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THE GEOMETRY OF MAJORITY RULE*

Nicholas R. Miller, Bernard Grofman and Scott L. Feld

ABSTRACT

We present some basic results concerning the spatial theory of voting in
such a way that the theorems and their proofs should be accessible to a
broad audience of political scientists. We do this by making the presentation
essentially geometrical. We present the following results in particular:
Plott’s ‘pairwise symmetry’ condition for an unbeaten point; McKelvey’s
‘global cycling’ theorem; Ferejohn, McKelvey and Packel’s cardioid con-
struction for establishing bounds on a ‘win set’; and McKelvey's circular
bound on the ‘uncovered set’ of points.
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Most political scientists are probably aware of a line of research, within
the general rubric of positive political theory, that is referred to as the
spatial theory of voting. They may further be aware of the somewhat
disconcerting nature of the fundamental results of this research, which are
often referred to as the ‘chaos theorems’. These results appear to imply
that majority rule over an alternative space of two or more dimensions is
disorderly and that, accordingly, political choice may be highly unstable
or arbitrary. However, the details of these theorems — and their proofs in
particular — probably remain beyond the understanding of almost all who
are not specialists in the area, since they are stated and proved in highly
abstract terms, using elaborate symbols and advanced mathematics.

The purpose of this essay is to present some basic results in the spatial
theory of voting in such a way that the theorems and their proofs are as
accessible as possible to a broad audience of political scientists. Our
motivation is provided by the conviction that these theorems are highly
relevant for political science and that they ought to be more widely under-
stood. Accordingly, our method of presentation is essentially geometrical,
and no mathematics beyond the high-school level is employed. However,
while the mathematics is elementary, the logical deductions are necessarily
intricate and cumulative; accordingly the essay will likely require close
study on the part of readers who wish fully to grasp the arguments.

*An earlier version of this paper was presented at the 1986 Annual Meeting of the
American Political Science Association, the 1987 Annual Meeting of the Public Choice
Society, and at the Workshop on Political Economy at Duke University. This research was
partially supported by NSF Grant SES 85-09680 to Miller and NSF Grant SES 85-09997 to
Grofman.
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We present the following theorems in particular: the ‘pairwise symmetry
condition’ theorem for a ‘majority rule equilibrium’ due to Plott (1967);
the ‘global cycling’ theorem due to McKelvey (1976, 1979); the cardioid
construction for establishing bounds on a ‘win set’ due to Ferejohn et al.,
(1984); and the application by McKelvey (1986) of this construction to
establish a circular bound on the ‘uncovered set’ of points. The substantive
implication of our discussion is that the majority rule over a multidimen-
sional space is typically more orderly than discussions of the ‘chaos the-
orems’ often suggest.

1. Overview

A spatial voting game has two elements: a multidimensional alternative
space and a finite set of voters with preferences defined over this space.
Each point in the space may be interpreted as a possible combination (on
each of the several dimensions) of policies, programs or budgets, or as
possible electoral platforms for political parties or candidates identifying
them with such combinations of policies. Alternatively, the space may
represent the several ideological dimensions (e.g. economic liberalism —
conservatism, social liberalism — conservatism, etc.) in terms of which
policies are commonly perceived and differently evaluated. In general,
then, the space represents alternatives available for political choice, over
which people have differing and more or less conflicting preferences. In
particular, we suppose that each voter has preferences over all points in
the space, i.e. given two points x and y, a voter prefers x to y, or prefers
y to x, or is indifferent between the two.

Given voter preferences, a majority preference relation is generated
between every pair of points. We say that x beats y if more voters prefer
x to y than prefer y to x, that y beats x if the reverse is true, and that x
ties y if the same number of voters prefer x to y as prefer y to x.!

It has become customary to call the set of points that beat x the win set
of x and to desigrate it W(x). A point that cannot be beaten under
majority rule, i.e. a point x such that W(x) is empty, is variously called a

1. A more stringent definition of majority preference is this: x beats y if more than half
of all voters prefer x to y (rather than more than half of all voters who are not indifferent
between x and y), y beats x if the reverse, and x and y tie otherwise. This may be called
absolute majority rule, in contrast to relative majority rule as defined in the text. Absolute
majority rule is often assumed in the voting theory literature, partly because it gives slightly
‘cleaner’ results (see footnotes 5, 11 and 12) and partly because it allows majority preference
to be defined in terms of ‘winning coalitions’ in the sense of game theory. However, the
definition of relative majority rule better matches ordinary usage and practice. Furthermore,
in the spatial context, whether one uses the relative or absolute definition makes little
difference, especially if the number of voters is odd. Exceptions are noted in the footnotes
cited above.
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‘majority rule equilibrium’, a ‘Condorcet winner’, or a majority rule ‘core’.
Here we call it simply an unbeaten point.

