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Abstract

What generates persistence in in�ation? Is in�ation persistence structural?

This paper investigates learning as a potential source of persistence in in�ation. The paper focuses on the

price-setting problem of �rms and presents a model that nests structural sources of persistence (indexation)

and learning. Indexation is typically necessary under rational expectations to match the inertia in the data

and to improve the �t of estimated New Keynesian Phillips curves.

The empirical results show that when learning replaces the assumption of fully rational expectations,

structural sources of persistence in in�ation, such as indexation, become unsupported by the data. The

results suggest learning behavior as the main source of persistence in in�ation. This �nding has implications

for the optimal monetary policy.

The paper also shows how one�s results can heavily depend on the assumed learning speed. The estimated

persistence and the model�s �t, in fact, vary across the whole range of constant gain values. The paper

therefore provides evidence on the best-�tting constant gain in the sample, and on its variations over possible

learning speci�cations and over time.
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1. INTRODUCTION

What creates persistence in in�ation? Is in�ation persistence a structural characteristic of

industrialized economies?

Despite a large body of literature on in�ation dynamics, disagreement still exists on the main

sources of in�ation persistence. It is well known that sticky price models, typically used to study

in�ation, fail to match the observed persistence. The New Keynesian model, at least in baseline

form, describes in�ation as a purely forward-looking variable. All of its persistence, therefore, is

inherited from the persistence of an exogenous driving variable, typically a measure of the output

gap or real marginal costs, or from an exogenous autocorrelated cost-push shock.

Researchers have proposed various extensions to allow their models to endogenously generate

some persistence to match actual in�ation data. These extensions have the e¤ect of introducing the

dependence of current in�ation on lagged in�ation. These additional channels of inertia have been

variously modeled in the literature by incorporating rule-of-thumb behavior, quadratic adjustment

costs or indexation to past in�ation. Galí and Gertler (1999), for example, allow for the existence

of a fraction of �rms that deviate from full rationality and set, instead, their prices using simple

rules of thumb. Christiano, Eichenbaum and Evans (2005), Smets and Wouters (2003), Giannoni

and Woodford (2003) and Woodford (2003), on the other hand, allow for partial or full indexation

of prices to past in�ation rates for �rms not adjusting their prices optimally in a given period, as

an extension to the standard Calvo (1983) pricing model. Those extensions improve the empirical

�t of their models.

Together with the sources of persistence in in�ation, another key issue lies in understanding

whether in�ation persistence is an intrinsic characteristic of industrialized economies.1 Recent stud-

ies that aim to shed light on this issue are those by Cogley and Sargent (2005), who found evidence

of a structural break in in�ation dynamics, by Levin and Piger (2002), who analyzed a panel of

industrial countries and concluded that high inertia is not an inherent characteristic of industrial

economies, and by Erceg and Levin (2003), who similarly opposed the view of in�ation persistence

as structural and argued that persistence can depend on the central bank�s perceived credibility.

Reis and Pivetta (2003), on the other hand, found that in�ation persistence has remained high and

substantially unchanged since 1965.

This paper proposes a di¤erent explanation for the persistence of in�ation. The paper suggests
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that adaptive learning by economic agents may represent a crucial source of persistence, and it

aims to empirically evaluate the importance of learning using time series data on in�ation. One

possible way to assess the empirical e¤ects of learning might consist of simulating the economy

with non-fully rational expectations to judge whether those are able to generate enough persistence

compared to actual data. This paper instead proposes a di¤erent experiment: I develop an op-

timizing model in shich I introduce learning, but I also allow for a structural characteristic that

induces persistence in in�ation. In fact, I allow for indexation to past in�ation by non-optimizing

�rms. The model, therefore, nests two potential sources of persistence in in�ation: learning and

indexation. Under rational expectations, a large degree of indexation typically is needed to match

the data. It becomes an empirical matter to understand whether structural sources of persistence

remain essential when learning replaces the assumption of rational expectations. I discover this, by

looking at the estimates for the degree of indexation to past in�ation necessary to match the data

in the model with learning.

Following various studies in the adaptive learning literature (see Evans and Honkapohja 2001 for

example), I model private agents as econometricians, who estimate simple models of the economy

and form expectations from those models. As private agents obtain more data over time, they

update their parameter estimates through Constant-Gain Learning (CGL). In principle, constant-

gain learning may generate persistence, not only in transitional dynamics, but perpetually.

I recognize that, when modeling learning behavior, researchers dispose of a number of degrees

of freedom. An important choice is the learning speed of private agents, i.e. the value to assign to

the constant gain parameter. One�s results might dramatically change under di¤erent assumptions

about learning speed. I, therefore, perform an additional experiment: I examine the relationship

between the implied estimates of structural persistence and the possible constant gains. I �nd,

in fact, that the estimates vary a great deal across a large range of gain values. It, therefore,

becomes necessary to compare the di¤erent possible gains, and I will try to shed some light on

this by comparing the �t under the various gain coe¢ cients. In this way, I obtain the value of the

best-�tting constant gain coe¢ cient in the sample. This turns out to be close to values typically

assumed (without estimation) in previous learning literature.

A related work is Ball (2000), who similarly focuses on expectations and relaxes the assumption

of full rationality. Ball allows agents to use optimal univariate forecast rules as an alternative to

rational or purely adaptive expectations. My paper, instead, introduces learning by agents. Also
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related are the papers by Roberts (1997, 1998), and by Adam and Padula (2003), who estimate

in�ation equations using subjective expectations from surveys. The current paper provides in fact

a way to model the formation of those subjective expectations.2 Adam (2005b) similarly assumes

agents that use econometric models to forecast future macroeconomic variables. He �nds that

deviations from rational expectations strenghten the internal propagation mechanism of a simple

business cycle model.

Other explanations for in�ation persistence are possible. Dotsey and King (2001), Guerrieri

(2005), Holden and Driscoll (2003), Coenen and Levin (2004), for example, propose alternative

adjustments in their sticky price models to generate additional persistence, but they do not focus

on expectations. Mankiw and Reis (2002), Woodford (2003a), and Gumbau-Brisa (2004) try to

explain inertia by agents�limited ability to update or absorb information. This paper does not aim

to provide a general test among all the competing explanations. The paper proposes, instead, an

explanation based on learning, and it goes on to test, using actual data, the plausibility of learning

against a more structural source of persistence, i.e. indexation.

The paper also addresses the pervasive debate on the relative importance of backward- and

forward-looking terms in in�ation. Galí and Gertler (1999), for example, argue that in�ation is

mainly forward-looking: they �nd that roughly one third of price setters are backward-looking, from

their GMM estimation. Opposite is the view of Fuhrer and Moore (1995) and Fuhrer (1997) who,

instead, view in�ation as a purely backward-looking process. This paper, by explicitly modeling

the formation of expectations, also can help to disentangle the two components.

This paper, therefore, aims to contribute to the large literature on in�ation dynamics, by

proposing and evaluating a di¤erent explanation of its persistence. Moreover, the current paper

also can be seen as a contribution to the growing literature on adaptive learning.

