offshoring cost, λ, on outcomes for South firms and the South market. Recall that South

firms never offshore, but the South is the source of offshored labor for North firms. Table D.1,

which is simply a continuation of Table 4, shows the results.

Table D.1: The effects of trade liberalization in the South

Autarky Offshoring Final-good trade and offshoring

(τ∞, λ∞) (τ∞, λH) (τH , λH) (τH , λL) (τL, λH) (τL, λL)

Productivity:

ϕ∗D 0.427 0.427 0.464 0.457 0.538 0.503
ϕ∗X — — 0.585 0.624 0.621 0.692
ϕ̄∗D 1.327 1.327 1.330 1.330 1.341 1.335
ϕ̄∗X — — 1.722 1.745 1.580 1.645
ϕ̄∗ 1.327 1.327 1.330 1.330 1.341 1.335

Prices:

p̂∗ 2.211 2.211 2.035 2.065 1.752 1.877
p̄∗ 1.250 1.250 1.341 1.363 1.236 1.289
p̄∗D 1.250 1.250 1.206 1.214 1.126 1.163
p̄∗X — — 1.310 1.238 1.214 1.114

Markups and shares:

µ̄∗D 0.599 0.599 0.550 0.559 0.468 0.505
µ̄∗X — — 0.224 0.214 0.239 0.215
σ∗D 1.000 1.000 0.771 0.715 0.539 0.285
σ∗X — — 0.080 0.062 0.174 0.065

Composition of firms:

N∗ 0.835 0.835 1.110 1.111 1.337 1.243
N∗P 0.835 0.835 0.701 0.640 0.576 0.282
N∗X/N

∗
P — — 0.255 0.226 0.630 0.536

The (τ∞, λ∞) and (τ∞, λH) outcomes are identical for South firms: with no trade in final

goods, whether North firms offshore or not is irrelevant for South firms in the differentiated good

sector (when moving from (τ∞, λ∞) to (τ∞, λH), offshoring North firms hire South labor previously

employed in the South homogeneous-good sector).

Similar to North firms, South firms face a tougher competitive environment in both markets

after trade liberalization in final goods (going from τ∞ → τH → τL, keeping λ constant) as both

ϕ∗D and ϕ∗X increase, and hence, all producing firms in the South are forced to reduce their markups.

On the other hand, reductions in the variable cost of offshoring (λ∞ → λH → λL, keeping the same

distribution of τ) are irrelevant for South firms if τ ≡ τ∞, but otherwise create an easier competitive
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environment in the domestic market (ϕ∗D declines), but a tougher competitive environment in the

export market (ϕ∗X rises). Importantly, with trade in final goods the environment becomes easier

in the South market due to the effect of a reduction in λ on entry of South firms, which declines

as potential South entrants realize it is hard to compete with now more efficient offshoring North

firms; in the end, a large fraction of South firms that die due to the exogenous death shock are

never replaced by new South firms and thus N∗P falls.

In all cases with trade in final goods in Table D.1 we get ϕ∗D < ϕ∗X , so that South exporting

firms are a subset of South firms producing for their domestic market. It follows that ϕ̄∗D = ϕ̄∗

and N∗P = N∗D. Note that trade liberalization (of any type) hardly affects the average productivity

of South firms selling domestically, ϕ̄∗D. On the other hand, the average productivity of South

exporters, ϕ̄∗X , declines with final-good trade liberalization, but increases with a reduction in λ.

Regarding prices, an important message is that trade liberalization does not necessarily reduce

average prices in the South. Note that p̄∗ rises when the South opens to trade in final goods (from

τ∞ to τH) due to the high average price of imports from the North, which are subject to high

iceberg costs (on average). As liberalization in final goods deepens (τH → τL), the average price

declines. A reduction in λ, however, rises p̄∗ with both low and high levels of final-good trade

liberalization. This happens as South firms that die due to the exogenous death shock are replaced

in the South market by North firms that are on average less productive than before.

Trade liberalization in final goods increases the number of varieties that are consumed in the

South, N∗, but a reduction in λ causes a negligible increase in N∗ if τ ≡ τH and a decline if

τ ≡ τL. Independently of this, note that both types of trade liberalization shrink the size of the

heterogeneous-good sector in the South, with N∗P and σ∗D decreasing after any type of liberalization.

In other words, as trade liberalization deepens, the South transforms from a producer of final

differentiated goods to an offshoring hub for North firms. This process would be attenuated for

higher levels of A∗ or lower levels of f∗E .

References

Melitz, M. J. (2003): “The Impact of Trade on Intra-Industry Reallocations and Aggregate
Industry Productivity,” Econometrica, 71(6), 1695–1725.

Melitz, M. J., and G. I. P. Ottaviano (2008): “Market Size, Trade, and Productivity,” Review
of Economic Studies, 75(1), 295–316.

23


	Proofs of Lemmas and Propositions
	The Model with Alternative Preferences
	CES Preferences
	Preferences, Pricing, and Production
	The Offshoring Decision
	Distribution of Firms and Equilibrium

	Quasilinear-Quadratic Preferences

	Existence and Uniqueness of Equilibrium
	The Model with Trade in Final Goods
	Prices, Markups, and Cutoff Productivity Levels
	Free-Entry Conditions and Equilibrium
	Entrants and the Composition of Firms
	Average Prices, Average Productivities, and Market Shares
	The Impact of Trade Liberalization in the South


