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Abstract

It has been argued that Berkeley’s arguments against infinite divisibility rest upon his misunderstanding
of convergent sequences; and that they conflict with the classical result that incommensurability implies
infinite divisibility. Here I argue that there is no such misunderstanding or conflict by revisiting ancient
geometrical practice. This practice had the metrical notion of a “part” as a unit of measuring magnitudes
that is distinct from the cardinal notion of “number of points” in a magnitude. The conflict between
Berkeley’s denial of infinite divisibility and incommensurability, which is taken as the standard objection to
Berkeley’s view, is also shown to be apparent by distinguishing the Aristotelian conception of mathematics
from the Pythagorean conception of mathematics supplemented by the theory of proportions due to
Eudoxus and Theaetetus.
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1 Introduction

Writing in the fourth century BCE, Aristotle wrote in Physics 200b15 – 200b21, “What is infinitely divisible is
continuous;” and in Physics 207b16 – 207b21 the converse, “What is continuous is divi[sible] ad infinitum.”1

The Aristotelian view that magnitudes are infinitely divisible was endorsed by Isaac Barrow in the mid
seventeenth century. Barrow was the first Lucasian Professor of Mathematics at Cambridge, a post later
held by his student Isaac Newton.2 In Lecture IX of his Mathematical Lectures he said:

There is no part in any kind of magnitude, which is absolutely the least. Whatever is divided into
parts, is divided into parts which are again divisible...whatsoever is continued is always divisible
into parts again divisible. I am not ignorant, how difficult this doctrine is admitted by some,
and entirely rejected by others.

Berkeley, who had certainly read Barrow in the early eighteenth century, was one of the dissidents. He wrote
in A Treatise Concerning the Principles of Human Knowledge (PHK, henceforth) §123 (W2: 99)3:

The infinite divisibility of finite extension, though it is not expressly laid down, either as an axiom
or theorem in the elements of that science, yet is throughout the same everywhere supposed, and

1All references to Aristotle in what follows are taken from the translations contained in Aristotle (1984).
2For Barrow’s view I have used Barrow (1734) Mathematical Lectures published posthumously in 1683.
3I shall follow contemporary Berkeleyan scholarship abbreviations where, for example, ‘W2:99’ refers to volume 2 page 99 of

Luce and Jessop (1948 – 1957) The Works of George Berkeley, Bishop of Cloyne.
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thought to have so inseparable and essential a connexion with the principles and demonstrations
in geometry, that mathematicians never admit it into doubt, or make the least question of it.4

Here I want to consider this debate between Barrow and Berkeley because it raises an issue regarding ancient
geometrical practice that deserves closer attention than it has received. Specifically, I will focus only on
evaluating the claim from PHK §123 that infinite divisibility is neither an axiom nor a theorem of Euclidean
geometry.5 One reason for focusing on evaluating this claim is suggested by an entry Berkeley made in his
notebooks — The Philosophical Commentaries (PC, henceforth) 263 (W1:33) — as a reminder to himself:

To Enquire most diligently Concerning the Incommensurability of Diagonal & side. whether it
Does not go on the supposition of unit being divisible ad infinitum, i.e of the extended thing
spoken of being divisible ad infinitum (unit being nothing also V. Barrow Lect. Geom:). & so
the infinite indivisibility deduc’d therefrom is a petitio principii.

This passage invites us to look more closely into ancient geometrical practice because it suggests that, in
disagreeing with Barrow, Berkeley himself looked carefully at the geometry textbooks being used at the time
for any proof connecting incommensurability (the view that there are pairs of magnitudes whose proportion
cannot be expressed in terms of a common measure) and infinite divisibility (Aristotle’s view that magnitudes
are fundamentally non-atomic or not composed of points).

The main question I am asking is this: assuming Berkeley had access to a reliable edition of Euclid: The
Thirteen Books of The Elements (The Elements, henceforth), is there evidence for his assertion that the
infinite divisibility of finite lines is neither an axiom nor a theorem in The Elements? I answer this question
affirmatively and in doing so I will argue for a more nuanced and plausible reading of Berkeley’s denial of
infinite divisibility. My main contribution is to show that Berkeley was not obviously wrong to deny that the
infinite divisibility of finite lines is an axiom or theorem in ancient geometry.6 By “not obviously wrong” I
mean that given the issues involved in articulating the thesis of infinite divisibility, it is possible that Barrow
and Berkeley were talking past each other. On the one hand, Barrow appears to endorse an Aristotelian
conception of mathematics and continuity (in terms of infinite divisibility) but does not distinguish between
geometry and number theory (or arithmetic, in their terms). On the other hand, Berkeley rejects these
Aristotelian conceptions but firmly distinguishes between geometry and number theory. This means that
the debate between Berkeley and Barrow is quite nuanced.

4It is noteworthy that in the same Lecture IX, Barrow (1734, pp. 153, 155) claimed that even though mathematicians rarely
openly assume infinite divisibility, they covertly assume it. My paper is a historico-philosophical investigation into whether or
not this assumption was necessarily made in ancient geometry.

5See Jesseph (1993, Chap. 2) and Jesseph (2005) for how Berkeley’s thought on this issue evolved from the Philosophical
Commentaries to the PHK.

6For an opposing view see Fogelin (1988), Jesseph (1993, 48 – 53), Franklin (1994), and Jesseph (2005, 278 – 284). My paper
is not intended as a critical evaluation these views, although along the way I identify the ways in which I differ. There is a
lot that I have learned from Jesseph (1993) and there is a lot in his view that I agree with. My intention is to open up the
possibility for fruitful debate regarding these matters by adding more distinctions than have been made in the literature to the
historico-philosophical background that could have influenced Berkeley’s philosophy of mathematics.
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One way in which I intend to explain or to show this nuance involves making certain distinctions. Here
I go further than the existing literature in (1) distinguishing between parts of a finite line and points in a
finite line; and (2) distinguishing between two ways of measuring the size of lines within a dense point-set
conception of a line: the metrical approach (i.e., in terms of number of units of distance) and the cardinality
approach (i.e., in terms of number of points). These are important distinctions to make because Berkeley
prefaces his arguments against infinite divisibility in PHK §124 with, “If the terms extension, parts, and
the like, are taken in any sense conceivable.” An evaluation of Berkeley will have to begin by looking at
what ancient geometrical practice meant by “parts of a magnitude” and whether ancient geometers were
committed to any particular theory about the metaphysical composition of continua (e.g., that they cannot
be composed of points) in their practice. Once these distinctions and clarifications are made (as I do in
sections 3 and 4 below), Berkeley’s denial of infinite divisibility can be given a plausible metrical reading
because it presupposes that magnitudes are composed of actual points. Aristotle, as is well known, denies
this presupposition. So, in saying that Berkeley is not obviously wrong, I intend to develop this plausible
metrical reading by exposing and criticizing the Aristotelian assumptions that went into formulating the
thesis of infinite divisibility.

Textual evidence that motivates making these distinctions can be found in a passage from An Essay
towards a New Theory of Vision (NTV, henceforth) §112 (with my emphasis):

For by the distance between any two points, nothing more is meant than the number of inter-
mediate points: If the given points are visible, the distance between them is marked out by the
number of the interjacent visible points: If they are tangible, the distance between them is a line
consisting of tangible points; [...] This, perhaps, will not find an easy admission into all men’s
understanding: However, I should gladly be informed whether it be not true, by any one who
will be at the pains to reflect a little, and apply it home to his thoughts.

Although Berkeley appears to slide here between distance as “number of points” and distance as “a line
consisting of tangible points”, I will use this passage to provide a plausible reading of Berkeley’s denial of
infinite divisibility in the following way. For any two points x, y in a finite line such that x < y, the Euclidean
distance d(x, y) or parts between these two points is some finite number of units of distance, where a unit
of distance is a line of a certain length. The order relation < can be defined using Postulate 1 (To draw a
straight line from any point to any point) as follows: x < y if the straight line is drawn from x to y. The
distance function d(x, y) is defined using Postulate 3 (To draw a circle with any centre and distance) as the
length of diameter xy of the circle. A finite line, according to Berkeley, is not infinitely divisible because it
has a finite number of parts or units of distance — its length; but it would be wrong to infer from this that
a finite line has a finite number of points. This is why discussing in detail what ‘parts’ and ‘points’ mean is
important for giving a plausible reading of Berkeley’s claim in PHK §§123 – 124.
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Another way in which I intend to explain or to show the nuance involved in Berkeley’s view involves
showing that when Aristotle says continuous magnitudes are infinitely divisible, he means two different
things, which are not necessarily equivalent. He means, first, that magnitudes are not composed of actual
mathematical atoms, geometrical minima or points. Call this the philosophical thesis of infinite divisibility.
This is tied to the synonymy he thinks there is between continuity and infinite divisibility. But he also
means, or at least this is how others have read him, that bisections of a given line can be done an indefinite
(potentially infinite) number of times — this is taken to follow from The Elements Book I Proposition 10
(To bisect a given finite straight line). Call this the mathematical thesis of infinite divisibility. The problem
is not only that these two formulations of infinite divisibility are not necessarily equivalent, but also that
Aristotle uses the mathematical thesis of infinite divisibility to support the philosophical thesis.7 But there
is nothing about the mathematics or theorems in The Elements that suggests continua are fundamentally
non-atomic or not composed of points with distance and order relations. Part of what I do in subsections
3.2 and 3.3 below is to show that when Berkeley denies the infinite divisibility of finite lines, he is rejecting
the philosophical thesis and consequently Aristotle’s mathematical argument for it.

There is another mathematical argument for infinite divisibility, which Berkeley was clearly aware of
given the quote from the notebooks: incommensurability implies infinite divisibility. I meet this objec-
tion to the plausible reading I am offering by distinguishing Aristotle’s conception of mathematics from
the Pythagorean conception of mathematics in section 4. Here I argue that it is Aristotle’s philosophical
conception of mathematics (specifically his taxonomy of quantities) that exerted the most influence on later
mathematicians, including Barrow, who took infinite divisibility to be the explanation of the Pythagorean
number theoretic discovery of incommensurability. But if we distinguish geometry from arithmetic (as Berke-
ley does) and use the Pythagorean conception of mathematics (i.e., number-monism and its taxonomy of
quantities) then one can plausibly deny the truth of infinite divisibility in geometry while accommodating
the incommensurability results in number theory.8

Overall, the reason I focus on ancient geometrical practice and discuss in detail the alternative conceptions
of mathematics, is that I want to offer evidence, on Berkeley’s behalf, for the assertion in PHK §124:

Ancient and rooted prejudices do often pass into principles; and those propositions, which once
obtain the force and credit of a principle, are not only themselves, but likewise whatever is
deducible from them, thought privileged from all examination.