Most studies in the previous adaptive learning literature primarily have focused upon studying

the convergence of models with learning to the rational expectations equilibrium. This line of

research is surveyed comprehensively in Evans and Honkapohja (2001). A similar scope have

the applications in monetary policy models, such as Bullard and Mitra (2002), and Evans and

Honkapohja (2003).

Recently, this area of research has expanded its objectives: various studies, for example, show

that learning is useful in explaining U.S. in�ation in the 1970s (Sargent 1999, Orphanides and

Williams 2003, Bullard and Eusepi 2005, Primiceri 2003). Williams (2003) examines, instead, the



ADAPTIVE LEARNING AND INFLATION PERSISTENCE 4

empirical importance of adaptive learning in a business cycle model. This paper shares the interest

in these new objectives and aims to contribute to the understanding of the empirical implications

of learning.

As I already have mentioned, although several papers have started to employ constant-gain

learning, estimates of the gain lack in the literature. This paper, therefore, contributes to the

learning literature �rst by showing how one�s results might dramatically depend on the chosen

gain, and then by providing a �rst attempt to estimate the best-�tting constant gain in a model of

in�ation dynamics.

By estimating a model of in�ation dynamics with deviations from rational expectations, this

paper represents a simple example of what Ireland (2003) has de�ned as �Irrational Expectations

Econometrics�. Ireland pointed out the results obtained by the theoretical literature on learning

and emphasized the need for an �Irrational Expectations Econometrics� that would complement

those results, by assessing the empirical importance of learning. This is what the current paper

tries to do. This paper focuses on a single equation estimation, while a companion paper, Milani

(2004), pursues a joint estimation of a full New-Keynesian macro-model with learning by means of

likelihood-based Bayesian methods.

The empirical results highlight the unimportance of forms of structural persistence in in�ation.

When I drop the assumption of rational expectations, by allowing instead economic agents to

form their expectations through constant-gain learning, the estimates of the degree of indexation

to lagged in�ation fall to zero. This suggests that learning can account for a sizeable amount of

persistence in in�ation.

The �nding that in�ation persistence is not due to structural characteristics, but to learning

behavior by agents carries some important policy implications. The welfare loss is di¤erent under

alternative sources of persistence and so is the optimal monetary policy. A successful management

of expectations, as emphasized by Woodford (2003b), becomes crucial under learning.

The rest of the paper is structured as follows. Section 2 presents the model, starting from the

microfoundations of a dynamic optimizing general equilibrium (DGE) model under rational expec-

tations. Section 3 presents the aggregate law of motion for in�ation and describes the expectations�

formation mechanism. Section 4 derives the main empirical results of the paper. Section 5 and

6 explore the relationship between learning speed and the implied estimated in�ation persistence

and in-sample �t. Section 7 investigates the robustness of the empirical results to alternative as-
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sumptions about the learning rule, while Section 8 discusses the policy implications of the results.

Section 9 concludes.

2. THE MODEL

In this section, I derive the law of motion for in�ation, which will extend the New Keynesian

Phillips curve along two directions. First, to induce a more realistic degree of inertia in in�a-

tion, I allow non-optimizing �rms to update their prices through indexation to lagged in�ation,

as proposed by Christiano, Eichenbaum and Evans (2005). Then, the paper makes an important

departure from the usual expectations formation mechanism. The paper relaxes the assumption of

rational expectations and it assumes instead that agents behave as econometricians, by estimating

an economic model and using that model to form their expectations.

I start by presenting the optimal price-setting problem for a �rm under rational expectations.

I shall introduce subjective (possibly non-rational) expectations and learning in the next section.

The current paper focuses only on the price-setting problem by �rms. A full model with consumer

optimization and monetary policy is described in Milani (2004).

2.1. The Household Problem

I consider a standard economy populated by a continuum of households indexed by i, maximiz-

ing a discounted sum of future utilities. The generic household maximizes the following intertem-

poral utility function:

Eit

1X
T=t

�T�t
�
U
�
CiT ; ; �T

�
�
Z 1

0
v(hiT (j); �T )dj

�
(1)

where consumer�s utility depends positively on an index of consumption CiT , and negatively on

the amount of labor supplied for the production of good j, hiT (j); �T is an aggregate preference

shock, whereas � 2 (0; 1) is the usual household�s discount factor. Eit here denotes rational (model-

consistent) expectations. The consumption index is of the Dixit-Stiglitz CES form

Cit �
�Z 1

0
cit(j)

��1
� dj

� �
��1

(2)

and the associated aggregate price index is expressed by

Pt �
�Z 1

0
pt(j)

1��dj

� 1
1��

(3)
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where � > 1 represents the elasticity of substitution between di¤erentiated goods. From the house-

hold�s problem, I only need to derive the marginal utility of real income (here equal to the marginal

utility of consumption, i.e. �t = UC(C
i
T ; ; �T )), which will enter the aggregate supply relationship.

The other details of consumer optimization can therefore remain implicit in the background.3

2.2. Optimal Price Setting

I assume Calvo price-setting, so that a fraction 0 < 1�� < 1 of prices are allowed to change in

a given period and are optimally set. The price of the remaining fraction �, which is not optimally

�xed in the period, is adjusted according to the indexation rule

log pt(i) = log pt�1(i) + 
�t�1 (4)

Following Christiano, Eichenbaum and Evans (2005), Smets and Wouters (2003) and Giannoni

and Woodford (2003), therefore I allow �rms to index their prices to past in�ation when they

cannot set their prices optimally. This extension typically improves the �t of the model and it

generates realistic impulse response functions. 0 � 
 � 1 represents the degree of indexation to

past in�ation (Christiano, Eichenbaum and Evans (2005) assumed 
 = 1, meaning full indexation).

An alternative solution to introduce dependence on lagged in�ation would consist of assuming a

fraction of rule-of-thumb �rms. An example is Galí and Gertler (1999), who de�ne the derived

equation �New Hybrid Phillips Curve�.

The demand curve for product i takes the form:

yt(i) = Yt

�
pt(i)

Pt

���
(5)

where Yt =
�Z 1

0
yt(i)

(��1)
� di

� �
��1

is the aggregate output and Pt is the aggregate price as in (3).

Each �rm i has a production technology yt(i) = Atf (ht(i)), where At is an exogenous technology

shock, ht(i) is labor input and the function f (�) satis�es the usual Inada conditions.

Since each �rm faces the same demand function (5), all �rms allowed to change their price in

period t will set the same price p�t that maximizes the expected present discounted value of future

pro�ts:

Eit

( 1X
T=t

�T�tQt;T

�
�iT

�
pt(i)

�
PT�1
Pt�1

�
��)
(6)
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where Qt;T = �T�t PtPT
Uc(YT ;�T )
Uc(Yt;�t)

is the stochastic discount factor (Uc is the marginal utility of an

additional unity of income), and �iT (�) denotes pro�ts. Firms discount future pro�ts at rate �,

since they can expect the optimal price chosen at date t to apply in period T with probability �T�t.

The �rm chooses fpt (i)g to maximize the �ux of pro�ts (6), for given fYT ; PT ; wT (j); AT ; Qt;T g for

T � t and j 2 [0; 1].