The existence of an unbeaten point would seem to be required for
stable political choice, since, in the absence of such a point, whatever
combination of policies momentarily prevails, there is some majority
coalition of voters with both the collective power (given majoritarian
institutions) and the common desire to upset that policy status quo and
replace it with something else. Moreover, on some interpretations, the
existence of such a point is necessary to fulfill the prescriptions of the
normative theory of populist democracy (cf. Dahl, 1956). However, Plott’s
(1967) theorem and a number of related results indicate that such a point
almost never exists in a space of two or more dimensions.

This is because majority preference may cycle — that is, it may be that
x beats y, y beats z, and so forth, to some v such that v beats x.2 If there
is no unbeaten point, there must be at least one majority preference cycle,
such that every point in the cycle is beaten by some other point in the
cycle while every point outside the cycle is beaten by every point in the
cycle. The smallest set of points each of which beats every point outside
the set is called the top cycle set.

Plott’s theorem left open the possibility that the top cycle set in a space
of two or more dimensions might be a small subset of the space. This
would imply that, even though political choice would almost never be
fully stable, it might be ‘approximately stable’; while majorities would
always have the power and desire to upset the status quo of the moment,
they could replace it only with some ‘nearby’ (i.e. only incrementally
different) point, and — more to the point — given even an indefinitely long
accumulation of such incremental changes, a political choice process
driven by majority rule could wander over only a small portion of the
space (as long as preferences remained constant). This hope was dashed,
however, by McKelvey’s ‘global cycling theorem’ (1976), which demon-
strated that if, as Plott’s theorem showed is almost always the case,
majority rule fails at all, i.e. if there is no unbeaten point, it fails com-
pletely, i.e. the top cycle set encompasses the entire alternative space.
Apparently ‘anything can happen’.

More recent results, however, have suggested that majority rule has
some deeper structure that guides and constrains many voting processes
even in the face of all-encompassing cycles. The following definition is
important. Point x covers point y if and only if x beats y, x beats everything
y beats, and x beats or ties everything y ties. The uncovered set is the set
of all points none of which is covered by any other point.

In a more recent paper, McKelvey (1986) has shown that several com-
petitive political processes (electoral competition between power-oriented

2. Majority preference is transitive if, whenever x beats or ties y and y beats or ties z, x
beats or ties z. Transitivity is sufficient, but (if ties occur) not necessary, to avoid majority
preference cycles.
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parties or candidates, an open agenda-formation process followed by soph-
isticated voting under standard amendment procedure, and ‘cooperative’
voting with coalition formation) are all driven into the uncovered set of
points, and that — at least for ‘Euclidean’ voter preferences (which we
define below) - this set is centrally located and may be relatively small.?

McKelvey’s bounds on the uncovered set were derived from a construc-
tion developed earlier by Ferejohn et al. (1984) that established inner and
outer bounds on the win set of an arbitrary point in a multidimensional
space, again provided voter preferences are ‘Euclidean’. Quite apart from
its relevance to voting processes that produce outcome in the uncovered
set, this construction allows us to gain a general understanding of the
character of win sets in spatial voting games. It also implies that the
majority preference relation is rather more orderly than the global cycling
theorem may suggest.

2. Assumptions

For the purposes of this article, we make several simplifying assumptions.

First, we assume that all voters have ‘Euclidean’ (or ‘Downsian’, or
‘Type I') preferences. This means that individual preference is based on
simple Euclidean distance, i.e. each voter has an ideal point (point of
highest preference) in the space and, in comparing any two points in the
space, prefers the point closer to this ideal to the point more distant from
it, and is indifferent between them if they are equidistant from the ideal.
Since, in two dimensions, the locus of points equidistant from a fixed
point is a circle, a voter’s preferences relative to an arbitrary point x in a
two-dimensional space can be represented by a circle (called an indiffer-
ence curve) centered on the voter’s ideal point and passing through x.
Every point inside the circle is closer to the voter’s ideal point than x is,
so the voter prefers any such point to x. All points on the circle (including
x) are equidistant from the voter’s ideal point, so the voter is indifferent
among all such points. And every point outside the circle is further from
the voter’s ideal point than x is, so the voter prefers x to any such point.
While this assumption is restrictive, it provides a reasonable approxi-
mation to many important situations. In any event, we are in this respect
following McKelvey (1976) and the relevant portions of Ferejohn et al.
(1984) and McKelvey (1986).* Finally, we have the strong intuition that
the general thrust of the results presented here extend to spatial voting
games with more general preferences.

Second, for ease of exposition and the presentation of diagrammatic

3. McKelvey’s analysis for the spatial case generally parallels an earlier analysis by Miller
(1980), for a finite set of discrete alternatives over which voters have unrestricted preferences.