For if I am right that infinite divisibility is an Aristotelian philosophical thesis, then Berkeley’s denial of
infinite divisibility becomes more plausible when these Aristotelian assumptions or “ancient prejudices” are

7I will not discuss the issue of whether Aristotle failed to distinguish between mathematical atomism from physical atomism,
the view that all there is are atoms and void. The claim that he may have done so has been made by Garber (1992, 123) and
the sources cited there. Aristotle argues as if a mathematical thesis — the convergence of geometric series — must be true of
the real world in order to solve Zeno’s paradoxes. See the discussion by Heath in Heath (1956, Vol. 1, 233f.) as well.

8See section 4 below for a more careful discussion.
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examined.
In summary, my argument for a plausible and nuanced reading of Berkeley’s denial of infinite divisibility

involves showing that the long-held view of identifying infinite divisibility with continuity is a view due to
Aristotle’s alternative conception of mathematics and its practice (section 3 and 4 below). How much Aris-
totle’s conception differed will become clear when I compare it with the Pythagorean conception in section
4 below. The upshot of this comparison for my plausible reading of the claims in PHK §§123 and 124 is that
by denying that finite lines are infinitely divisible, Berkeley was drawing on a conception of geometry that
was more faithful to The Elements than was Aristotle and Barrow’s conception. The faithfulness involves,
among other things, abandoning Aristotle’s philosophical thesis of infinite divisibility, which involves poten-
tially existing points; and adopting the alternative view of construing geometrical magnitudes as composed
of actual points or what Berkeley called geometrical minima.

Here’s how I have organized my paper. In the sections 2 – 3.2 I clarify the strategy or approach I will be
taking in my paper and introduce the terms which set the debate regarding infinite divisibility. In sections
3.3 – 4.4, I show how Aristotle’s conception of mathematics (i.e., his taxonomy of quantities into numbers
and magnitudes) led him to reconceptualize continuity — a process which, among other things, culminated
in the characterization of continuous quantities in terms of infinite divisibility. I also show how, and why,
someone who ascribes to the Pythagorean conception of mathematics (only numbers are quantities) together
with the theory of proportions by Eudoxus, can work without the philosophical thesis of infinite divisibility
in order to meet the objection to my reading based on the existence of incommensurable magnitudes.

2 Some comments on my strategy

The strategy I have chosen is to go back to The Elements in order to look for any evidence that refutes or
substantiates Berkeley’s claim in PHK §123. The authoritative English translation of The Elements I have
used is the three volume Heath (1956) based on the Greek edition of the Danish philologist Johan Ludvig
Heiberg. There is one worry about this strategy, however. The historian writing today, as De Risi (2016)
has shown, will have to come to terms with the numerous translations, modifications, and editions of The
Elements. Consider, for example, the second postulate in The Elements Book I. Of this postulate, De Risi
(2016, 15) writes:

A few postulates changed their formulation in different editions of the Elements. In particular,
Postulate 2 on the extendibility of a straight line states, in its original form, that the straight
line may be produced continuously (κατα τo συνηχϵς). Already in the translation of Adelard of
Bath (from the Arabic), however, the postulate is altered so as to make it into a statement about
the extendibility of a straight line to an arbitrary length (“assignatam lineam rectam quantolibet
spacio directe protrahere”), dropping the aspect of continuity and stressing rather the length of
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the extension.

As is well known, some version of this postulate was referred to by Aristotle in his arguments against
the actual infinite in Physics Book III 207b28 – 207b34:

Our account does not rob the mathematicians of their science, by disproving the actual existence
of the infinite in the direction of increase, in the sense of the untraversable. In point of fact they
do not need the infinite and do not use it. They postulate only that a finite straight line may
be produced as far as they wish. It is possible to have divided into the same ratio as the largest
quantity another magnitude of any size you like. Hence, for the purposes of proof, it will make
no difference to them whether the infinite is found among existent magnitudes.

Given that Aristotle’s views on the actual and potential infinite are intertwined with his views of conti-
nuity and infinite divisibility, this is an example of how modifications of the original text make it difficult to
say what ancient geometrical practice assumed. This difficulty is compounded by the worry about whether
Aristotle, Barrow and Berkeley were even using the same textbook I am calling The Elements. Aristotle
views on infinite divisibility certainly predate the text thought to have been compiled by Euclid into what
is now The Elements. Whereas I will argue below that infinite divisibility of finite lines does not follow from
The Elements Book I Proposition 10 (To bisect a given finite straight line), it is quite possible that the ge-
ometry textbook Aristotle used to develop his views was a different geometry textbook authored Theudius,
which drew the conclusion of infinite divisibility. We may never know how Theudius’s textbook compares to
Euclid’s because the Theudius textbook is lost. As we shall see later, there is also the worry about whether
there was a common conception of mathematics and mathematical practice in ancient geometry. Aristotle’s
conception of mathematics, for example, is developed in opposition to the Pythagoreans. According to the
Pythagoreans, there was only one species of quantity: number. The Pythagoreans sought to give their
number theory a geometric foundation but failed because of their discovery of incommensurability. We may
speculate that it is these and allied reasons that led geometers (and philosophers like Aristotle) to begin
distinguishing between two species of quantity: magnitudes (dealt with in geometry) on the one hand and
numbers (dealt with in arithmetic) on the other. Infinite divisibility, it was thought, applies to magnitudes
(due to the incommensurability results) not numbers. Centuries later, Barrow and Berkeley pick up this
issue of the relationship between geometry and arithmetic. On the one hand, one of Barrow’s central claims
in his Mathematical Lectures was that there is no distinction between arithmetic and geometry. Berkeley,
on the other hand, believed that there is a distinction between arithmetic and geometry. I return to this
problem in section 4 because I believe that the conception one has of mathematics matters in evaluating
Berkeley’s claim.

Given these worries, I have made the following decisions in my paper. First, I will not assume that
the textbook used by Aristotle in developing his views of continuity and infinite divisibility is identical, in
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terms of mathematical content, with the textbook, whose authorship we now attribute to Euclid. But this
need not deter us from pushing ahead with this inquiry. Relying on historical sources on the practice of
ancient geometry such as Simplicius and Proclus, we can get a sense of what the common core was across
all the different texts. Second, with regard to Berkeley and Barrow I will assume that they both had access
to the same geometry textbook. Here are the editions we can assume they both had access to. First,
Barrow’s own 1655 Latin Euclidis Elementorum Libri XV breviter demonstrati or its 1660, 1705, 1722 and
1732 English Editions. These Barrow translations are based on the singularly important Latin translation
by Commandinus (1509 – 1575) of Urbino.9 Commandinus followed the original Greek more closely than
his predecessors and most of the subsequent translations (for example into Latin by Clavius) are based on
Commandinus’s work. If the common textbook they both had access to was not any of Barrow’s Latin or
English translations, then I will assume that it was the 1703 Oxford edition by David Gregory which, until
the issue of Heiberg and Menge, was still the only Greek edition of the complete works of Euclid. Of this
Gregory edition, De Risi (2016, 75) says, “The system of principles [...] is left unmodified.” Thus, if we
assume that it was the Gregory edition that Berkeley would have used in the claim at PHK §123, then I am
justified in saying that Berkeley had a reliable source of what ancient geometry entailed comparably similar
to the one we have today in Heath (1956).

3 What does infinite divisibility mean for Berkeley?

3.1 Do infinitely many parts of a whole W imply that W is infinite?

Following his remark that the thesis of infinite divisibility is neither assumed nor proved in The Elements,
Berkeley gives a surprising argument for this view. As we shall see below, the argument has roots in
the Epicureans. It claims to show that what is infinitely divisible must contain infinitely many parts and
consequently be infinitely large. I propose that we start here and work backwards to substantiate Berkeley’s
initial remark in PHK §123.

If the terms extension, parts, and the like, are taken in any sense conceivable, [...] then to say
a finite quantity or extension consists of parts infinite in number, is so manifest a contradiction.
PHK §124 (W2: 99)

[W]hen we say a line is infinitely divisible, we must mean a line which is infinitely great. PHK
§128 (W2: 101)

There are really two arguments here although in the second quotation it is implicit in the talk of meaning.
In the first argument Berkeley is arguing that from the supposition that a finite line (he uses ‘extension’)
consists of infinitely many lines, it follows that the original line is infinite. But the original line is finite.

9See Heath (1956, Vol. 1, p. 104 – 110).
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Hence it follows by reductio that our supposition was wrong. The second implicit argument in the claim
in the second quotation is that if a line is infinitely divisible, then we must mean a line which is infinitely
long. Since it is common ground that there are no infinitely long lines, it follows by reductio again, that our
supposition was wrong.10

In evaluating Berkeley’s argument, most scholars point out that Berkeley is missing the obvious property
of infinite geometric series: convergence.11 A geometric sequence is a sequence sn with n ∈ N of terms with a
common ratio | sn+1

sn
| = |r| < 1 between successive terms (sn and sn+1). An infinite geometric series involves

summing all the terms in an infinite geometric sequence. We say that the infinite geometric series converges
to finite sum or number if the sequence of partial sums Sn =

n∑
1
sn converges. Today, with a point-set

conception of the continuum, the convergence of an infinite sequence is proved by showing that after a finite
large number M , all subsequent terms sm with m > M are so close to each other that they are virtually
indistinguishable, i.e., the distance between them is almost negligible or there is “no part” between them. So
beyond M , the Euclidean distance d(sm, sm+1) between any two successive terms adds nothing significant
to the already total finite units of distance of the terms before M . This is why a geometric series converges
to a finite number. For example, the sum of the terms in the geometric sequence ⟨1, 12 ,

1
4 , . . . ,

1
2n , . . . ⟩ for

n ∈ N is 2. This series converges since the common ratio |r| = 1
2 < 1.

But I don’t think that Berkeley is ignorant of the existence of convergent geometric series or denying the
theorems which support them. First, in query 53 of The Analyst he asks, “Whether, if the end of geometry
be practice, and this practice be measuring, and we measure only assignable extensions, it will not follow
that unlimited approximations completely answer the intention of geometry?” The convergence of geometric
series is essentially an approximation or limit procedure, where a mathematician claims that the sum of the
infinite series can be approximated by a finite partial sum to any given error ϵ > 0. Therefore, the query in
The Analyst suggests to me that Berkeley would assent to the existence of geometric series.