The �rm�s problem results in the �rst-order condition

Eit

8>>><>>>:
1X
T=t

(��)T�t Uc (YT ; �T )YTP
�
T

�
PT�1
Pt�1

�
(1��)
��bp�t (i)� �PT s�YT � bp�t (i)PT

��� �PT�1
Pt�1

��
�
; YT ; �T

��
9>>>=>>>; = 0 (7)

where � = �=(� � 1), s (�) is �rm i�s real marginal cost function in period T � t, given the pricebp�t (i), set in t.
The Dixit-Stiglitz aggregate price index evolves according to the law of motion:

Pt =

"
�

�
Pt�1

�
Pt�1
Pt�2

�
�1��
+ (1� �)p�1��t

# 1
1��

(8)

From a log-linear approximation of the �rm�s �rst order condition4 and some manipulations, I

obtain:

bp�t = Et

1X
T=t

(��)T�t
�
1� ��
1 + !�

(! + ��1)xT + �� (b�T+1 � 
b�T )� (9)

where ! > 0 is the elasticity of �rm i�s real marginal cost function s (�) with respect to its output

yt(i), � � �Uc=(UccC) is the intertemporal elasticity of substitution, and �̂ �denotes log deviations

from the steady state5.

From a log-linear approximation of the aggregate price index, notice that bp�t = �
(1��) (�t � 
�t�1),

which plugged in the previous expression gives:

e�t = �xt + bEt 1X
T=t

(��)T�t [���xT+1 + (1� �)�e�T+1] (10)

where

e�t = �t � 
�t�1 (11)

� � (1� �) (1� ��)
�

�
! + ��1

�
(1 + !�)

� (1� �) (1� ��)
�

� > 0 (12)
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and � � (!+��1)
1+!� . Equation (10) can be quasi-di¤erenced to obtain a relationship between current

and one-period-ahead expected in�ation

�t =



1 + �

�t�1 +

�

1 + �

bEt�t+1 + �

1 + �

xt + ut (13)

in which I follow the literature in adding an exogenous cost-push shock ut. Galí and Gertler (1999)

and Sbordone (2003) suggest using the real marginal cost in place of the output gap as the driving

variable for in�ation. As discussed in Woodford (2003b), the relationship between in�ation and

marginal costs holds under weaker assumptions. For example, when the marginal cost replaces the

output gap there is no need to assume any speci�c theory of wage-setting.

Therefore, the relationship (13) can be re-expressed in terms of the real marginal cost st:

�t =



1 + �

�t�1 +

�

1 + �

bEt�t+1 + (1� ��)(1� �)

� (1 + �
)
st + ut (14)

Notice that I could have derived similar equations for in�ation dynamics, only with di¤erent

restrictions on the parameters, assuming the existence of some rule-of-thumb �rms (Galí and Gertler

(1999), Amato and Laubach (2003)), instead of indexation. The results in the following of the paper

are not dependent on this choice.

3. THE NEW KEYNESIAN PHILLIPS CURVE WITH LEARNING

The aggregate dynamics for in�ation in the model is given by eq.(13). I now relax the strong

informational assumptions characterizing �rms� knowledge under rational expectations. In this

section, I assume that �rms have subjective (and possibly non-rational) expectations. Subjective

expectations are denoted by bEt.6 The law of motion for in�ation under subjective expectations

becomes

�t =



1 + �

�t�1 +

�

1 + �

bEt�t+1 + �

1 + �

xt + ut (15)

Under this speci�cation, �rms need to forecast future in�ation rates to determine current in�a-

tion. The next paragraph will give some details on how agents form such forecasts.

3.1. Expectations Formation: Adaptive Learning

Firms do not know the correct model of in�ation dynamics. They behave as econometricians,

estimating an economic model and forming expectations from that model. For simplicity, I start
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by assuming that �rms estimate a simple linear univariate AR(1) model to form their forecasts of

in�ation:

�t = �0;t + �1;t�t�1 + "t (16)

In the estimation, they exploit the entire history of available data up to period t, f1; �t�1gt�10 .

Eq. (16) is called the �Perceived Law Motion�or PLM of the agents. Adam (2005b) assumes

similar simple forecasting rules. Notice that, although in the estimation I will use demeaned

variables, I recognize that agents need to estimate an intercept as well as slope parameters. A

strictly positive intercept on in�ation would signal that agents expect a positive target for in�ation

in the sample. In the next sections, I shall evaluate the robustness of the empirical results to

di¤erent PLMs. Ultimately, it will be possible to choose the forecasting rule that provides the best

�t of the data.

As new data become available, agents update their estimates according to the Constant-Gain

learning (CLG) formula

b�t = b�t�1 + �R�1t�1Xt(�t �X 0
t
b�t�1) (17)

Rt = Rt�1 + �(Xt�1X
0
t�1 �Rt�1) (18)

where the �rst expression describes the updating of the forecasting rule coe¢ cients b�t = ��0;t; �1;t�0
over time, and the second shows the evolution of Rt, the matrix of second moments of the stacked

regressors Xt � f1; �t�1gt�10 . The constant gain is expressed by parameter �. Constant-gain

learning has also been de�ned as �perpetual� learning, since learning will take place forever and

the system will not converge to the RE solution (but at most to a stochastic distribution around

it). Therefore, constant gain learning may generate persistence forever, not only transitionally.

A larger � would imply faster learning of potential structural breaks, but it would also lead to

higher volatility around the steady state. An increasing number of recent papers has similarly used

constant-gain learning (Orphanides and Williams 2003, 2005a, Primiceri 2003).

I assume that agents, when forming expectations in period t, have access to information only up

to t� 1: I therefore replace bEt with bEt�1. Using their PLM and the updated parameter estimatesb�t, agents form expectations for t+ 1 as

bEt�1�t+1 = �0;t�1
�
1 + �1;t�1

�
+ �21;t�1�t�1 (19)
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To summarize, the model of the economy is composed by the in�ation dynamics equation (15)

(Phillips curve), agents�beliefs (16), updating equations (17), (18), and the forecasting rule (19).

Substituting agents�expectations formed from their PLM as in (19) into the in�ation dynamics

equation (15), I derive the �Actual Law of Motion� or ALM of the economy, i.e. the law of

motion of �t for a given PLM:

�t =
��0;t

�
1 + �1;t

�
1 + �


+

 + ��21;t
1 + �


�t�1 +
�

1 + �

xt + ut (20)

in which the reduced-form coe¢ cients are time-varying and are convolutions of the structural

parameters describing in�ation dynamics and of the coe¢ cients representing agents� beliefs. In

models with adaptive learning, it is commonly assumed that, in each period t, agents use an

econometric model to form their expectations about future in�ation, but they do not take into

account their subsequent updating in periods T > t. Therefore, they act as adaptive decision-

makers, in accordance with what Kreps (1998) de�nes as an anticipated utility model.7

Obviously, several alternative ways to model learning are possible. The paper considers a

simple learning rule (assuming that agents use univariate autoregressive models). But it is worth

pointing out that such a simple mechanism of expectations formation �ts quite well with in�ation

expectations from surveys, such as the expected in�ation series from the Survey of Professional

Forecasters, for example (see Branch and Evans 2005).