4. Plott (1967) stated his theorem for more general preferences, and McKelvey (1979)
generalized his global cycling theorem.
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examples, we focus on the case of a two-dimensional, rather than a general
multidimensional, space. When standard assumptions (much more general
than the Euclidean assumption made here) are made about voter prefer-
ences, the character of majority rule changes rather fundamentally as we
move from one dimension to two. In particular, many years ago Black
(1948) showed that an unbeaten point always exists in a one-dimensional
space, namely the median voter ideal point. But, by Plott’s theorem, an
unbeaten point almost never exists in two (or more) dimensions. It is true
that, when we move from two dimensions to three (with an odd number
of voters, or from three dimensions to four with an even number of
voters), there are further changes in the character of majority rule (cf.
Schofield, 1982), but we do not here address these matters (which pertain
to ‘continuous’ trajectories through the space). With respect to our present
concerns, the two-dimensional case adequately illustrates general proper-
ties of majority rule in spatial voting games and, for the most part, our
discussion generalizes straightforwardly to the multidimensional case.
(Exceptions to this statement are indicated in footnotes.)

Finally, for analytical convenience, we deal only with the case in which
the number of voters n is odd. The import of this restriction is indicated
by Lemma 1 below. It should be noted that two points may tie even if # is
odd, because an odd number of voters may be indifferent between them.

In sum, in specifying a spatial voting game, we have a two-dimensional
alternative space and a finite odd number n of voters with ideal points
distributed in the space. Since preferences are Euclidean, the location of
ideal points determines all preferences, and x beats y if and only if, of all
ideal points not equidistant from x and y, a majority are closer to x, and
y beats x if and only if a majority are closer to y. Points x and y tie if and
only if, of all ideal points not equidistant from x and y, exactly half are
closer to x and half to y. Given these assumptions, our analysis can
proceed on the basis of mathematics no more advanced than high-school
plane geometry and trigonometry.

3. Median Lines

Any line L through a two-dimensional alternative space partitions the
ideal points into three sets: those that lie on one side of L, those that lie
on the other side of L, and those that lie on L. A median line, M,
partitions the ideal points so that no more than half of them lie on either
side of the line. It follows immediately that, if — as we assume throughout
— the number of ideal points n is odd, any median line M must pass
through at least one point, for otherwise there would be at least (n+1)/2
points on one or other side of M. It likewise follows that no two median
lines M and M’ can be parallel, for there must be at least (n+1)/2 points
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on and to either side of median line M and thus at least the same number
strictly to one side of any other median line M’ parallel to M.

Usually, an ideal point has an infinite number of median lines passing
through it, and (with n odd) most median lines pass through just one point
each. For some purposes, we need be concerned only with a finite subset
of median lines that may be called limiting median lines, each of which
passes through (at least) two ideal points. Figure 1, which shows a con-
figuration of five ideal points (x!, ... ,x°) displays one non-limiting
median line M passing through ideal point x' and all limiting median lines
through all five ideal points (each designated M, according to which pair
of ideal points x' and X’ it passes through). Note that any line passing
through x! in the cone formed by M,; and M,s is a (non-limiting) median
line, and likewise for the other ideal points.

We now present several elementary lemmas.

Figure 1. Median Lines and the Yolk

LEMMA 1. Given any line L, there is some median line perpendicular
to L. If n is odd, there is exactly one median line perpendicular to L.

Proof. Erect a line perpendicular to L. Now shift this perpendicular
line to the left or right until it is a median line. With n odd, only one line
will do (because we cannot have parallel median lines). It will pass through
one and, almost always, only one point.
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The second sentence of Lemma 1 demonstrates the import of the
assumption that the number of voters is odd. Henceforth, this assumption,
like those restricting the analysis to two dimensions and to Euclidean
preferences, should be taken as implicit in all lemmas and theorems.

LEMMA 2. Given any two points x and y, if the median line M perpen-
dicular to the line through x and y is closer to x than to y, then x beats y,
and if M is closer to y, then y beats x. And x ties y only if M is equidistant
from x and y.

Proof. Given Euclidean preferences, every voter prefers x to y or y to
x according to which is closer to his or her ideal point. The division of
preferences between x and y is determined by the perpendicular bisector
of the line segment from x to y — that is, all ideal points on the x side of
the bisector are closer to x than y, all ideal points on the y side are closer
to y than x, and all ideal points on the bisector are equidistant from x and
y. If the median line perpendicular to the line through x and y is on the
x side of the perpendicular bisector, it follows that more than half the
ideal points are on the x side of the bisector, so x beats y. Conversely, if
the median line is on the y side, y beats x. If, fortuitously, the perpendicu-
lar bisector is also the median line perpendicular to the line through x
and y, x ties y, unless, even more fortuitously, two (or a larger even
number of) ideal points lie on the median line (in which event x beats y
or y beats x depending on how the remaining odd number of ideal points
are distributed on either side of the median bisector).®

Now consider any point x in the space and any line L. Drop a perpen-
dicular line of length d from x to L, intersecting L at the point x’ (which
is called the projection of x on L); if L happens to pass through x, then
x'=x. Now project the line segment from x to x’ an equal distance d
beyond L to the point x* that we call the reflection of x through L (x is
also the reflection of x* through L); if L happens to pass through x, then
x*=x. Call the line segment from x to x* the reflection line of x (or x*)
through L.