Second, The Elements does not discuss the notions of convergence and divergence of infinite series. The
mathematics of infinite series was made precise in the 19th century with the work of Cauchy and Weierstrass
aimed at rigorously reformulating analysis.12 So pointing out the existence of convergent sequences, supports
rather than refutes Berkeley’s argument that infinite divisibility is not in The Elements.

Moreover, according to commentators, it is Aristotle, not The Elements, who was one of the first to use
10Initially I had thought that Berkeley wanted to give a complicated or novel instrumentalist interpretation of infinite divis-

ibility based on his doctrine of signs. I have come to see that was not his intention at all. In PHK §§125 – 128 he is offering
one possible explanation, on the basis of his representative theory of generality, for what might have led the mathematicians,
erroneously, to suppose the thesis of infinite divisibility. It does not mean that this explanation is the right one nor does it
mean that this is the only way to construe the thesis of infinite divisibility or lead to its acceptance within mathematics. Cf.
Jesseph (1993, 72 – 74) who thinks Berkeley is offering an instrumentalist account.

11This is a point that Fogelin (1988, 52 – 53) and Franklin (1994) make.
12The terms ‘convergent’ and ‘divergent’ were used by James Gregory in 1668 but he did not develop the ideas. Newton only

affirmed that power series converge for small values of the variable and for the geometric series. Leibniz showed that series
whose terms alternate in sign and decrease in absolute value monotonically to zero converge. See Kline (1972, Vol. 2, 461) and
for Cauchy and Weierstrass see Kline (1972, Vol. 3, 948, 952, 963ff.).
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“convergence of a geometric sequence” synonymously with “potentially infinitely divisible” as a response
to Zeno’s paradoxes.13 Zeno in supposing that magnitudes are infinitely divisible, intended this to imply
that the magnitudes are actually divided into infinitely many parts. He did not intend it in the restricted
Aristotelian sense of merely potentially infinitely divisible. One way of understanding his paradoxes was
that a supertask would have to be completed. A supertask is a task involving actually infinitely many steps
completed in finite time.14 For example, in the Dichotomy Paradox, the motion can never begin because
to start from the beginning of an interval to the half-way point of the interval, one would have to traverse
an actually infinite number of monotonically decreasing intervals of space approaching the beginning of the
interval. So if someone merely pointed out to him that a geometric series converges as Aristotle did —
speaking in terms of potential infinite divisibility — Zeno would have been unconvinced that this solves
the Dichotomy Paradox. In other words, Aristotle shows why motion is possible (namely that the sum of a
convergent series is finite) not how it is possible (how can actually infinite many steps be completed in a finite
time). Here we see one way in which Aristotle’s philosophical thesis of potential infinite divisibility became
associated with a mathematical theorem that asserts the existence of convergent geometric sequences. The
other way has to do with Aristotle’s reconceptualization of continuity which I discuss below.

The Port Royal Logicians (Antoine Arnauld and Pierre Nicole), Isaac Barrow and John Keill15 continued
this Aristotelian thought in the late seventeenth century and early eighteenth century, arguing that the
convergence of geometric series counts as a reason in favor of infinite divisibility. Berkeley clearly read these
mathematicians’ work as evidenced by his notebook entries.16 The intellectual (albeit virtual) exchange
between Barrow and Keill on the one side supporting infinite divisibility in mathematics and Berkeley on
the other denying it has been discussed in detail in Jesseph (1993, 63 – 67). However, one argument that
Jesseph does not discuss is the argument based on the convergence of geometric series. Barrow (1734, 157),
in Lecture IX, puts it this way:

[I]t is plainly taught and demonstrated by Arithmeticians, that an infinite series of fractions,
decreasing in a certain proportion, is equal to a certain number; e.g. that such a series of
fractions decreasing in a subsesquialter proportion is equal to two, in a subduple proportion to
unity, in subtriple to one half; from whence it is not inconsistent for something finite to contain
in it an infinity of parts.

Since Berkeley read these authors, it is not true that he was ignorant of the possibility that convergent
geometric series would be counterexamples to his view that any magnitude that contains infinitely many
parts must be infinite.

13See Heath (1956, Vol. 1, 233 – 234) for discussion. For the reference in Aristotle see Physics 206b4 – 206b12.
14For the supertasks reading of Zeno’s paradoxes see Black (1967) and Manchak and Roberts (2016).
15Keill became the Savilian Professor of Astronomy in Oxford in 1712. For Keill’s view I have used Keill (1745) An Introduction

to Natural Philosophy: or Philosophical Lectures Read in the University of Oxford 1700 A.D.
16See PC 263 W1:33, PC 308 W1:38, PC 462 W1:57.
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3.2 What Berkeley means by finite divisibility

Why, then, would Berkeley have been convinced that his arguments were sound? In the previous subsection
I rejected the view that Berkeley was simply ignorant of convergent geometric series (a series with infinitely
many parts yet finite in size). So in order to see the soundness of Berkeley’s argument against infinite
divisibility, we need to look more carefully at the distinction between parts and points, and what infinite
divisibility (or its denial) by Berkeley even means. Let me begin with what Berkeley’s denial of infinite
divisibility of finite lines means.

Many have read Berkeley’s denial of infinite divisibility as entailing that for every line L there is a finite
number of divisions n ∈ N that can be done on L such that for all m > n ∈ N, L is not divisible further.
I am indexing by the natural numbers N because I am assuming that infinite divisibility is decidable or a
constructive procedure. But Book I Proposition 10 implies there are no indivisible lines (see the more detailed
discussion in §3.4 below). Therefore, on this reading, Berkeley’s denial of infinite divisibility contradicts this
well established theorem.

The problem with this reading is that it assumes that Berkeley’s indivisibles for m > n ∈ N are other lines
with parts. But we know that in the seventeenth century, it was a matter of controversy what the indivisibles
of a line were. From Leibniz’s work on continuity, we know that there were at least three candidates for the
indivisibles of a line: other lines, infinitesmals, or minima, i.e., Euclidean points.17 Berkeley’s indivisibles,
or what he calls geometrical minima (minimal parts which compose of a geometrical magnitude), are points
with distance and order relations.18 Therefore, the well known problems of indivisible lines, which would
arise on this reading, including the conflict with Book I Proposition 10, can be avoided because Berkeley
doesn’t believe there are indivisible lines.

At the same time, his denial of infinite divisibility doesn’t entail that there are a finite number of points
in a line. The notion of cardinality which we get later with Cantor — such that a line has actually infinitely
many points — is not a notion Berkeley and his contemporaries would have been familiar with. Berkeley
consistently uses the notion of parts, not points, when discussing the number of parts in a finite line. Recall
the passage from NTV §112 quoted earlier:

For by the distance between any two points, nothing more is meant than the number of inter-
mediate points: If the given points are visible, the distance between them is marked out by the
number of the interjacent visible points: If they are tangible, the distance between them is a line
consisting of tangible points.

Here Berkeley appears to say that distance is the number of intermediate points but also a line consisting
of points. In my opinion, the most plausible, or charitable way of reading Berkeley’s denial of infinite

17See Arthur (2001, xxxiii – xxxv)
18See especially NTV §§54 – 61, 112; PHK §127 and De Motu §14. This view, I argue has roots in Pythagoras, Epicurus and

Gassendi. Gassendi is mentioned by Berkeley in NTV §75 and Epicureanism is mentioned by Berkeley in PHK §93.
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divisibility given what he says in this passage consists of two parts. First, one must take Berkeley to be
assuming an actual ordered dense point-set conception of a line. The notion of order and density (between
any two points there is another point) is suggested by Berkeley’s talk of “intermediate points.” If Berkeley’s
assumption is granted, then one can say that Berkeley is analyzing the finite divisibility of lines in metrical
terms (i.e., units of distance) not in terms of cardinality (i.e., number of points). This is the nuance in his
view and why it is not obviously false. The metrical approach is implied by “distance between them is a line
consisting of tangible points.” The line represents the total units of distance or length according to some
scale.

This reading of Berkeley’s analysis can be justified by looking at The Elements as well. The actual
ordered dense point-set conception of a line is justified by Postulate 1 (To draw a straight line from any
point to any point) and the metrical approach is justified by Postulate 3 (To draw a circle with any centre
and distance). Taking all of these assumptions together means that when Berkeley says that finite lines
are finitely divisible, he means that for any two points x, y in a finite line such that x < y, the sum of the
Euclidean distance d(x, y) or parts between these two points is some finite number of units of distance. As
already mentioned, the order relation < can be defined using Postulate 1 as follows: x < y if the straight
line is drawn from x to y. The distance function d(x, y) can be defined using Postulate 3 as the length of
diameter xy of the circle. Therefore, one plausible way to read Berkeley’s claim and argument in PHK §124
is that the number of units of distance, or parts, in a finite line can only be finite. Suppose otherwise and
take the end points a, b of a finite line, then there is an infinite number of units of distance between these
points. But this is absurd unless the line is infinite. For example, take the points to be the boundaries of
the finite line contained within the interval [5, 10]. Today we know that there are the cardinality of the real
numbers many points in this interval. But once one adopts the Euclidean distance, then there is a total of
5 units of distance or parts.19

Thus, by denying infinite divisibility, Berkeley wants us to draw at least two conclusions. First, the sum
of the d(x, y) units of distance between any points x, y such that x < y in a finite line is finite — it is infinite
only if the line is infinite. Secondly, Berkeley’s denial of infinite divisibility presupposes that lines can be
composed of indivisible points or geometrical minima since the philosophical thesis of infinite divisibility
is equivalent to the thesis that continuous quantities are fundamentally non-atomic. Here’s how Aristotle
expresses this thesis:

Nothing that is continuous can be composed of indivisibles: e.g. a line cannot be composed of
points, the line being continuous and the point indivisible […] [I]t is plain that everything contin-
uous is divisible into divisibles that are always divisible; for if it were divisible into indivisibles,

19There’s a strong parallel to Berkeley’s thinking in Bolzano. Bolzano realized that there is a one-to-one correspondence
between the real numbers in the interval [0, 5] and the interval [0, 12] given by y = 12x

5
a function from [0, 5] to [0, 12] but

was still reluctant to accept that these two intervals have the same “size.” We can explain Bolzano and Berkeley’s puzzlement
because they were thinking about size in distance or metrical terms (assuming an ordered dense point-set conception of a line)
rather than in terms of cardinality.
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we should have an indivisible in contact with an indivisible, since the extremities of things that
are continuous with one another are one and are in contact. The same reasoning applies equally
to magnitude, to time, and to motion: either all of these are composed of indivisibles and are
divisible into indivisibles, or none [of these are]. If time is continuous, magnitude is continuous
also […] If time is infinite in respect of divisibility, length is also infinite in respect of divisibility.