3.1.1. Is the Expectations Formation Realistic?

As described in Brayton et al. (1997), the most recent Federal Reserve model, the FRB/WORLD,

also employs non-fully rational expectations.

Recognizing the uncertainty surrounding expectations formation, the main Fed model not only

uses model consistent rational expectations, but it also models expectations as derived from a VAR

for �ve �core�macro variables (federal funds rate, CPI in�ation, output gap, long-run in�ation

expectations and long-run interest rate expectations). The underlying justi�cation is that the

agents understand the main features of the economy, as represented by small economic models,

and use the information to form their expectations. The Fed model, however, does not currently

incorporate time-variation in the parameters.

The realism of forming expectations by adaptive learning can be gauged by looking at survey-

based expectations. The expectations derived according to the adaptive learning algorithm do a
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good job in tracking in�ation expectations from the Survey of Professional Forecasters. In par-

ticular, they replicate the underestimation of in�ation in the two peaks in the 1970s and the

overestimation of in�ation during most of the 1990s. Less successful in tracking survey-based fore-

casts are purely adaptive (naïve) expectations and RE (since the data display large and persistent

forecast errors, which are less consistent with RE). A substantial literature, in fact, emphasizes

how survey expectations re�ect an intermediate degree of rationality, rejecting full rationality as

well completely naïveté (Roberts 1998 is an example).

Adam (2005a) provides some experimental evidence on the formation of in�ation expectations,

showing that forecast rules in which agents condition on lagged in�ation successfully mimic the

in�ation expectations of the subjects in his experiment. The AR(1) forecasting rule assumed in

this paper is consistent with such experimental evidence.8

Moreover, constant gain learning seems a plausible choice to model the behavior of professional

forecasters. Branch and Evans (2005), in fact, show that constant gain models of learning �t

forecasts from surveys better than other methods for both in�ation and output growth. They

�nd that constant-gain learning models dominate models with optimal constant gain (obtained

by minimizing the forecasts�Mean Square Error), with Kalman Filter, and with Recursive Least

Squares learning. Their results therefore support constant-gain learning as a model of actual

expectations formation.

3.2. Real Marginal Cost as the Driving Variable

Following recent research (Galí and Gertler 1999, Sbordone 2003), I also work with a version of

the Phillips curve in which the real marginal cost is the relevant driving variable for in�ation

�t =



1 + �

�t�1 +

�

1 + �

bEt�t+1 + (1� ��)(1� �)

� (1 + �
)
st + ut (21)

Again I assume that �rms form their expectations by estimating an AR(1) speci�cation for

in�ation as in (19).

The ALM for in�ation becomes

�t =
��0;t

�
1 + �1;t

�
1 + �


+

 + ��21;t
1 + �


�t�1 +
(1� ��)(1� �)
� (1 + �
)

st + ut (22)
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4. SOME SIMPLE IRRATIONAL EXPECTATIONS ECONOMETRICS: EMPIRI-

CAL RESULTS

I estimate the in�ation equation assuming that �rms form expectations and update their beliefs

through constant-gain learning as described. I use quarterly U.S. data on in�ation, output, and

real marginal costs from 1960:01 to 2003:04. In�ation is de�ned as the annualized quarterly rate

of change of the GDP Implicit Price De�ator, the output gap as detrended GDP after removing

a quadratic trend, the real marginal cost as the unit labor cost, which is empirically proxied by

the log labor income share in deviation from the steady state.9 I allow agents to initialize their

estimates of coe¢ cients, variances, and covariances, using pre-sample data from 1951 to 1959.10

The empirical exercise proceeds as follows. First, I estimate the agents�PLM in which agents

learn the forecasting coe¢ cients over time through constant-gain learning, as described by expres-

sions (17) and (18). I can then substitute the resulting forecasts into the original in�ation equations,

(15) and (21). I initially �x the constant gain � at the value of 0:015. This is consistent with values

derived by minimizing the deviation of the constructed series from the expected in�ation series

from the Survey of Professional Forecasters, as found by Orphanides and Williams (2005a).

I can then simply estimate the ALM for in�ation by NLLS (Nonlinear Least Squares). In this

way, I am able to disentangle the e¤ects of learning from the e¤ects due to structural sources of

persistence in in�ation, such as indexation. Notice that having explicitly modeled the formation of

agents expectations, it is not necessary to estimate the in�ation equation by GMM as under RE: I

can therefore avoid the typical problems of GMM in the estimation of Phillips curves (Lindé 2002,

Jondeau and Le Bihan 2003, Fuhrer and Olivei 2004).

This paper therefore focuses on a single equation estimation of in�ation dynamics. This ap-

proach avoids infecting the in�ation equation by potential misspeci�cations in other parts of the

model. In a companion paper (Milani 2004) I jointly estimate, instead, a full New-Keynesian model

with learning by likelihood-based Bayesian methods. The two papers represent di¤erent thought

experiments: this paper is implicitly assuming that agents� learning is correctly modeled and it

focuses on estimating the structural parameters given the assumed learning speci�cation. Milani

(2004) pushes the experiment a step further and aims to jointly extrapolate from the data the

learning rule coe¢ cients together with the structural coe¢ cients. In that way, agents�beliefs and

their learning speed are jointly estimated together with the rest of the model. Structural estimates
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will be a¤ected by the uncertainty concerning agents�learning speci�cation. This allows for a better

account of total uncertainty in the system. The drawback is that misspeci�cations in the learning

equation will bias the rest of the model coe¢ cients. The current paper instead separately estimates

the learning equation; when the results are inserted in the ALM, they are treated as certain. The

standard errors of the structural coe¢ cients then underestimate the true underlying uncertainty.

These papers provide a �rst example of the �Irrational Expectations Econometrics�that Ireland

(2003) has judged needed to complement the mainly theoretical results of the previous adaptive

learning literature.

4.1. What Creates Persistence in In�ation?

The in�ation equation nests indexation by �rms and non-rational expectations. Whether the

persistence in in�ation is structural or due to learning behavior becomes then an empirical question.

Understanding the role of di¤erent sources of persistence is crucial from both a positive and a

normative point of view: the recommendations for optimal monetary policy are likely to di¤er in

the cases that indexation or learning drive the persistence in in�ation.

4.1.1. Agents�Beliefs

Figure 1 shows the evolution of the estimated coe¢ cients in the agents� forecasting equation

(agents�PLM). Economic agents are updating the coe¢ cients through constant gain learning. The

reported evolution of beliefs is obtained by assuming a constant gain equal to 0:015.

In the beginning of the sample, agents were coming from periods of low and volatile in�ation

(the 1950s and 1960s), and, consequently, they estimated low autoregressive coe¢ cients for in�ation

(around 0:15 at the beginning of the sample). In the 1970s, in�ation rose substantially and also

became more persistent. The agents recognized the shift and in the 1970s they started estimating

larger autoregressive coe¢ cients (with a pick around 1975, when the estimated �1;t jumped to

0:958). The estimates of perceived in�ation persistence declined in the last part of the sample,

though remaining above 0:8.