Our interest focuses particularly on reflections through median lines.
Indeed, the following is fundamental.

LEMMA 3. Let y be any point other than x and x* on the reflection line
of x through any median line M. Then y beats x.

Proof. The median line M is the perpendicular bisector of the reflection
line of x through m. Point y lies somewhere strictly between x and x*.
Thus the perpendicular bisector of the line segment from x to y lies on
the x side of M. By Lemma 2, y beats x.

5. Given majority rule in the absolute sense. x and y tie in any event. This indicates how
absolute majority rule leads to slightly cleaner results.
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4. The Character of Win Sets

The preceding lemmas provide the tools for characterizing the win set of
an arbitrary point x in the space.

THEOREM 1. For any line L through x:

1. if x is beaten by any point y on L, it is beaten by every point on L
between x and y;

2. if x is beaten by points on L on one side of x, x is not beaten by any
points on L on the other side of x; and

3. x is tied by at most one point on L and only if it is beaten by points
on L on the same side of x.

Proof. By Lemma 3, x is beaten by all points on a line L through x that
lie between x and its reflection x* through the median line perpendicular
to L. By Lemma 2, x is beaten only by these points on L.Points (1) and
(2) then follow immediately. And by Lemma 2, on any line L through x,
x may be tied only by its reflection through the median line perpendicular
to L. Thus, if no point on L on one side of x beats x (i.e. if the perpendicu-
lar median line does not intersect L on that side of x), no such point ties
x either. This establishes (3).

Note that (1) implies that if x is beaten by any points, it is beaten by
some neighboring points. Note also that the converse of (2) does not hold;
if and only if the median line perpendicular to L passes through x, no
points on L (on either side of x) beat x. Finally note that by (3), we can
use interchangeably the phrases ‘x is unbeaten’ and ‘x beats every point’,
when referring to points on a line L to one side of x.

A set W(x) is starlike about x if and only if W(x) includes all points
lying on any straight line between x and any point in W(x). A set W(x)
is polarized about x if and only if, when points on a line through x on one
side of x belong to W(x), no points on the line on the other side of x
belong to W(x). A set X is thin if it has no interior, i.e. if any neighborhood
of any point in X includes points not in X. (In a two-dimensional space,
any line is a thin set.)

Considering the entire space, not just points on one line L through x,
we can restate Theorem 1 to characterize properties of any win set W(x)
in terms of the preceding definitions.®

THEOREM 1'. For any point x:

1. W(x) is starlike about x;
2. W(x) is polarized about x; and

6. Theorem 1’ holds for more general preferences (see McKelvey, 1986; and Cox, 1987).
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3. the set of points that tie x is thin.’

(1), (2) and (3) in Theorem 1’ merely restate the corresponding state-
ments in Theorem 2. Figure 2 illustrates these properties. On an arbitrary
line L through x, there is just one point z that ties x, every point on L
between z and x beats x, and x beats every point on L on the opposite
side of x from z as well as every point on L beyond z.

o

Figure 2. A Win Set

5. Conditions for an Unbeaten Point

The preceding lemmas also make it clear why an unbeaten point almost
never exists in a space of two or more dimensions — that is, why W(x) is
almost always non-empty for all points x.

THEOREM 2. A point x is unbeaten if and only if every median line
passes through x.

Proof. Sufficiency follows from Lemma 2. If every median line passes
through x, then for any y distinct from x, the median line perpendicular
to the line through x and y is closer to x than to y (for indeed it passes
through x), so x beats y.

Necessity follows from Lemma 3. If x lies off any median line M, it has
a reflection line of positive length through M, and any point on this
reflection line between x and x* beats x.

The following is an immediate corollary of Theorem 2.

7. W(x) is an ‘open set’ — that is, a set that does not include its boundary (though there
are some complexities due to the considerations discussed in footnote 11). The boundary of
W(x) is formed by the tie set of x. The ‘closure’ of W(x) is the set of points that beat or tie
x, i.e. the union of W(x) with its boundary.
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COROLLARY 2.1. There is at most one unbeaten point.

While with unrestricted preferences there might be several unbeaten
points (that tie each other), such a situation cannot arise given the present
assumptions.