Aristotle, Physics Book VI 231a18 – 231a20; 231b16 – 232a17; 233a13 – 233a21

Here we see that Aristotle’s thesis of infinite divisibility applied to magnitudes (or lines) is equivalent to the
thesis that lines cannot be composed of points. This means that by denying infinite divisibility, Berkeley is
rejecting at least this particular meaning of the Aristotelian view, which we called earlier the philosophical
thesis of infinite divisibility. I have not yet discussed what implications this has for the mathematical thesis
of infinite divisibility: Book I Proposition 10 (To bisect a given finite straight line) — I will return to it
below. What I have shown is that when Berkeley says lines are finitely divisible, he presupposes, contra
Aristotle, that there are actual and dense mathematical atoms or points in a line, and he is analyzing the
number of divisions of a line (into parts) in terms of number of units of distance between its points. What we
need to find out is whether the picture I am painting is consistent with The Elements as Berkeley or Barrow
would have read it and whether Berkeley is right that infinite divisibility does not follow from anything in
The Elements. The answer depends on what The Elements meant by parts and points.

3.3 What are parts and points?

Kline (1972, Vol. 3, 1008) notes that one criticism that Moritz Pasch made of The Elements had to do
with The Elements’s definitions of ‘point’ and ‘part.’ In fact, the talk of parts ought to remind us of the
starting point of The Elements. Famously, The Elements begins with the definition of a geometrical point
(points, henceforth) as “that which has no part.” But what does having “no part” mean? This can only be
understood if we understand what “part” and “parts” are.

One possibility for understanding what these terms mean can be found in the geometrical Book V of
The Elements, whose theory of proportions is attributed to Eudoxus. In this book we read (my emphasis),
“A magnitude is a part of a magnitude, the less of the greater, when it measures the greater.” Taking
this geometrical characterization together with what we find in the arithmetical books (Books VII, VIII,
IX of The Elements), we may say that a part of a magnitude or number is what we call today a factor
or integral divisor according to some unit of distance or measure. Parts (plural) are what we call today
a fraction, although ancient geometers did not make use of expressions which we use today when we talk
about fractions.20 In both the singular and plural case, what we have is a number that represents a measure

20Cf. Heath (1956, Vol. 2, 115) for Heath’s discussion of parts of a magnitude and Heath (1981, Vol. 1, 42) for a discussion
on fractions. The introduction of fractions as denoting quantities or real numbers had to wait until 1500 or so. See Kline (1972,
Vol. 1, 251).

12



or what I am calling units of distance. Therefore, this first possibility of understanding what The Elements
means by ‘part’ or ‘parts’ is consistent with how Berkeley understands the notion of part or parts of a line
— it is a metrical notion.

The other mention The Elements makes of ‘parts’ is in the discussion of the Common Notions. Common
Notions were self-evident truths with such widespread acceptance that most people adopted them without
proof. Some of these common notions were “Things which are equal to the same thing are also equal to
one another” (Common Notion 1) and “The whole is greater than the part” (Common Notion 5).21 For
my purposes, the relevant way of reading what The Elements means by the part-to-whole relation involves
homogeneity, the property of two or more things being similar in some respect. We may say that A is a part
of a whole B iff A is homogeneous with B but not equal to (strictly less than) B.22 In The Elements and
most ancient geometers, the part-to-whole relation in geometry is a relation between homogeneous quantities
since it is only the category of quantity, according to Aristotle, that admits of the relation equal-to, less-than
or greater-than.23 For example, the parts of a (whole) line will be other (homogeneous) lines. A part of a
(whole) multitude, such as a collection of coins, will be another smaller collection of coins.

Applying this to Berkeley, the relevant sense of homogeneity, I claim, is the measure or unit of distance.
He writes in De Motu §14, “To prove that some quantity is infinite, one must show that some finite homoge-
neous part is contained in it infinitely many times.” Therefore, in NTV §61, PHK §§127 – 128, the relevant
sense of ‘part’ in these passages can plausibly be read in terms of number of units of distance in a finite line
(or whole).24 The finite line represents a number of units distance, which is the union or sum of its parts.
Therefore, the nuance in Berkeley’s denial of infinite divisibility, which makes it plausible, is that it requires
a notion of ‘parts’ which presupposes a homogeneous definite measure or unit of distance, which we saw in
the first possibility discussed earlier. It does not imply that a finite line has a finite number of points.

3.4 Can a magnitude be composed of points?

The preceding discussion of parts is relevant for my evaluation of the assumptions in Aristotle’s philosophical
thesis of infinite divisibility and for lending some credibility to Berkeley’s denial of it. In this subsection, I
show how this works.

First, The Elements’s definition of a point does not, by itself, tell us anything about the divisibility
(or lack thereof) of points. The definition clearly does not mention divisibility. Second, The Elements’s

21Despite this widespread belief in antiquity, today it is hard to accept the fifth common notion. We know, for example, that
in the case of infinite sets, the whole is not necessarily greater than the part. While this result would have been paradoxical
to Galileo, Leibniz and Berkeley, it would be anachronistic to try to refute their view on the basis of modern developments
in mathematics. See Mancosu (1996) for Galileo and Leibniz’s grapplings with the actual infinite. For the actually infinite
point-set conception of the geometric continuum, which is justified by a cardinality approach, beginning most explicitly with
Cantor and Dedekind, see Kanamori (2020).

22See The Elements Book V and Book VII also.
23“[The] most distinctive of a quantity would be its being called both equal and unequal.” Categories 6a26 – 6a36.
24I am using “units of distance” as a general expression for Berkeley’s “inches” and “feet”.
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definition does not deny that a point has what Plato called onkos (roughly, size or volume; more of this
below). I will take this to mean that The Elements’s definition of a point does not deny that a point has
minimal size.25 So saying that there is nothing less than a point which is homogeneous to it does not entail
that a point is nothing (i.e., that it has no size) as Hume famously thought in considering alternatives to his
position. Hume considered his position (there are minima with color and solidity) to be the middle ground
between infinite divisibility and mathematical points.26 What it does entail is that there is nothing smaller
than a point which is homogeneous to it.27

So where did this pervasive characterization of points as being indivisible originate? I claim that this
identification of a point with the indivisible started with Aristotle’s reconceptualization of continuity. This
conception was developed in order to refute the physical atomists (there are indivisible physical atoms that
compose matter). In doing so, Aristotle connects the physical atomist thesis (the view that all there is are
atoms and void) with what I will call the mathematical atomist thesis (magnitudes are composed of actual
points with distance and order relations between them). The sixth century CE Neoplatonist Simplicius,
one of the few extant ancient commentators on Aristotle’s Physics, has this to say in his commentary on
Aristotle’s Physics Book VI (this is the book that deals with continuity):

Aristotle set up the logical division of the divisible into either indivisibles or forever divisibles, so
that he might comprise the continuous in that which is divisible into forever divisibles. Simplicius
(2014, 23f) Trans. lines 931, 5 – 10 in MSS.

More recently, Miller, Jr. (1982, 88) has written,

Aristotle reformulated the old difficulties in his own terms and defined concepts in order to resolve
them...He presents his own theory of the continuum as the only way out of an ancient dilemma
which seeks to show the absurdity of continuous magnitudes.

I return to the dilemma in a moment. The important take away, for now, from Simplicius and Miller, Jr., is
that Aristotle was reconceptualizing the debate with the physical atomists and that this involved identifying
the continuous with the infinitely divisible.

The identification of the point with the indivisible is again stated in Aristotle’s Metaphysics 1016b18 –
1016b30. Here he writes:

25There are complications with my attempt to reconstruct what Euclid might have meant by ‘point.’ These complications
arise in view of recent developments in measure theory where a point is, indeed, assigned measure 0. I will simply flag this for
now and direct interested readers to Skyrms (1983) for an excellent introduction to measure theory in the context of some of
the issues I am discussing here.

26See A Treatise on Human Nature II.iv. The literature on Hume and infinite divisibility is vast. Good places to start are
Jacquette (1996), Pressman (1997) and Holden (2002).

27It would be interesting to see whether my analysis is consistent with what the early modern philosophers, following Descartes,
express in terms of lacking extension. See Arnauld, Antoine and Nicole, Pierre (1996, 231 – 232) where the words “zero ex-
tension” are used. In Rules for the Direction of the Mind Rule XIV it is noteworthy that Descartes disentangles his notion of
‘extension’ from ‘quantity.’ In Meditation V, quantity is only applied to continuous quantity and Descartes speaks of extended
quantity. It is a thorny issue to try to understand what extension is for Descartes so I will not get into that here. See Garber
(1992) especially Chapter 3 and 5.
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But everywhere the one is indivisible either in quantity or in kind. That which is indivisible in
quantity and qua quantity is called a unit if it is not divisible in any dimension and is without
position, a point if it is not divisible in any dimension and has position.

It is not clear who Aristotle’s sources were for this characterization of points and units.28 What we do get
clearly from Aristotle is one way to conceive of mathematical points is that they are indivisible. But if they
are indivisible, does it follow that the points have no onkos or are nothing? ‘Onkos’ is a technical term
used in different contexts — some of these contexts are theatrical. In the mathematical contexts, ancient
scholars29 vary in translating ‘onkos’ as volume, measure or simply spatial extension and are divided on this
question and what implications it has for our conception of points with respect to divisibility.30

Laying aside the difficulty of how to translate or understand onkos, this question raises a dilemma. On
the one hand, if someone says that the mathematical points have no size or spatial extension, then they are
“nothing” and cannot compose a magnitude. The assumption here is that a magnitude is composed of other
(homogeneous) magnitudes with size. On the other hand, if one says that the mathematical points have
size (i.e., they are proper parts of magnitudes), then they are not indivisible after all. Zeno, as presented
by Aristotle, exploited this dilemma with relish in his paradoxes. On the one hand, he forced Aristotle to
reject indivisible magnitudes in favor of infinite divisibility. On the other hand, the Epicureans and ancient
atomists exploited the assumption that a magnitude is infinitely divisible into parts with size to argue that
this would imply that the original magnitude is infinite in size. So they accepted indivisibles.31 We’ve
already met some version of this Epicurean argument in connection with Berkeley.