The evolution of the intercept in the in�ation equation (recalling that the true value should

always be 0, since I work with demeaned variables) indicates that the perceived in�ation target

was low in the 1960s, it increased and remained high through the second half of the 1970s, and it

continuosly decreased after Volcker�s disin�ation.
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4.1.2. Structural Estimates

Table 1 shows the estimation results. The table reports the estimates for the alternative speci-

�cations with the output gap and the real marginal cost as main driving variables for in�ation, and

for di¤erent values of the constant-gain coe¢ cient (� = 0:015, 0:02, and 0:025).

I obtain coe¢ cients on indexation to lagged in�ation, 
, equal to 0:139 and 0:047 in the output

gap and real marginal cost equations, for the case in which � = 0:015. The estimates are small and

not signi�cantly di¤erent from 0. I estimate �, the sensitivity of in�ation to changes in the output

gap, equal to 0:22. In the equation with real marginal costs as the driving variable, I also estimate

�, the Calvo parameter. I �nd � = 0:671, which suggests prices that remain �xed for 3: 04 quarters.

The estimate is in line with most estimates in the literature (on the lower end). This suggests that

although learning reduces the relevance of indexation, it does not signi�cantly alter the estimated

magnitude of price stickiness. With other gain coe¢ cients, the results still indicate that in�ation

indexation is not supported by the data (I obtain 
 equal to �0:001 and 0:045 when � = 0:02, and


 equal to �0:10 and �0:006, both not signi�cantly di¤erent from 0, when � = 0:025). The results

about indexation contrast with the estimates typically computed in the literature.

Likewise, I can estimate a reduced form equation for in�ation, given by

�t = !b�t�1 + !f bEt�t+1 + �yt + "t (23)

where yt = xt; st. The speci�cation is similar to reduced forms usually estimated in the empirical

literature that aims to evaluate the relative importance of forward-looking and backward-looking

behavior in in�ation (the New Hybrid Phillips curve for example). The only di¤erence comes from

the use of subjective expectations instead of RE. The estimation yields

�t = 0:105
(0:15)

�t�1 + 0:992
(0:19)

bEt�t+1 + 0:201
(0:037)

xt + b"t (24)

when the output gap is used and

�t = 0:045
(0:166)

�t�1 + 0:972
(0:197)

bEt�t+1 + 0:147
(0:029)

st + b"t (25)

when the real marginal cost is used. The results therefore suggest that when learning replaces

rational expectations, in�ation becomes strongly forward-looking.



ADAPTIVE LEARNING AND INFLATION PERSISTENCE 15

4.1.3. Comparison with the Literature

Christiano, Eichenbaum and Evans (2005) do not actually estimate 
, but they �x it to 1,

indicating full indexation. Boivin and Giannoni (2003) and Giannoni and Woodford (2003) estimate

the coe¢ cient and �nd that 
 equals 1. These results point towards extremely large degrees of

structural persistence in in�ation.

But, as we have seen, estimates of 
 close to 1 hinge on the assumption of rational expectations.

When the assumption is weakened, by introducing a minimal deviation from full rationality and

allowing agents to learn over time, the degree of in�ation persistence due to structural features of

the economy drops to almost zero.

There has been a considerable debate in the literature on whether in�ation is mainly a backward

or forward-looking phenomenon. Galí and Gertler (1999) stress the importance of forward-looking

expectations in their New Hybrid Phillips Curve, although still obtaining a positive weight on

lagged in�ation. Fuhrer and Moore (1995) and Fuhrer (1997), on the other hand, depicts in�ation

as substantially backward-looking.

The results of this paper give merit to both ideas. In fact, I obtain that in�ation is mostly

forward-looking (and indeed very forward-looking as seen in eq.(24) and (25)). But if expectations

are formed as in this paper, the reduced form will be equivalent to a completely backward-looking

speci�cation. The e¤ort to explicitly model subjective expectations gives a way to disentangle

the inertia due to structural characteristics from those due to the sluggishness of forward-looking

expectations (this is hard to identify under RE, as pointed out by Beyer and Farmer 2004). It

is easy to understand, however, why many contrasting results in the literature have emerged in

relation to the relative importance of backward and forward-looking terms.

A recent study by Cogley and Sbordone (2005) similarly obtain an estimated degree of indexa-

tion close to 0 by allowing for a time-varying steady-state in�ation. It is beyond the paper�s scope

to check the role of learning in a model in which also steady-state in�ation varies over time. But,

taken together, the present paper and Cogley and Sbordone (2005) accumulate evidence that when

more realistic features are added into the model, the role of indexation vanishes.
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5. LEARNING SPEED AND INFLATION PERSISTENCE

In the estimation, I have experimented di¤erent gain coe¢ cients between 0:015 and 0:025.

These values are common in empirical studies adopting constant-gain learning, as Orphanides and

Williams (2003) for example. The degree of persistence introduced in the system by learning, as

well as the estimates of the indexation parameter, are likely to be strongly dependent on the choice

of the gain parameter.

For this reason, it becomes essential to investigate how the estimates of structural persistence

vary across a wide range of possible gain values. This experiment allows me to examine the

relationship between learning speed and in�ation persistence.

Figure 2 shows such a relationship. The �gure illustrates how the reduced form coe¢ cient on

lagged in�ation ( 

(1+
�)) varies with di¤erent gain values ranging from 0 to 0:30 (the results for

values above 0:30 are totally similar to those on that upper bound).

There seems to be a sort of V-shaped relationship. With a zero gain, or with very small gains, the

weight given to lagged in�ation in an equation like (24) is sizeable. With slightly larger gains, the

implied coe¢ cients on the backward-looking term becomes much smaller and implies coe¢ cients

below 0:2 for gains around 0:025. Inside this range, learning is successful in creating enough

persistence in in�ation, so that no role remains for additional sources of structural persistence.

Outside that range, for lower or larger gain values, backward-looking components and indexation

remain important, for learning with those gains does not generate expectations of future in�ation

rates that seem supported by the data.

6. LEARNING SPEED AND FIT

Having such a diverse range of results, it is important to evaluate which value of the constant

gain is more supported by the data. I calculate the best-�tting constant gain by estimating the

following simple New Keynesian Phillips curve with learning (and no indexation)

�t = �yt + � bEt�t+1 + ut, where yt = xt; st (26)

over the range of all possible gain coe¢ cients from 0 to 0:30 and evaluating how the in-sample �t

changes. I assume again that agents form expectations by estimating autoregressive speci�cations

for in�ation and updating the coe¢ cients over time through constant-gain learning. As a measure
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of �t, I report the Schwartz�s Bayesian information Criterion (BIC).

Figure 3 indicates how the �t (BIC) varies across the whole range of assumed gain coe¢ cients.

Again, it is possible to observe a sort of V-shaped relationship. The best-�tting speci�cations

(lowest BIC) have gain coe¢ cients that lie in the range typically assumed in previous learning

studies (between 0:015 and 0:03). Very small gains (close to 0) and large gains (above 0:06)

perform very poorly in terms of in-sample �t.