It is worthwhile visualizing what a configuration of ideal points must
look like if the condition specified in Theorem 2 is to hold. We can do
this by deriving a series of further implications from the condition stated
in the theorem.

COROLLARY 2.2. If point x is unbeaten, every line through x is a
median line.?

Proof. Consider any line L through x and the line L' through x and
perpendicular to L. By Lemma 1, there is (for n odd) a unique median
line M perpendicular to L’. Since every median line passes through x, it
must be that M = L, so L is a median line.

COROLLARY 2.3. If point x is unbeaten, x is an ideal point.

Proof. Since every line through x is a median line, there are an infinite
number of median lines through x. But there are only a finite number of
ideal points, so only a finite number of median lines through x can pass
through ideal points other than x. Since (with n odd) every median line
must pass through some ideal point, it must be that x is an ideal point.

COROLLARY 2.4. If point x is unbeaten, x is the unique median of all
ideal points that lie on each line through x.°

Proof. Let k (where 1 < k < n) be the number of ideal points on line
L through x. (Usually, of course, k = 1, and almost always k < 3.) We
consider two cases: (1) k is odd and (2) k is even. We show that no more
than (k—1)/2 (if k is odd) or k/2—1 (if k is even) ideal points can lie on
L on either side of x. (If kK were even and exactly k/2 points lay on the
same side of x, x would be a median point but not the unique median.)

(1) The number of ideal points not on L is n—k; since n is odd and &
is odd, n—k is even. The number of ideal points that lie on the side of L
that has the most ideal points is at least (n—k)/2; let W, be this set of at
least (n—k)/2 points, and let W, be the set of no more than (n—k)/2 ideal
points on the other side of L. Suppose, contrary to Corollary 2.4, that at
least (k+1)/2 ideal points lie on L on the same side of x. We now rotate
L infinitesimally about x to generate a new line L' through x. The rotation
can be so slight that the division of the n—k ideal points into two sets W,

8. If every line through x is a median liiie, x is called a total median. Thus another version
of this theorem says that x is unbeaten if and only if x is a total median; cf. Davis et al.
(1972) and Hoyer and Mayer (1974).

9. Yet another version of the theorem says that x is unbeaten if and only if x is the median
of all projected ideal points on every line through x (Feld and Grofman, 1987). For a
generalization of this version to more general preferences, see Cox (1987).

388



THE GEOMETRY OF MAJORITY RULE

and W, on either side of L remains unchanged vis-a-vis L’. But even the
slightest rotation means that none of the k—1 ideal points on L, other
than x, lies on L'. We rotate in the direction so that the (k+1)/2 or more
ideal points on L on the same side of x are placed on the same side of L’
as the set W,. Thus there are at least [(n—k)/2]+[(k+1)/2] = (n+1)/2 ideal
points on the same side of L’. But this is impossible, since L' passes
through x and is therefore a median line. Thus no more than (k—1)/2
ideal points can lie to one side of x on any line L through x, and x must
be the unique median ideal point on L.

(2) The number of ideal points not on L is n—k; since n is odd and k
is even, n—k is odd. The number of ideal points that lie on the side of L
that has the most ideal points is at least (n—k+1)/2. Again let W, designate
this set of at least (n—k+1)/2 points and W, the remaining set of no more
than (n—k—1)/2 points. Suppose, contrary to Corollary 2.4, that at least
k/2 ideal points lie on L on the same side of x. As before, we rotate L
infinitesimally about x to generate a new line L’ through x. And we rotate
in the direction so that the at least k/2 ideal points on L on one side of x
are placed with the set W,. Thus there are at least [(n—k+1)/2]+k/2 =
(n+1)/2 ideal points on the same side of L’, which again leads to a
contradiction. Thus no more than k/2—1 ideal points can lie.to one side
of x on any line L through x, and x must be the unique median ideal
point on L.

Thus, if the condition specified in Theorem 2 is to hold, and if all voter
preferences are diverse - in particular if the unbeaten pcint is the ideal
point of only one voter, there must be one ideal point x; such that all
remaining ideal points can be paired off in such a way that the two points
in each pair lie on a straight line with, and on opposite sides of, x;. (Two
or more such pairs may lie on the same straight line.) Figure 3 illustrates
such a configuration of ideal points for n=7. For the case of Euclidean
preferences, this constitutes the Plott (1967) pairwise symmetry condition
sufficient for the existence of an unbeaten point. For n odd and diverse
preferences, this symmetry condition is also necessary for an unbeaten
point. But if preferences are not diverse — in particular, if the unbeaten
point is the shared ideal point of two or more voters — (or if n is even),
such symmetry is not necessary.!° Figure 4 provides an illustration, where
the shared ideal point of voters 4 and 5 is unbeaten.