As mentioned, Aristotle got himself out of this dilemma by arguing that the mathematical points have
no size. Faced with the conclusion that they cannot compose a magnitude or are “nothing”, he argues
that points exist potentially. That is, rather than accept that points are non-entities (since they lack
onkos), Aristotle opted to say that a point is actualized whenever a magnitude is split, say, into two smaller
magnitudes. Here’s how Miller, Jr. (1982, 98) puts it:

Aristotle refutes the nihilistic horn [the name Miller, Jr. gives for the first horn of the dilemma
we’ve been discussing], used by atomists, by showing that even though division is possible and
a point exists everywhere in the potential mode, it does not follow that magnitude reduces to
points. For the existence of every actually existing point is conditional upon the existence of two
segments with magnitude into which the subsection is divided.

Thus the same point is the limit or extremity of the two magnitudes resulting from the split. That is, the
28Cf. Proclus (1970, 78) Trans. lines 95.21 – 96.14. “A point is a unit that has position.” The Pythagorean definition does

not mention divisibility.
29See (Pfeiffer, 2018, 130 – 131) for example.
30See Vlastos and Owen discussed in Furley (1967, 67). Furley notes that Vlastos writes of Zeno’s assumption, “that anything

which does have size is at least logically divisible and has at least logically discriminable parts.” But he also mentions Owen who
writes that Zeno assumes without argument that the conjunction of size with theoretical indivisibility would be a contradiction.

31See Diogenes Laertius (2018, 507 – 522) for Epicurus’ Letter to Herodotus.
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point existed potentially before the split but now exists actually as a limit or extremity of the two separate
lines after the split.

Let’s evaluate the line of reasoning that led Aristotle to this view. In order to split a line AB, I presumably
have to specify where I want to split it, say some location C between A and B. But if I can specify the
location as a point C, then the point C must already be there unless there is “gap” at that location. This
means that Aristotle has to either prove that a magnitude (say a line) is continuous, as we do today, in either
the dense or Cantor-Dedekind complete sense first; or assume that it is before he can argue that points exist
potentially. In fact, Aristotle neither assumed nor proved any of these alternatives since for him a line was
not composed of points. What Aristotle did is to assume that you can always bisect a line segment into two
equal segments. Continuity for him consisted in the identity of the right limit of the left segment and the left
limit of the right segment. On the basis of this analysis of the existence of points and continuity, Aristotle
drew the conclusion that continuous magnitudes (such as lines) are infinitely divisible since bisections can
be done an indefinite number of times.32 Some geometers33, following Aristotle, then understood the infinite
divisibility of finite lines to be a consequence or assumption of what is now The Elements Book I Proposition
10. How warranted were geometers to draw this consequence or make this assumption? Let us look at this
next.

3.5 Infinite Divisibility and The Elements Book I Proposition 10

Proposition 10 in The Elements Book I is the proposition ‘To bisect a given finite straight line.’ The proof
is familiar to most people from elementary geometry using compass and straight-edge. The important point
is that if one analyzes the proof, The Elements does not draw the conclusion that this process can be
iterated infinitely many times. We know that Aristotle predated Euclid’s textbook The Elements and that
Aristotle and his students at The Lyceum had a different geometry textbook that according to historians
(Heath, 1981, Vol. 1, 321) was authored by Theudius. There was also an arithmetical textbook Elements of
Arithmetic apparently authored by Archytas (430 – 365 BCE) who also predates Aristotle.34 We may never
know how Theudius proved this theorem and what conclusion he drew because that textbook is lost. Thus,
it is impossible to know definitively whether Euclid and Aristotle differed in their conception of ancient
geometrical practice. Recent scholars Linnebo and Shapiro (2019, 164) speculate:

Because of the structure of the geometric magnitudes (to echo Lear (1982)), we have procedures
that can be iterated indefinitely, and we speak about what those procedures could produce, or
what they will eventually produce if carried sufficiently (but only finitely) far. In holding that
these geometric procedures can be iterated indefinitely, Aristotle again follows the mathematical

32See Physics 207b10.
33See the quotation from Proclus in the next section.
34See Heath (1956, Vol. 2, p. 295).
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practice of the time, this time in opposition to his other major opponents, the atomists, who
postulate a limit to, say, bisection.

Proclus (1970, 216 – 217, Trans. lines 278 – 279 in MSS.) — a commentator on Book I of Euclid and the
best historical source on ancient geometry we have — disagrees with this speculation. Here’s how Proclus
sees this matter in his commentary on Book I Proposition 10 (my emphasis):

[If a line] is not composed of indivisible parts, it will be divisible to infinity. This, they say, appears
to be an agreed principle in geometry, that a magnitude consists of parts infinitely divisible. To
this we shall give the reply of Geminus, that geometers do assume, in accordance with a common
notion, that what is continuous is divisible. The continuous, we say, is what consists of parts that
are in contact, and this can always be divided. But they do not assume that what is continuous is
also divisible to infinity...it is an axiom that every continuum is divisible; hence a finite line, being
continuous, is divisible. This is the notion that the author of the Elements uses in bisecting the
finite straight line, not the assumption that it is divisible to infinity. That something is divisible
and that it is divisible to infinity are not the same.

This is a difficult text to make sense of and I do not claim that my reading is the only possible one here. Here
is my proposal. Proclus is urging us to distinguish what we are in fact bisecting at a given stage n ≥ 1 ∈ N.
Again, I am indexing by the natural numbers N because I am assuming that infinite divisibility is decidable
or a constructive procedure. Suppose we start with a line AB and bisect it at C in stage 1. After the n = 1

bisection stage, we are strictly speaking not bisecting the original line AB but have a choice of bisecting
either AC or CB. So it is at least misleading if not false to say that bisections of the same original AB

line can be done infinitely many times. Proclus’s point seems to be that the theorem says that for each
line the bisection can be done once. The continuity assumption, as a common notion, guarantees that any
line segment is divisible, i.e., there are no indivisible lines. Berkeley will not object to any of this. But
Proclus also points out that using The Elements Book I Proposition 10 as a proof for infinite divisibility of
the original line is an extrapolation. Aristotle was one of those people who made the extrapolation from the
bisection of each line (which the proposition shows) to potential infinite bisection of the same original line
(which the proposition doesn’t show). While it is true that one needs to assume continuity as a common
notion to argue for the actual existence of a point as the limit of the two resulting line segments from
bisection at a potentially existing midpoint; Aristotle, eager to refute the physical atomists, extrapolated
from the claim that every line is bisectable once (which the proposition shows) to the claim that the (same)
line is bisectable at every stage n > 1 ∈ N (which the proposition doesn’t show). If my reading of Proclus’s
commentary is right, then this commentary is another source of evidence supporting Berkeley’s claim that
(potential) infinite divisibility is not a theorem or axiom in The Elements. Ancient geometrical practice
could proceed simply by taking continuity to be a common notion, rather than defining continuity in terms
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of infinite divisibility, as Aristotle did.

4 Incommensurability in light of Aristotelian and Pythagorean views of
Mathematics

However, there is the issue of incommensurable magnitudes. Many have taken this to be evidence for infinite
divisibility. In fact, in this same commentary on Book I Proposition 10, Proclus (1970, 217) says that infinite
divisibility follows from the existence of incommensurable magnitudes. Later philosophers such as the Port
Royal Logicians took the existence of incommensurable magnitudes to be the definitive demonstration that
there are no indivisible parts in magnitudes.35 Incommensurability poses a threat for anyone who denies
infinite divisibility (like Berkeley) only if such a person: (1) believes that there are indivisible lines; and (2)
believes that the number of indivisible lines that a line can be divided into corresponds to its size. For if
(1) and (2) are true, then suppose that the hypotenuse of a right triangle with side of unit length can only
be divided into a finite number of lines m and the side can only be divided into a finite number of lines n

where m is larger than n and m and n are in their least terms (having a greatest common divisor of one).
Then the existence of the ratio m : n would contradict the well known theorem that there are no numbers
m,n in their least terms such that the proportion m : n ::

√
2 : 1 holds.36

But earlier I showed that Berkeley denies (1) because Berkeley doesn’t believe there are indivisible lines.
For Berkeley, the indivisibles in lines are points. So incommensurability doesn’t pose a threat for Berkeley if
he denies infinite divisibility. But does incommensurability really imply or presuppose that magnitudes are
infinitely divisible? Recall that in the quotation that motivated pursuing the topic of this paper, Berkeley
thought, contra Barrow, that deducing infinite divisibility from the existence of incommensurables is a
petitio principii. Why did he think so? This issue needs to be investigated because it may shed light on
what “ancient prejudice” Berkeley might have been alluding to in the passage at PHK §124.

I claim that the historical association of infinite divisibility with incommensurability follows from the
Aristotelian conception of mathematics and its taxonomy of quantities into magnitudes and numbers (per-
haps in light of the Pythagorean number theoretic discovery of incommensurable magnitudes). Since the
Pythagorean conception had a different taxonomy, namely, that there was only one species of quantity —
number — I will argue that incommensurability (which the Pythagoreans discovered from number theory
or arithmetic) needs to be kept distinct from infinite divisibility (which arises in geometry). This will be
another reason supporting my argument that Berkeley can avoid the objection that incommensurability
implies infinite divisibility. That is, is it a petitio principii, to borrow Berkeley’s words, to assume infinite
divisibility as an explanation for incommensurability as Barrow had done (see section 4.3 below). Therefore,
my discussion in this final section of my paper can be used not only to illuminate the issues involved in the

35Arnauld, Antoine and Nicole, Pierre (1996, 231)
36See §3.3 below for discussion of this proof.
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Barrow-Berkeley debate, but also as a way of shedding light on what ancient prejudice Berkeley might have
in mind.