Figure 4 reports the same information, but focusing on a narrower range of gain values. It is

apparent that already gains above 0:03 lead to a sizeable reduction in �t.

Table 2 reports the gain coe¢ cients in correspondence of which the lowest BIC is derived. The

best-�tting constant gain coe¢ cient equals 0:02 for the in�ation equation with the output gap as

driving variable. Such a value is similar to what found by Orphanides and Williams (2005a) who

minimize the deviations of their model-based expectations from data on survey-based expectations.

The results are similar when real marginal costs replace the output gap as the driving variable for

in�ation. The best-�tting constant gain coe¢ cient, reported in table 2, now equals 0:025. Figure 6

also illustrates a similar relationship between constant gain and �t. In ongoing work, I am �nding

similar values for the best-�tting constant gain using European data (Milani 2005c). The evidence

that we are starting to accumulate therefore suggests that constant-gain learning with a gain around

0:02 appears to be a satisfactory description of the formation of in�ation expectations.

But has the learning speed been constant over time? I can recursively re-estimate the equation

over the sample to compute the evolution of the best-�tting gain. From �gure 7 it is apparent

that the gains preferred by the data have remained inside the narrow range 0.016-0.0205. Notice,

however, that the gain has varied in the sample. In particular, it is interesting to notice how agents�

learning speed has gradually increased during all the 1970s and in the early 1980s, to stabilize later

on. Investigating the causes and consequences of the changes in learning speed, as well as the

interaction between policy and learning speed, will be useful extensions.

7. ROBUSTNESS

I have so far assumed that economic agents use a simple autoregressive model as in (16) as their

PLM. But the correct model of expectations formation is uncertain. Therefore, in this section I

aim to evaluate the robustness of my results to alternative forecasting rules.
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7.1. Phillips Curve as Learning Rule

Suppose now that private agents use the reduced form of a Phillips curve to form their in�ation

expectations (assuming they observe in�ation, output, and real marginal costs in period t � 1).

Again, they do not know the relevant parameters, so they gradually learn them from the data they

observe. The agents�PLM is now

�t = �0;t + �1;t�t�1 + �2;txt�1 + "t (27)

with the output gap, and

�t = �0;t + �1;t�t�1 + �3;tst�1 + "t (28)

with real marginal costs entering the Phillips curve. Now agents are using the same variables that

enter the actual law of motion of in�ation in the model.11

Under a constant gain equal to 0:02 (the best-�tting gain in the previous case), for example,

agents estimate the Phillips curve coe¢ cients reported in �gure 8. The intercept again starts low

and increases over the sample, decreasing only in the second half of the 1990s. The agents�belief

about the persistence of in�ation is low in the 1960s and early 1970s, when it jumps from below 0.4

to almost 1 (0.96) around 1975. Another period of extremely high persistence occurs in 1981-1982.

Therefore private agents perceive an extremely large degree of persistence both during the run-up

of in�ation in the 1970s and during Volcker�s disin�ation in the early 1980s. The third coe¢ cient

in the graph represents the sensitivity of in�ation to the output gap (slope of the Phillips curve).

This sensitivity has been increasing from the late 1960s until 1975, it remained stable (around

0.2) in the second part of the 1970s, and then it declined after Volcker�s disin�ation. In the 1980s

and 1990s, the estimated sensitivity has always been low and it has fallen even more after 1998

(stabilizing around 0.06). The dynamics is consistent with the existence of an important trade-o¤

between in�ation and output in the 1960s-1970s, which almost disappeared in the 1980s-1990s.

If I estimate the degree of indexation under this alternative learning rule, I obtain similar results

as before. Figure 9 shows the estimated backward-lookingness in in�ation across gain coe¢ cients.

The estimates are close to 0 for a range of gain values above 0.05. The �gure also superimposes

the �t under the di¤erent gains. The best-�tting gains are now larger than they were under the

simpler AR(1) forecasting rule. The best-�tting gain, reported also in table 3, equals 0:068 (and in
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correspondence of this gain the coe¢ cient on the backward-looking term in the in�ation equation

equals 0:043).

Figure 10 instead repeats the exercise for the learning rule in which marginal costs replace the

output gap. The message is similar. The best-�tting gain is now 0:0355 (larger than before) and

the estimated persistence coming from structural features is small (but larger than before, 0.168).

It is worth noticing from �gures 9 and 10 that the models with output gap seem to provide a better

�t than do those with real marginal costs (BIC is around 2.6 instead of 3).

7.2. Interest Rates in the Learning Rule

I now suppose that agents use additional information in their forecasting rule. The agents now

also include nominal interest rates (the federal funds rate) in their forecasting model. The PLM

becomes

�t = �0;t + �1;t�t�1 + �2;txt�1 + �3;tit�1 + "t (29)

This is similar to in�ation equations that are commonly estimated as part of monetary VARs.

The results reported in �gure 11 show that the best-�tting gains (also corresponding to the

lowest levels of indexation) lie around 0:1. The best-�tting gain is estimated equal to 0:0995 (at

this gain the backward-looking term in in�ation equals 0.23). Although not a general rule, it

appears from the cases examined so far that the larger information set, the higher the estimated

speed. The constant gain increases in fact from 0:02 when only lagged in�ation enters the learning

rule, to 0:068 when in�ation and output gap enter, to 0:0995 when in�ation, output gap, and the

federal funds rate enter.

The results are indicative that estimates of the gain are likely to depend on the assumed learning

rule. But also the choice of the regressors entering the agents�PLM can be based on the �t of

the various choices. And it is worth noticing that the learning speci�cations all �t better than an

entirely backward-looking in�ation equation, where current in�ation is regressed on lagged in�ation

and current output gap (BIC = 3.18). In all cases, learning seems to provide a way to account for

the persistence of observed in�ation. Future research should shed more light on how to best model

the learning process.
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8. POLICY IMPLICATIONS

The scope of the paper has been so far descriptive. But shedding light on the main sources of

in�ation persistence is also crucial from a normative standpoint. Whether the inertia in in�ation

is structural or is instead due to the way agents form their expectations a¤ects in fact the optimal

monetary policy. If the mechanisms that are introduced in the models to induce persistence, such

as indexation, turn out to be the wrong representation of the economy, then a welfare analysis

based on such microfoundations will be erroneous as well.

8.1. Optimal Monetary Policy with Structural In�ation Persistence

Suppose �rst that in�ation depends on its lagged values because of automatic indexation by

�rms. Suppose expectations are fully rational. In this case, the rigidity of prices is due to structural

characteristics of the economy.

The optimal monetary policy in the case of indexation, considering a microfounded DSGE model

as in Woodford (2003b), could be implemented by a central bank minimizing a welfare-based loss

function that takes the following form

Et

1X
T=t

�T�tLt (30)

Lt = (�t � 
�t�1)2 + �x (xt � x�) 2 (31)

where �x = �
� under this paper�s microfoundations, and x

� > 0 is the optimal output gap level,

which depends on microeconomic distortions such as the degree of market power and the size of

tax distortions in the economy.