6. Win Sets with an Unbeaten Point

Given an arbitrary point x, we can always demarcate the win set W(x) by
examining every line L through x, provided that we can determine where

10. That the Plott symmetry condition is not more generally necessary for the existence
of an unbeaten point is quite often misunderstood, as Enelow and Hinich (1983) observe.
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Figure 3. The Plott Symmetry Condition Figure 4. An Unbeaten Point with
Non-Diverse Preferences

the median line M perpendicular to L intersects L. By Lemma 3, point x
is beaten by every point y on L between x and its reflection x* through
M; by Lemma 2, x is beaten by only these points (and possibly by x*) on
L.

Proceeding in this manner, we can establish the following theorem in
the special case in which an unbeaten point exists; it is essentially a
theorem due to Davis, DeGroot and Hinich (1972)."

THEOREM 3. Given an unbeaten point c, if point y is further from c
than point x is, x beats y.

Proof. Since there is an unbeaten point ¢, from Theorem 2 every median
line passes through ¢. Consider any point x at a distance d from ¢ and
any line L through x, as shown in Figure 5. M is the median line perpen-
dicular to L. By Lemma 3, x is beaten by every point on L between x
and its reflection x* through M and, by Lemma 2, x is beaten only by
these points (and possibly by x* itself) on L. Since M is the perpendicular
bisector of the reflection line, x and x* are equidistant from all points on
M, including c. Thus the distance from x* to c is d, and the distance from
¢ to any point on L between x and x* is less than d (as is shown clearly
in Figure 5 by drawing in part of the circle with center ¢ and radius d).
So, in any event, x is beaten by every point on L that is closer to c¢ than

11. The Davis, DeGroot and Hinich theorem says that, if there is an unbeaten point,
majority preference is transitive. (This certainly is not true in the non-spatial case.) Theorem
3 would be equivalent if it said that 'y beats x if and only if y is closer to ¢’. This in turn
would imply that points equidistant from ¢ must tie. We can assure this by making either of
two changes in our assumptions. The first is to define majority rule in the absolute sense;
cf. footnote 5 (this is what Davis, DeGroot and Hinich do). The second is to specify that
preferences are diverse and, in particular, that only one voter has c as his ideal point.
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Figure 5. Demarcating a Win Set with an Unbeaten Point

x is (and beats every point on L that is further from c than x is). Restating
these conclusions for all lines through x gives the theorem.

Thus, if there is an unbeaten point ¢, any win set W(x) is the set of
points enclosed by the circle centered on ¢ and passing through x."?

We can also derive a simple formula for the distance from x to the
boundary of its win set in any direction, i.e. from x to x* on any line
through x. A ray from a point, x, is a half line beginning at x and pointing
outward from x in any direction. We may specify a ray from point x in
terms of the angle ® between the given ray and the ray from x through
¢ (see Figure 5; in fact there are two rays for each ©®: the one drawn in
the figure and the one in the mirror image of the figure below the line
through ¢ and x)."? Note that x, ¢ and the projection ¢’ of ¢ on L form
the vertices of a right triangle. Recall that the cosine of an angle in a right
triangle is the ratio of the length of the adjacent side to the length of the
hypotenuse. Thus if p is the distance from x to ¢’, cos ® = p/d, so
p = d - cos O, and the distance from x to x* (i.e. the distance from x
along the ray specified by © to the boundary of its win set) is 2p = 2d - cos
O. The locus of points at a distance 2d - cos © from x is the circle centered
on ¢ and passing through x.

12. W(x) may possibly include some points on the circle — again unless we assume absolute
majority rule or require preferences to be diverse.

13. This is a strictly two-dimensional statement. In three (or more) dimensions there are
an infinite number of rays from x for a given © (defining a cone with vertex at x), but our
conclusion generalizes in the natural way, i.e. W(x) is enclosed by a sphere centered on ¢
and passing through x.
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7. The Yolk

Theorem 2 and the subsequent discussion should persuasively indicate
that, in two (or more) dimensions, there is almost never an unbeaten
point, for such a majority rule equilibrium requires that ideal points ‘line
up’ in a highly unlikely fashion. Put more directly in terms of Theorem
2, it is simply unlikely that ideal points will be distributed in such a way
that all median lines intersect exactly at a common point. But, at the same
time, it does seem that ideal points will typically be distributed in such a
fashion that each median line would cut more or less through the center
of the distribution, so that there would be a fairly small region (though
not a single point) through which all median lines pass. It would be useful
to have some measure of the size of this region, which would then indicate
how far the distribution of ideal points departs from one that would
generate an unbeaten point.