4.1 Aristotelian Mathematics: Aristotle on Quantity

Aristotle’s views on quantity in his collected works begin with the account of quantity in the Categories and
is developed through the Physics and the Metaphysics. Throughout these accounts, Aristotle consistently
distinguishes between discrete quantities arithmos (number) and continuous quantities megethos (magni-
tude). The genus term ‘quantity’ is the Greek word ‘poson.’ But there’s also the question of how to translate
terms like to pelikos (how great), onkos or extension/volume and metron or measure as ways of discussing
quantity. The taxonomy is complicated and opens up a lot of philosophical debate.37 What is important
for my purposes is that however this taxonomy ends up being sorted out, it is only one of the many other
possible conceptions of mathematics that were available during Aristotle’s time. At the heart of Aristotle’s
philosophical defense of infinite divisibility and the potential existence of points, I will argue, is that he
held a different conception of mathematics. In doing so, he betrays an unfamiliarity with the import of the
Pythagorean discoveries in mathematics; and the subsequent codification of these discoveries by Eudoxus in
the theory of proportions in Book V and some of Theaetetus’s discoveries that ended up being codified in
Book X of The Elements. To be sure, Eudoxus and Aristotle were contemporaries and Theaetetus predated
both of them. We may never know whether Aristotle was acquainted with Eudoxus’s discoveries on the
theory of proportions or whether Theaetetus’s contribution, which we find in The Elements Book X, was
included in the Theudius geometry textbook that was used in The Lyceum. In what follows (§4.2), Aristo-
tle’s remarks in the Metaphysics suggest an unfamiliarity with how to place Pythagorean number theoretic
discoveries on rigorous geometrical foundations via Eudoxus’s theory of proportions, which we find in Book
V of The Elements and generalized in Book X.

4.2 Pythagorean Mathematics: all there is are numbers

One difficulty in assessing what Pythagoras actually believed is that there is no extant work written by
Pythagoras. Any attempt to reconstruct what Pythagoreans actually believed cannot therefore be substan-
tiated by anything from Pythagoras himself. To get a sense of the Pythagorean view of mathematics we have
to rely on second hand accounts from philosophers like Plato and Aristotle some of whom, unfortunately,
had an axe to grind; and commentators like Iambilichus, Proclus and Diogenes Laertius. In Metaphysics
985b23 – 986a13, Aristotle, for example, writes:

Contemporaneously with these philosophers and before them, the Pythagoreans, as they are
called, devoted themselves to mathematics; they were the first to advance this study, and having
been brought up in it they thought its principles were the principles of all things.

37See Pfeiffer (2018) for the most up to date philosophical discussion of this taxonomy.

19



Here Aristotle shows agreement with the view that the history of arithmetic begins in Greece with Pythago-
ras, who is believed to have lived during the sixth century BCE. Historians speculate that Pythagoras was
led to his number-monism (all there is are numbers and proportions between numbers) by his discovery in
music theory of the harmonical proportion. That is, the fifth and the octave of a note could be produced
on the same string by stopping at 2

3 and 1
2 of its length, respectively. Gow (1968, 68) writes about how led

by such considerations,

Pythagoras considered number to be the basis of creation: he looked to arithmetic for his defi-
nitions of all abstract terms and his explanation of all natural laws.

Thus, beginning with number-monism, Pythagoreans went on to develop number theory by classifying
numbers as: odd, even, square, cube, triangular, perfect, defective, amicable etc. Proportions were either
arithmetical, geometrical or harmonical.38

4.3 Comparing the two conceptions of mathematics

Given this Pythagorean number-monism, the first distinction we can make between the two conceptions of
mathematics is that for the Pythagoreans there are no species of quantity. Aristotle is aware of this, writing
in Metaphysics 1080b17 – 1080b21:

Now the Pythagoreans, also, believe in one kind of number — the mathematical; only they say
it is not separate but sensible substances are formed out of it.

On the other hand, for Aristotle, magnitude and numbers are both species of the genus quantity. The
differentia, therefore, had to be sought. This difference was, for Aristotle, in terms of continuity and
discreteness. Aristotle goes to great extent to defend his view of quantity first in the Categories and more
fully in the Physics. In the Physics, he introduces subtle distinctions between whole and part; and between
things being successive (next to each other), contiguous (touching), and finally continuous (synechi syn =
together; echo = to have/hold) which in the Latin was translated contenere (con = together; tenere =
hold). So the continuous is that which is “held-together.” The depth and rigor of Aristotle’s penetrating
analysis going from weaker to stronger conditions for what is required for continuity is found in an extended
discussion in Physics beginning in Book III all the way to Book VIII. Along the way, the association of
infinity with continuity is made — an association that is with us to this very day. Further, Zeno’s paradoxes
of motion are considered and supposedly rebutted using the machinery developed until that point.39

One key difference between Aristotle and the Pythagoreans in this regard, is that for the Pythagoreans
only numbers (i.e., positive integers greater than 1) can be answers to the question of quantity (poson).

38For details and historical references see Heath (1981, Vol. 1, 72 – 84) and Proclus (1970, 52 – 57).
39This is not the place to undertake a detailed analysis of Aristotle’s analysis of continuity. For a good discussion see Miller, Jr.

(1982) and Sorabji (1982). For a more recent discussion see Pfeiffer (2018).
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These are questions that take the form “How many (much) X?” (poson) or the form “How great is X?” or
“What size is X?” (to pelikos). Here is the important point, which Aristotle shows an unfamiliarity with.
In the case of magnitude, numbers answer the question “How great is X?” or “What size is X?” in terms of
proportion between two numbers.40 Furley (1967, 52) writes:

The Pythagorean method relied on finding proportions, and not on counting atomic constituents.
It is the proportion 2:1 which constitutes the octave, no matter what the units may be.

Just as in the case of harmonics, the Pythagorean answer to the magnitude question “How great is X?” or
“What size is X?” in geometry is a ratio or proportion (a proportion is an equality between ratios) involving
numbers determined by measuring the two magnitudes with respect to size. Heath (1981, Vol. 1, 153)
speculates that the Pythagorean theory of proportions was only applicable to commensurable magnitudes
and that it was Eudoxus’s work (which we find in Book V of The Elements) that generalized this theory to
include incommensurables. Thus, unlike Aristotle, who sought to distinguish arithmos from megethos; for
the Pythagoreans, there was only arithmos which was used to understand the megethos.

Let me put this in another way. The Pythagoreans started with number theory. Numbers were un-
derstood, for example, as even or odd; perfect; prime and so on. Corroborating Heath’s claims, Van Der
Waerden41speculates that Eudoxus’s contribution found its way to The Elements Book V and Theaete-
tus’s contribution found its way to Book X. They sought to place Pythagorean number theory (or arith-
metic) on rigorous foundations (geometry). Eudoxus and Theaetetus’s genius made it possible to embed the
Pythagorean number theory into geometry using the general theory of proportions applicable to commensu-
rable and incommensurable magnitudes. Euclid assembled these results in Book V and Book X respectively.
The result is that on the Pythagorean conception of mathematics there was no need to have different answers
to questions involving quantity (“How many (much)?”, “How great is X?” or “What size is X?”) in terms
of discrete quantities and continuous quantities, as Aristotle thought. Rather, the answers are all in terms
of numbers: positive integers or whole numbers in the case of “How many?”; or a ratio between two whole
numbers in the case of “How great is X?” or “What size is X?”(magnitude). This is how Proclus (1970, 49
Trans. lines 61f) puts it:

The theory of commensurable magnitudes is developed primarily by arithmetic and then by
geometry in imitation of it. This is why both sciences define commensurable magnitudes as
those which have to one another the ratio of a number to a number, and this implies that
commensurability exists primarily in numbers.

We now can see why the discovery of incommensurable magnitudes (i.e., magnitudes that cannot be expressed
(irrational or alogos) as a ratio between two integers one of which is their greatest common divisor or unit)

40Proclus (1970, 53) credits Pythagoras for discovering the doctrine of proportions.
41See Van Der Waerden (1961, 107 – 126; 141 – 146; 165 – 168; and 175 – 179).
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was such an astonishing discovery. The astonishment was not, as is often suggested, that there were “gaps”
in the rational numbers that had to be filled or completed by irrational numbers in order to get the real
number continuum. The astonishment is that the Pythagorean number-monism was being threatened.42

We all know that the first discovery of incommensurability was of what we denote today by ‘
√
2.’ The

Pythagoreans would have used their number theory to say that there are no two whole numbers m,n such
that m : n ::

√
2 : 1. In other words,

√
2 is incommensurable using 1 as the unit of measure. The proof

is number theoretic since it is in terms of the distinction between odd and even numbers. Aristotle is
clearly aware of this proof since he mentions it in Prior Analytics 41a26 – 41a27. But even though

√
2 was

incommensurable, the Pythagoreans still had a way of expressing it in terms of a proportion between known
magnitudes as follows:

√
2 : 1 :: diagonal of right-isosceles triangle with side of length 1: one of the

sides of the right-isosceles triangle.
So, the Pythagoreans did not conclude that the rational numbers are incomplete (“gappy” or discontinu-

ous) as we often hear. The Pythagoreans were not even thinking about these problems in terms of continuity
or discontinuity at all. This can explain why The Elements is silent about its continuity assumptions except
for Postulate 2 (To produce a finite straight line continuously in a straight line). The reason is that The
Elements could never have doubted that magnitudes (such as lines) are continuous. We’ve already seen
evidence from the commentary of Proclus that continuity was a common notion. But what the existence of
incommensurables did do was to motivate a program in search of a rigorous theory of proportions between
magnitudes in order to study, classify and ultimately understand what those newly discovered incommen-
surables were. This was the theory that was developed by the magisterial Eudoxus and Theaetetus and
immortalized in The Elements’s Book V and Book X.