This loss function is derived from the microfoundations of the model. It is therefore optimal to

minimize not just the deviation of in�ation from target (assumed equal 0 here), but also the rate of

change. The more persistent in�ation, the more aggressive the optimal reaction of monetary policy.

Optimal policy under commitment from the timeless perspective will satisfy the target criterion

�t � 
�t�1 = �
�x
�
(xt � xt�1) (32)

The optimal rule will be given by

i�t =  ��t�1 +  xxt�1 +  uut + r
n
t (33)
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where  �,  x,  u are optimal feedback coe¢ cients, i
�
t is the policy instrument, and r

n
t is the natural

real rate of interest. Monetary policy therefore responds to past observable variables and current

shocks.

8.2. Optimal Monetary Policy with Adaptive Learning

On the other hand, suppose that the persistence in in�ation is not due to structural features

(assuming 
 � 0), but it is instead due to learning by economic agents. If the central bank recognizes

this, it would not be optimal to react so aggressively to in�ation as if 
 was close to 1. But it would

become optimal, instead, to react to private sector expectations of in�ation. This would avoid

�uctuations induced by mistaken expectations, not in line with the in�ation target. Let�s consider

the following New-Keynesian model with learning, also described in Evans and Honkapohja (2003),

Preston (2003), and Milani (2004)

�t = �xt + � bEt�t+1 + ut (34)

xt = bEtxt+1 � � �it � bEt�t+1 � rnt � (35)

where I have added an aggregate demand equation, represented by a log-linearized Euler equation.

With zero indexation, the central bank will now target the more familiar welfare-based loss function

Lt = �2t + �x (xt � x�) 2 (36)

which leads to an optimal target criterion similar to (32), but with 
 = 0.

Evans and Honkapohja (2003) show that the optimal policy rule under commitment in this case

would be

i�t =
1

�

� bEtxt+1 � �x

�x + �
2xt�1 +

�
��

�x + �
2 + �

� bEt�t+1 + �

�x + �
2ut + �r

n
t

�
(37)

The implied reaction function makes clear the need for the central bank to respond now to expec-

tations of the relevant variables. Expectations are taken as given by the policymaker, who does

not incorporate the agents�learning rule in its optimization problem. Hence, I abstract here from

issues of active experimentation. In this way, the optimal target criterion is satis�ed regardless of

the particular expectations held by private agents.

In such a framework, a fundamental task of the central bank and optimal monetary policy

becomes the management of expectations, as emphasized by Woodford (2003b).
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In order to keep in�ation expectations close to target, the importance of transparency and

credibility should be emphasized. In particular, if the monetary authority lacks credibility, every

attempt to reduce in�ation, not believed by the public (not incorporated in bEt�t+1), may be
useless and in�ation may continue to rise. A more transparent central bank is likely to facilitate

private sector learning. Orphanides and Williams (2005b) provide evidence that an explicit target

for in�ation improves agents� learning. In this new framework, bad policy therefore can mean

unsuccessful management of expectations and it can arise also in the case of a central bank following

a truly optimal rule derived from dynamic optimization. Undesirable policy outcomes might be

due to an important misspeci�cation of the policymaker�s model: the failure to understand and

incorporate the way agents form their expectations.

Since an important concern in monetary policy points towards robustness of a chosen policy

rule, it would also be necessary to examine the e¤ects of optimal rules under learning, if the

policymaker does not recognize the true agents� PLM or assumes that they form expectations

rationally. Preston (2003) shows that price-level targeting is more robust than in�ation targeting

if the policymaker wrongly assumes that agents have RE rather than recognizing their learning

rule. Similarly, it would be important to evaluate the welfare losses from optimal policy if the

policymaker believes the persistence is structural while it is due to learning and vice versa. Coenen

(2003) shows the potential large losses from underestimating the degree of in�ation persistence and

suggests aggressive policy as a safe choice. Certainly, if we are willing to believe that non�fully-

rational expectations and learning behavior are important determinants of in�ation dynamics, new

avenues of research about optimal monetary policy open. The robustness of optimal rules not only

to standard model uncertainty, but also to uncertainty in the correct speci�cation of the agents�

learning rule (dropping RE opens a wide range of di¤erent alternatives), would be an important

matter. Indeed, in real world policy-making, central banks would hardly argue to target loss

functions as (31), which include the rate of change besides the level of in�ation; policymakers put

instead a lot of e¤ort on monitoring the evolution of private sector expectations. This is more

consistent with models where learning is important than with models with structural persistence.12

8.3. The Welfare Cost of Misspecifying Private Sector�s Expectations

What is the cost of a policymaker misperceiving the expectations formation of the agents?

Does the optimal monetary policy obtained under the assumption of rational expectations perform
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reasonably well when agents have instead imperfect knowledge? Here I brie�y try to provide some

preliminary evidence.

Assume that the true structure of the economy is represented by the model with learning, as

described by equations (34) and (35). Assume the true degree of indexation is zero (
 = 0). The

policymaker therefore minimizes the quadratic loss function (36). First, I compute the optimal

policy by taking agents�learning into account: I therefore assume that the policymaker correctly

understands agents�expectations formation. I �x � = 1, � = 0:22, � = 1, � = 7:69 (as in Giannoni

and Woodford 2003), so that �x = �
� =

0:22
7:69 = 0:0286, and I choose � = 0:02. The optimal policy

under learning implies a welfare loss equal to 2:28, as shown in Table 4.13

Suppose now that the policymaker optimizes under the mistaken assumption that agents have

fully rational expectations (I still assume no indexation). If the policymaker implements the optimal

policy assuming rational expectations, but the true representation of the economy is instead one

with non-fully rational expectations and learning, the implied loss will be equal to 5:23. The welfare

cost that arises from a misspeci�cation of the agents�expectations formation mechanism is therefore

substantial. I �nd in fact that under rational expectations, the policymaker does not respond as

aggressively to in�ation as she does under learning. This conclusion is shared by Orphanides and

Williams (2003, 2005a). They similarly �nd that learning implies a more aggressive central bank�s

response to movements in in�ation: they discuss, in fact, how an aggressive policy helps stabilizing

in�ation expectations near those implied by the rational expectations equilibrium.

9. CONCLUSIONS

Several papers have studied the determinants of in�ation dynamics. Monetary policy models

often include a law of motion for in�ation in which current in�ation depends on future expected

in�ation and on current output gap or marginal costs. Such a relationship, known to researchers

as New Keynesian Phillips curve, can be derived from the optimizing behavior of �rms in models

with imperfect competition and sticky prices. Firms, in these models, have rational expectations.

In their simplest form, New Keynesian Phillips curves fail to match the persistence characterizing

actual data on in�ation. Therefore, researchers have proposed various extensions that lead to

persistence in the in�ation equation. Rule-of-thumb behavior, price indexation, menu costs are

popular modeling devices to account for in�ation inertia.
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This paper has suggested a di¤erent approach, proposing learning as an important determinant

of in�ation behavior. In the model, economic agents form expectations from simple economic mod-

els, not knowing the true model parameters. They have the same knowledge that econometricians

would have, and, therefore, they use historical data to infer the relevant parameters and update

their estimates through constant-gain learning.