Following Ferejohn et al. (1984) and McKelvey (1986), we define the
yolk as the region bounded by the circle of minimum radius that intersects
every median line. The yolk for the configuration of ideal points displayed
in Figure 1 is shown in that diagram. Notice that a circle that intersects
every limiting median line necessarily intersects every other median line
as well, as non-limiting median lines through any point x lie between pairs
of limiting median lines through x. McKelvey (1986) provides a linear
programing method for computing the exact location and size of the yolk,
i.e. its center, c, and radius, r; but the location and size of the yolk can
be determined with fair accuracy on the basis of visual inspection once
limiting median lines are drawn in.

The location of the yolk may be thought of as indicating the generalized
center (in the sense of the median) of the distribution of ideal points. It
is possible for the yolk to be a circle with zero radius, i.e. the single point
¢, as shown in Figure 6(a). Obviously, this is true if and only if all median
lines pass through a common point. Theorem 2 tells us that in this case
(and only in this case) the common point is unbeaten, and the discussion
in the previous section applies. In general, the yolk is enclosed by the
smallest circle such that every median line passes through it. Thus the
radius of the yolk may be thought of as measuring the extent to which
the configuration of ideal points departs from one that generates an
unbeaten point. In Figure 6(b), the configuration displayed in Figure 6(a)
has been slightly perturbed, creating a yolk of positive but small radius. In
Figure 6(c), the configuration has been further perturbed (in a deliberately
contrived fashion), creating a relatively large yolk.

It is important to emphasize that the size of the yolk does not indicate,
and is not a function of, the dispersion of voter ideal points, except in a
limited way. It is true that the yolk must be contained within the distri-
bution of ideal points. Thus if all ideal points are concentrated in a small
area, the yolk also must be small. On the other hand, if the ideal points
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Figure 6. (a) Yolk with Zero Radius: (b) Yolk with Small Radius: (c¢) Yolk with Large
Radius

are spread out, the yolk may be either small or large, depending on the
particular configuration of dispersed ideal points. This is illustrated in
Figures 6(a)-(c), in which the configurations of seven ideal points all
exhibit essentially the same dispersion, but the yolks vary greatly in size.
(Note that these figures display limiting median lines only.)

We now present a useful lemma concerning the yolk.'

14. This is a strictly two-dimensional proposition. In three dimensions median ‘lines’
become median planes. the yolk is a sphere, and at least four median planes are tangent to
the yolk. In w dimensions, at least w —1 median hyperplanes are tangent to the yolk. In
any event, Lemma 5 generalizes straightforwardly.
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LEMMA 4. In the absence of an unbeaten point, at least three median
lines are tangent to the yolk.

Proof. It is a basic result of geometry that a circle can be inscribed
within any triangle, so that each of the three sides of the triangle is tangent
to the circle. Any three limiting median lines (that do not intersect at a
common point) enclose a triangle, and the circle inscribed within this
triangle is clearly the smallest circle intersecting all three median lines.
Consider a fourth limiting median line. If it does not intersect the circle,
the additional median line together with two of the original three form a
triangle whose inscribed circle intersects all four median lines, and which
is the smallest circle to do so. So, in any event, the smallest circle intersect-
inig all four median lines is tangent to at least three of them. And so forth,
until we have considered every limiting median line (which are finite in
number). As previously noted, this circle must intersect all non-limiting
median lines as well.

Lemma 4 has this further implication.

LEMMA 5. In the absence of an unbeaten point, for any point x, there
is some median line M such that x and the center of the yolk c lie on the
same side of M.

Proof. Refer to Figure 7, which shows the yolk with center ¢ and the
three median lines known to be tangent to the yolk. However these
median lines are drawn, they partition the space into three subsets labelled
A, B and C. (For precision, we should specify that B includes the lines
themselves.) It can be checked that, whether x belongs to A, B or C, it
is true that x and c lie on the same side of at least one of these three
median lines.

Figure 7. Construction Used in Lemma 5
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8. Win Sets without an Unbeaten Point

The following theorem complements Theorem 3, and it pertains to the
generic case — that is, the case that almost always obtains — in which there
is no unbeaten point and the yolk has positive radius.

THEOREM 4. [n the absence of an unbeaten point, for any point x there
is some other point y that both beats x and is further from the center of the
yolk than x is.

Proof. Lemma 5 tells us that, for any point x, there is some line L
passing through x such that the median line M perpendicular to L lies
beyond the center of the yolk, as shown in Figure 8, where e is the
perpendicular distance from ¢ to M."* As we saw in connection with
Theorem 3 (and Figure 5), if x could not be beaten by points more distant
than x is from the center of the yolk, the point on L most distant from x
that could beat x would be x’’, the reflection of x through the line passing
through ¢ and perpendicular to L (at a distance of 2d - cos © from x).
But in fact x is beaten by every point on L up to (and possibly including)
x*, the reflection of x through the median line perpendicular to L (at a
distance of 2d - cos ® + 2e from x). Thus x*, further from ¢ than x is,
demarcates the boundary of W(x) along L.