This brings us to the second difference between Aristotle and the Pythagoreans. Because Aristotle
makes the distinction between continuous and discrete, he holds that there are indivisible units in discrete
quantities (number) but not in continuous quantities (magnitude). Consequently he mistakenly attributes
to the Pythagoreans the view that there are indivisible magnitudes. That is, that the Pythagorean units
(or indivisibles) have spatial magnitude. He writes:

For [Pythagoreans] construct the whole universe out of numbers only – not numbers consisting
of abstract units; they suppose the units to have spatial magnitude. But how the first unit was
constructed so as to have magnitude, they seem unable to say. Metaphysics 1080b17 – 1080b21

What evidence does Aristotle have to assert “how the first unit was constructed so as to have magnitude,
they seem unable to say”? His claim is justified only because he held a different conception of mathematics
from the Pythagoreans. Not only this, he also adds:

The doctrine of the Pythagoreans in one way affords fewer difficulties than those before named,
42Cf. Heath (1981, Vol. 1, 155).
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but in another way has others peculiar to itself...[T]hat bodies should be composed of numbers,
and that this should be mathematical number, is impossible. For it is not true to speak of indi-
visible magnitudes; and however much there might be magnitudes of this sort, units at least have
no magnitude; and how can a magnitude be composed of indivisibles? But arithmetical number,
at least, consists of abstract units, while these thinkers identify number with real things; at any
rate they apply their propositions to bodies as if they consisted of those numbers. Metaphysics
1083b8 – 1083b19

Here, Aristotle is expressing his misgivings about the Pythagorean number-monism, which suggested that
bodies are composed wholly of arithmetical numbers or units. He is arguing that this is impossible. First, it
is not true to speak of indivisible magnitudes, he says. Since a body is a magnitude (meaning continuous),
it cannot be composed of indivisible magnitudes (such as the arithmetical units which are discrete). This
is an assertion he takes to have proven elsewhere. Secondly, on Aristotle’s view geometrical units or points
have no magnitude and so cannot be parts of (or compose) a magnitude. I have already discussed all of
this in the previous section. Surprisingly, Kirk G.S. and J.E. Raven (1957, 246ff) point out that it is the
Pythagoreans who are confused.

The unfortunate consequence of their diagrammatic representation of numbers was that the
Pythagoreans, thinking of numbers as spatially extended and confusing the point of geometry
with the unit of magnitude, tended to imagine both alike as possessing magnitude...It is true
that Aristotle, in discussing the views of earlier thinkers, often confronts them with such logical
consequences of their doctrines as they themselves never either enunciated or foresaw...[Aristotle]
leaves no doubt that the Pythagoreans did indeed assume, that units are spatially extended; and
when we come to consider the paradoxes of Zeno we shall find that it is against this assumption,
along with the confusion of points and units, that they have their greatest force.

I disagree with Kirk and Raven’s attribution of confusion to the Pythagoreans. It is Aristotle who is
confused or misunderstood the upshot of Pythagorean number theory. Remember he said, “But how the
first unit was constructed so as to have magnitude, [Pythagoreans] seem unable to say.” Aristotle has no
grounds for making this claim. Here’s why I think so. We know from historians that all the mathematics
we find in The Elements — except for Book V (the theory of proportions) — was known before the time
of Plato.43 This mathematical knowledge includes the Pythagorean theory of proportions applicable to
commensurables only, the discussion of arithmetical units and the mathematical knowledge in The Elements
Book X on incommensurables. So we can reasonably expect the greatest student of Plato, Aristotle, to
have known it. We may excuse Aristotle for being unfamiliar with the work of his contemporary Eudoxus,
another student of Plato, who showed that magnitudes or bodies can be understood number theoretically

43See Heath (1981, Vol. 1, 216 – 217).
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according to the theory of proportions we find in The Elements Book V. But I think it is nothing short of
confusion for Aristotle to base his objection to the Pythagoreans on the claim that the unit has magnitude.
It is a confusion because according to the Pythagoreans the unit has no magnitude (in Aristotle’s sense) —
the unit is a number or quantity, which is the common measure of commensurable magnitudes (in Aristotle’s
sense).

I have still not discussed how incommensurability and infinite divisibility became entangled. Recall that
one of the main arguments for infinite divisibility was the existence of incommensurable magnitudes. So now
we must face two questions: (1) What are magnitudes? and (2) What are incommensurable magnitudes?

4.4 Magnitudes and Incommensurables

Earlier we saw that Aristotle distinguished magnitudes from numbers by saying that magnitudes are contin-
uous, which means they are infinitely divisible. We remarked that this identification of the continuous with
the infinitely divisible is a philosophical thesis that does not follow from the bisection theorem. Although
The Elements identifies arithmos (number) with the collection of units in Book VII, it does not follow from
The Elements alone that megethos (magnitude) is not composed of units, where “not composed of units” is
the definition of continuous. It is, after all, open for someone to construe the “units” as actual points, not
parts, of a dense point-set continuum (something which Berkeley does). Commentators and historians of
mathematics have noticed that it is hard to grasp the meaning of megethos because The Elements does not
give us a definition that tells us what magnitudes are.44 What The Elements does give us is a theory of
proportions, going back to the Pythagoreans and Eudoxus, that tells us at least how to deal with megethos
rigorously. This is the account that we get in Books V, VII, and X. But in order to for me to show this
and in order to understand Books V, VII, and Book X, we need to inquire into the incommensurables more
closely.

Recall that Aristotle says that the Pythagoreans were unable to say how the unit was constructed so as
to have magnitude. In order to evaluate Aristotle’s claim, we need to look at how incommensurability was
discovered, under what assumptions, and what conclusions the discoverers drew. There are three competing
accounts: (1) the number-theoretic proof regarding the incommensurability of the diagonal of a square of
unit length; (2) the proofs in Plato’s dialogues and the method of finding the mean proportional between
two plane similar numbers; (3) the method in The Elements Book X.45 Let us look at these accounts in
turn. I will not seek to disentangle which of these methods was the one that was actually used. Here it is
a matter of speculation. For my purposes, the question I shall be seeking to answer is this: is the infinite
divisibility of magnitudes assumed or does it follow from the given proof in the method?

44I will not attempt to speculate what Euclid meant by ‘magnitude.’ Here’s where examples work better than definitions:
lines, areas, volumes are magnitudes. See the discussion in Mueller (1981, 121f, 136 – 138) for an attempt to sort out what
magnitudes are.

45These competing accounts are discussed in detail in Knorr (1975, 22 – 49) with references to Von Fritz (1945). See also
Knorr (1981), Unguru (1977), and compare with Heath (1981, 202 – 209).
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1. Number theoretic proof interpreted geometrically

The proof is familiar and proceeds by reductio ad absurdum. Let ABC be a right isosceles triangle
with side of unit length. Suppose that the diagonal AC is commensurable to the side AB. Let m : n

be their ratio expressed in lowest terms (i.e., the greatest common divisor of m and n is 1). Now
AC2 : AB2 = m2 : n2. Since AC2 = 2AB2 by the Pythagorean theorem (The Elements Book I. 47),
it follows that m2 = 2n2. Hence m2 is even and so is m. Since m : n is in its lowest terms, it follows n

is odd. Let m = 2a for some a; then 4a2 = 2n2 and n2 = 2a2, hence n is even. But this is impossible
since n was shown to be odd. Therefore, the diagonal AC is incommensurable with the side AB.46

Let us waive the difficulty that this proof (Proposition 117 in Euclid Book X) was actually an inter-
polation as Heath (1956, Vol. 3, 2) suggests. The important point to take away from this proof is
that it is number theoretic and nowhere in the proof has the assumption that finite lines are infinitely
divisible entered into the reasoning. Aristotle was familiar with this proof as I’ve mentioned.47 So it is
unclear on what basis he concluded that magnitudes are infinitely divisible from this theorem. If this
was indeed the way that incommensurables were shown to exist, then Berkeley is right to say that it
is a petitio principii to conclude from this that finite lines are infinitely divisible.

2. The proofs in Plato’s dialogues and the method of finding the mean proportional

This number theoretic proof did not generalize in an obvious way to incommensurable square roots
greater than

√
2. The proofs that

√
3,

√
5, ...,

√
17 are incommensurable with 1 as the unit of measure

are reported in Plato’s Theaetetus, where it is said they were developed by the Pythagorean Theodorus.
There is some controversy regarding exactly how Theodorus proved these incommensurability results
since Plato does not tell us the method. For this reason, Heath (1981, Vol. 1, 202 – 209) offers three
hypotheses. (1) The method of successively approximating

√
3 by a geometric sequence with common

ratio 1
2 ; (2) the traditional number theoretic approach used to show that

√
2 is incommensurable

with 1 as the unit of measure; and (3) a proposal by Zeuthen based on the method for detecting
incommensurability given by Proposition 2 in Euclid Book X.48 In any case, these are hypotheses
and as far as I can tell, there is no mention of infinite divisibility in the proofs according to the
methods suggested by these three hypotheses. In method (3) in particular, it is the existence of
a non-terminating number theoretic process that tells us that we are dealing with incommensurable
magnitudes. I have found no evidence in Berkeley that he is objecting to this non-terminating number
theoretic process in the case of incommensurable magnitudes.

According to historians (Heath, 1981, Vol. 1, 89), the mathematics in Plato’s Timaeus has Pythagorean
46See Heath (1981, 147 – 148) for discussion on how the Pythagoreans proved what is now Proposition 47 in The Elements

Book I.
47See Heath (1956, Vol. 3, 2)
48Heath (1981, Vol. 1, 207) and Heath (1956, Vol. 3, 18) thinks that method (3) is similar to the Euclidean algorithm for

finding the greatest common divisor. I return to a detailed discussion of this method in the next item.
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themes and contains references to the existence of a geometric mean between two square numbers and
two geometric means between two cube numbers.49 Barrow thought that the theorem proving the
existence of a mean proportional between two square numbers was the basis of incommensurability
and that the method presupposed the infinite divisibility of quantities. Here’s how he puts it in
Mathematical Lectures XV (my emphasis):

The principal reason of incommensurability seems to be founded in this, that since a mean
proportional number may always be found between two plane similar numbers because the
product made by the multiplication of plane similar numbers is always a square number,
whose root is that mean proportional ... since I say, things are thus in similar numbers,
and it is demonstrated in the Elements, that it happens quite otherwise in all dissimilar
numbers; there is no mean proportional number between two dissimilar plane numbers.
[H]ence, if two quantities are supposed to be to one another in the [ratio] of two dissimilar
numbers, and a mean proportional be found between those quantities, which may perpetually
be done, because of the indefinite divisibility of every quantity, there will be no number in
universal nature which can represent or answer to this quantity, and consequently, those
being supposed and expressed by numbers, this will be incommensurable.