The paper shows that when learning replaces the standard assumption of rational expectations,

structural sources of persistence, such as indexation, are no longer essential to �t the data. There-

fore, learning seems to be a major source of persistence in in�ation. Disentangling the role of

learning from that of structural sources of persistence carries also normative implications. If learn-

ing rather than mechanical indexation is the main source of persistence in in�ation, the implied

optimal monetary policy will di¤er.

Under constant-gain learning, one�s results may heavily depend on the choice of the gain. In

the paper, I have shown how the estimated backward-lookingness in in�ation varies over the range

of possible gain coe¢ cients. The large di¤erences are evidence that working with estimated, rather

than arbitrarily chosen, constant gain coe¢ cients is necessary. The paper has provided some

preliminary evidence, calculating the best-�tting constant gain and showing how the �t of the

in�ation equation changes across the range of assumed gains. The best-�tting gain for the full

sample considered in the paper seems to be around 0:02, and it is reassuringly not far from values

assumed by other studies in the learning literature.
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Structural Coefficient
(Stand.Errors)

s

κ= 0.015 κ= 0.02 κ= 0.025

with output gap with marg. cost with output gap with marg. cost with output gap with marg. cost

γ 0.139
(0.21)

0.047
(0.18)

−0.001
(0.15)

0.045
(0.17)

−0.10
(0.12)

−0.006
(0.148)

β 1.125
(0.06)

1.019
(0.05)

1.114
(0.04)

1.01
(0.05)

1.10
(0.03)

1.00
(0.044)

δ 0.229
(0.04)

0.222
(0.032)

0.212
(0.028)

α 0.671
(0.02)

0.679
(0.02)

0.687
(0.02)

Table 1 - Estimates Model with Learning. Equations estimated by NLS.

Output gap as driving variable Marg. cost as driving variable

Full-sample Full-sample

Constant-Gain κ 0.02 0.025

Table 2 - Best fitting constant-gain coefficient κ. Note: the estimated equation is
πt = δxt + β bEt−1πt+1 + ut, where bEt−1πt+1 = φ0,t−1

¡
1 + φ1,t−1

¢
+ φ21,t−1πt−1.

Output gap as driving variable Marg. cost as driving variable

(1) (3) (2)

Constant-Gain κ 0.068 0.0995 0.0355

Indexation term γ/(1 + γβ) 0.0426 0.23 0.1681

Table 3 - Best-fitting gain coefficients. Note: learning rules
(1) πt= φ0,t+φ1,tπt−1+φ2,txt−1+εt
(2) πt= φ0,t+φ1,tπt−1+φ2,tst−1+εt

(3) πt=φ0,t+φ1,tπt−1+φ2,txt−1+φ3,tit−1+εt
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Welfare Loss (learning is ‘true’ model)

Optimal Policy assuming Learning 2.28

Optimal Policy assuming RE 5.23

Table 8 - Welfare losses implied by optimal monetary policies assuming learning and rational
expectations when learning is true model.
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Figure 1 - Evolution of agents’ beliefs over time.
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Figure 2 - Estimate of structural persistence parameter across constant gain coefficient values κ
(inflation equation with output gap).
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Figure 3 - Fit across constant gain coefficient values κ (inflation equation with output gap). Fit is
measured by BIC.
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Figure 4 - Fit across constant gain coefficient values κ (inflation equation with output gap).
Narrower view.
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Figure 5 - Estimate of structural persistence parameter across constant gain coefficient values κ
(inflation equation with marg. cost).
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Figure 6 - Fit across constant gain coefficient values κ (inflation equation with marg. cost).
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Figure 7 - The evolution of the best-fitting gain.
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Figure 8 - Evolution of agents’ beliefs (learning rule with output gap)
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Figure 9 - Fit (dashed) and estimated persistence (solid) across constant gain coefficient values κ
(inflation equation with output gap/ Phillips curve learning rule).
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Figure 10 - Fit (dashed) and estimated persistence (solid) across constant gain coefficient values κ
(inflation equation with marginal costs/ Phillips curve learning rule).
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Figure 11 - Fit (dashed) and estimated persistence (solid) across constant gain coefficient values κ
(learning rule with interest rates).
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Notes

1Intrinsic in the sense that inflation persistence is a ‘stylized fact’ that we should expect in most

industrialized economies.

2Also related is the paper by Santoro (2004) who, independently from this work, proposes

learning in a flexible price model to induce persistence in inflation.

3The full consumer maximization problem with learning is described in companion papers (Mi-

lani 2004a,b), which also examine time non-separable preferences.

4Consistently with most of the New Keynesian literature I log-linearize around a zero steady-

state for inflation. I am therefore abstracting from the complications arising from log-linearizing

around a positive inflation steady-state. For an account of the possible implications of this choice,

see Kiley (2004) and Ascari (2004). Indexation permits to avoid the problems due to trend inflation,

as shown in the appendix A of Ascari (2004). However, the present paper works with partial

indexation, remaining partly vulnerable to such problems.

5I will omit ‘ˆ’ from the following section to save some notation. I also omit ‘i’ as a superscript

to indicate the i-th firm, being the problem identical for every firm.

6For a different approach of considering learning, see Preston (2003), where learning is introduced

directly from the primitive assumptions of multi-period decision problems. The derived law of

motion for inflation will be equal to (10). My choice is instead similar to most papers in the

adaptive learning literature (Evans and Honkapohja 2001, 2003, Bullard and Mitra 2002, Bullard

and Eusepi 2003, and Williams 2003 are examples). See Milani (2004b) for estimations considering

both approaches.

7According to an anticipated utility model, each period agents maximize their expected utility

taking their beliefs and the model as constant, although the model is recursively estimated. But

when more data become available, agents update their beliefs and use this new knowledge to

maximize expected utility. Agents are therefore learning, but they are not involved in active

experimentation as a fully rational behavior would imply.
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8This particular forecasting rule would also arise as the correct functional form of rational

inflation expectations in a simple New Keynesian model composed by an aggregate supply equation,

given by (15), a linearized Euler equation that represents the aggregate demand equation, and a

simple Taylor rule as the monetary policy rule, and where the shocks are i.i.d. Lagged inflation

would be the only state variable in the model and therefore firms would learn using the Minimum

State Variable solution.

9All the data are downloaded from FRED, the database of the Federal Reserve Bank of Saint

Louis.

10The agents start with an estimate of the intercept equal to -1.00 and an estimate of the autore-

gressive parameter equal to 0.25. The initial variance-covariance matrix equals

⎡⎣ 0.245 0.029

0.029 0.027

⎤⎦.
11Using xt and st instead of xt−1 and st−1 does not alter the results.

12Recent papers that have started to study the optimal monetary policy under adaptive learning

are those by Gaspar, Smets, and Vestin 2006, and Molnar and Santoro 2005).

13The optimal policy under learning is calculated by assuming that the policymaker acts as an

anticipated utility maximizer. Therefore, the policymaker recursively chooses the optimal policy

under the assumption that the estimated parameter will remain unchanged in the future. In this

section, I am abstracting from the more complicated case of active experimentation.