Barrow’s point here sounds a lot more complicated than it is. It is actually Book VIII. Proposition
11.50 Let’s put his point in more modern terms. A plane number m is a number that is a product
of two numbers a and b, i.e., m = ab (Book VIII. Proposition 5). According to Heath, plane similar
numbers are what we call square numbers today. But it is possible to generalize plane similar numbers
to include other numbers m = ab and n = cd such that the proportion a : c :: b : d holds. Plane
dissimilar numbers are numbers m = ab and n = cd such that the proportion a : c :: b : d does not
hold.51 The mean proportional number between two numbers m and n is what we call today the
geometric mean of m, n. That is, the number x, such that m : x :: x : n. So x =

√
mn which is

distinguished from their arithmetic mean m+n
2 . Barrow’s point, following Book VIII. Proposition 11,

is that there is a rational mean proportional number between two plane numbers m and n, just in
case m and n are plane similar numbers. This is easy to see in the special case where m and n are
square numbers since in that case x =

√
a2b2 = ab. If m and n are plane dissimilar numbers, then

in general x =
√
(ab) · (cd) is not a rational number. Barrow argues that this is the principal reason

for incommensurability and that this follows because of the infinite (he uses the word ‘indefinite’)
divisibility of every quantity. But nowhere in the proofs has the infinite divisibility of finite lines been

49See Heath (1956, 363)’s note to The Elements Book VIII Proposition 11.
50Cf. Book X. Proposition 9.
51See Heath (1956, 293 – 294) commentary on The Elements Book VII, Def. 21. Compare with Book VI Proposition 13

(To two given straight lines to find a mean proportional) and the geometrico-algebraic method given in The Elements Book II
Proposition 14 (To construct a square equal to a given rectilineal figure) involving the extraction of a square root.
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assumed or concluded. It is a petitio principii to conclude, on the basis of this argument, that finite
lines are infinitely divisible because the proof has nothing to do with lines — it is number theoretic.

3. The Method of The Elements Book X Proposition 2

This being said, there is a non-terminating method for detecting incommensurable magnitudes that is
related to this method of finding the mean proportional.52 Heath (1956, Vol. 3, 18) remarks that these
propositions make essential use of the Euclidean division algorithm for finding the greatest common
divisor between two numbers (I describe this method below). Von Fritz (1945) and Van Der Waerden
(1961, 176f) call this method anthyphairesis and speculate that incommensurables were discovered
by this method even though Heath (1981, Vol. 1, 207) finds it improbable. Let us call this method
epanalipsi-afairesis (repeated-subtraction) in order to distinguish it from Aristotle’s potential infinite
divisibility.53 Let’s look at this method starting with Book X Proposition 2.

Book X Proposition 2

If, when the less of two unequal magnitudes is continually subtracted in turn from the greater, that
which is left never measures the one before it, the magnitudes will be incommensurable.54

Compare this with the number theoretic proposition in Book VII. There is a strong analogy although
the one is about incommensurables and the other is about relative primes.

Book VII Proposition 1

Two unequal numbers being set out, and the less being continually subtracted in turn from the greater,
if the number which is left never measures the one before it until a unit is left, the original numbers
will be prime to one another.

The epanalipsi-afairesis method for detecting incommensurables is this: To determine the proportion
between two lengths M and m representing numbers, of which M is the greater, first subtract m from
M as many times as possible, leaving a remainder m′. Then subtract m′ from m in the same way
leaving a remainder m′′. Then subtract m′′ from m′ and so on until no remainder (if at all) is left.
The first length which can be subtracted thus without leaving any remainder is the unit in terms of

52See Knorr (1975, 29f) for discussion although even he thinks that it is very unlikely that this was how incommensurables
were discovered.

53There’s a brief discussion in Furley (1967, 49) where he calls this process antistrofi-afaireisis (reciprocal-subtraction). I have
chosen to call this process epanalipsi-afairesis (repeated-subtraction) in order to remain faithful or closer to the plain reading
of the Greek text. In his discussion of the infinite in Physics III. 5 – 6 Aristotle uses the term division(diaresis) most frequently
as the antithesis of addition(synthesis). He occasionally speaks of subtraction(afairesis) and diminution(kathairesis). See also
Heath (1956, Vol 1, 232). Could this be the method that presupposes or concludes that magnitudes are infinitely divisible?
Here I am less confident. For this reason, I withhold judgment and suggest opening this up for debate.

54This proposition depends on Book X Proposition 1: Two unequal magnitudes being set out, if from the greater there be
subtracted a magnitude greater than its half, and from that which is left a magnitude greater than its half, and if this process
be repeated continually, there will be left some magnitude which will be less than the lesser magnitude set out. This is a version
of the Eudoxus-Archimedes Axiom in Book V. Definition 4.
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which the ratio M : m can be expressed. The unit will vary according to what these lengths M and
m are. These units are not geometrical points but numerical measures.

Assuming that the method of The Elements Book X Proposition 2 was how incommensurables were first
detected (and it is reasonable to do so since Book X is largely due to Theaetetus and predates Aristotle),
then what the Pythagoreans called a unit (monas) is what we call today: (1) the number one (if the numbers
are relatively prime from Book VII.1), or (2) the greatest common divisor of two composite numbers if it
existed (from Book VII.2). This unit (of measure) can be used to measure (metron) the magnitude, i.e., how
great (to pelikos) a homogeneous quantity is relative to another homogeneous quantity. If the answer to the
question “How great is X?” could be expressed as a ratio (it is logos) or proportion, then the numbers were
rational and the magnitudes representing them were commensurable. The answers which the Pythagoreans
would give would always be in terms of proportions, 4 : 2 :: 2 : 1 which means that 4 is 2 times as great
as 2 using 2 as the unit. If there is no greatest common divisor, including 1, between two numbers, then
the two magnitudes representing them are incommensurable. There is no common measure or no way of
comparing them with respect to size (by Book V. Definitions 3 and 4). This would be the case if the process
of epanalipsi-afairesis did not terminate after a finite number of steps. But it is one thing to say that this
non-terminating number theoretic process is true for incommensurable magnitudes and it is another thing
to conclude or assume on the basis of this, that the continuity of magnitudes consists in their being infinitely
divisible.

To see why connecting the two is misleading, consider a line equal in length with the circumference of
a circle and a line equal in length with the diameter of the same circle. It is common ground between the
Pythagoreans and Aristotle that both these lines are continuous. Suppose that there are numbers which can
be represented by these lengths, say c (the circumfrence) and d (the diameter). There is no greatest common
divisor between these numbers (since this is the definition of the constant π). The process of epanalipsi-
afairesis does not terminate in the case of these two numbers and many others like them. But this has
nothing to do with continuity or infinite divisibility of the lengths representing these numbers as Aristotle
thought. Thus, incommensurability does not show that the essence of the continuity of magnitudes is infinite
divisibility. Rather, it shows that there are pairs of numbers for which this process of epanalipsi-afairesis
does not terminate after a finite number of steps.

Of some of these incommensurables, there are those that cannot be represented as a ratio between known
magnitudes (they are alogos, inexpressible or irrational, because of this; rational otherwise). Notice that
even though the magnitude (megethos) representing

√
2 is incommensurable using 1 as the unit of measure,

the number (arithmos)
√
2 is not irrational or alogos in the Pythagorean sense.

√
2 can be expressed as the

ratio between known magnitudes, namely, the ratio between the diagonal of a right-isosceles triangle with
side of length 1 and one of its sides. So incommensurability does not imply irrationality in the Pythagorean
sense. This is how what we mean by irrational numbers today differs from how the Pythagoreans conceived
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of them. However, magnitudes representing numbers such as
√
19 are not only incommensurable with 1 as

the unit of measure but also irrational. Thus irrationality implies incommensurability. I am not sure how
to think of π in Pythagorean terms. It seems to me that even though π is incommensurable with 1 as the
unit of measure, it is not irrational in the Pythagorean sense since it can be expressed as the ratio between
the circumference of a circle and its diameter.

It is the conflation of the Aristotelian thesis of infinite divisibility with the non-terminating epanalipsi-
afairesis characteristic of incommensurability that has stayed with mathematicians and philosophers for
millennia. I have suggested that this is the ancient prejudice that Berkeley was alluding to in the passage
in PHK §124. If the method that was first used for detecting incommensurable magnitudes representing
numbers besides

√
2 was indeed Book X Proposition 2, then one way to read Book X is as a geometric

(hence rigorous) translation or formulation of number theoretic facts. Incommensurability arises when num-
ber theoretic facts are being embedded in geometry, for example by trying to find the ratio or proportion
between two magnitudes that represent certain numbers. This raises the question of the proper founda-
tions for mathematics: is it geometry or arithmetic? If Van der Waerden is right, then according to the
Pythagoreans, the way to place their number theoretic investigations on rigorous foundations was to cash
them out geometrically. But this suggests not taking what Pythagoreans took to be a number theoretic
fact (a non-terminating process) as evidence for a geometrical fact (the infinite divisibility of finite lines).
Barrow, in his mathematical lectures (Lecture III and Lecture XV), famously argued for the identity of
geometry with arithmetic. Aristotle objected to the use in geometry of Pythagorean number theoretic units
that can be represented geometrically as spatially extended magnitudes. Aristotle raised the valid question,
“If a unit is indivisible, how can it be spatially extended?” But this is the right question for Aristotle to
ask only if one accepts his philosophical conception of mathematics; since for him spatially extended parts
of magnitudes are divisible ad infinitum. But the Pythagoreans meant something completely different when
they spoke of representing units as magnitudes in geometry. We’ve seen that for the Pythagoreans, these
units are units of measure of the ratio between magnitudes, i.e., what we refer to today as the greatest
common divisor (if it existed) of two numbers. These units have nothing to do with the infinite divisibility
(or lack thereof) of magnitudes since continuity was a common notion.

5 Conclusion

In conclusion, let me recapitulate the main points of this paper. I have given evidence that the theory of
proportions was motivated by number theoretic discoveries of incommensurability. The theory of proportions
developed by Eudoxus and Theaetetus was given in order to place these discoveries on a rigorous foundation
in The Elements’s Books V and X. In addition to historical evidence from Proclus that the bisection theorem
was not always taken to imply infinite divisibility, I have given reasons for resisting the assimilation of a
number theoretic process (the non-terminating epanalipsi-afairesis characteristic of incommensurability)
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with the philosophical thesis of infinite divisibility, which defines continuity in terms of infinite divisibility.
If by infinite divisibility Aristotle means that actual indivisible points cannot compose a magnitude, then I
hope to have shown that this view flows out of a different conception of mathematics; and that this view is
not necessary to develop the theory of proportions along Pythagorean lines and hence to handle magnitudes
(or continuous quantities). My whole discussion was meant to establish (or to at least open up the possibility
for thinking) that ancient geometrical practice did not require infinite divisibility. Therefore, if we take of all
of these reasons into account, we arrive at a more nuanced and plausible reading of Berkeley’s claim in PHK
§123 that the infinite divisibility of finite lines is neither an axiom nor theorem in the elements of geometry.
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