Reversing the roles of the two points, it follows also that for any point
x there is some other point z that x beats and that is closer to the center
of the yolk than x is.

2d +cos 8 + 2e

2d+cos ©

Figure 8. Demarcating a Win Set without an Unbeaten Point

15. Actually, Lemma 4 gives us the stronger result that we can find some line L through
x such that the median line perpendicular to L lies beyond c and is tangent to the yolk. In
this case, e = r.
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Thus, in the absence of an unbeaten point, the win set W(x) of a point
x is never contained in the circle centered on the center of the yolk and
passing through x (as is always the case given an unbeaten point). W(x)
always extends beyond this circle in some places (and falls short of it in
other places).

This result essentially drives McKelvey’s (1976) ‘global cycling’ theorem.
By repeated application, it says that we can construct a majority preference
trajectory of this form: x is beaten by y, y is beaten by z, z is beaten by
v, and so forth, such that each new point in the trajectory is further from
the center of the yolk than the preceding point. In this way, the trajectory
can move outward from the center of the yolk without limit. It is easy to
believe that, if the trajectory moves far enough outward, it can always
move back in to x to complete the cycle. We are able formally to prove
this as a corollary to a subsequent theorem.

9. Win Sets and Distance from the Yolk

As noted at the beginning of Section 6, given an arbitrary point x at a
distance d from the center of the yolk ¢, we can demarcate W(x) by
examining every line L through x and determining where the median line
M perpendicular to L intersects L.'* We did just this in the case in which
¢ is unbeaten, i.e. c is the cnly point in the yolk.

Of course, if the only information we have concerning the configuration
of ideal points is the size and location of the yolk (i.e. that information
‘conveyed by the parameters c and r), we do not know exactly where the
median line M perpendicular to L lies. But we do know that it lies between
the two tangent lines, T, and T,, perpendicular to L and tangent to opposite
sides of the yolk (see Figure 9), for by definition every median line passes
through the yolk.

If T, and T, both intersect L on the same side of x (which can be true
only if x lies outside of the yolk), as in Figure 9(a), M must lie on that
side of x, so (regardless of the particular configuration of ideal points) x
must be beaten by points on L on that side of x. And by the polarity
property of win sets (Theorem 1'), x cannot be beaten by any points on
L on the other side of x.

If T, and T intersect L on opposite sides of x (which must be true if x
lies inside the yolk), as in Figure 9(b) we cannot say on which side of x

16. We might also observe that, if we know the shape of the win set W(x) of any point x,
we can deduce the location of all median lines. (Each median line is perpendicular to some
ray from x and bisects the line segment from x to the boundary of W(x).) In turn, we can
then deduce the shape of the win set W(y) of any other point y. A single win set, therefore,
contains complete information concerning majority preference over the entire alternative space
(given that individual preferences are Euclidean). We cannot recover the location of all
individual ideal points from a win set, however.

396



THE GEOMETRY OF MAJORITY RULE

Figure 9. (a) Both Tangent Lines Intersecting a (Dominating) Ray; (b) Only One Tangent
Line Intersecting a (Contingent) Ray

M lies, but (unless it happens that M passes through x, in which event no
point on L beats x) x is beaten by points on L on one or other side of x
(depending on the particular configuration of ideal points), but in any
case (by polarity) not both sides.

Thus, given the parameters ¢ (the center of the yolk), r (the radius of
the yolk) and d (the distance from ¢ to x), we can partition all lines
through x into two classes, according to whether 7, and T, intersect the
line on the same side of x or not.

In turn, we can partition all rays from x into three classes:

1. dominating rays, which must intersect W(x) regardless of the particu-
lar configuration of ideal points, because both T, and T, strictly intersect
each such ray;"’

2. dominated rays, which cannot intersect W(x) regardless of the particu-
lar configuration of ideal points, because neither T, nor T, strictly intersect
each such ray; and

3. contingent rays, which may or may not intersect W(x) depending on
the particular configuration of ideal points, because either T, or 75, but
not both, strictly intersects each such ray.

We find it useful to call a ray undominated if it is either dominating or
contingent; we adopt the convention (observed in Figures 9(a) and 9(b))
that, in the event that a ray is dominating, 7, lies closer to x than 7, and,
in the event that a ray is contingent, the ray intersects 7, but not 7.

We call two rays opposites if they lie on the same line pointing in
opposite directions. Then, from the polarity property. if a ray from x is
dominating, its opposite is dominated, and vice versa; and if a ray is

17. By ‘strictly intersecting’ a ray from x, we mean that T passes through a point on the
ray other than x itself.
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contingent, so is its opposite. '® Thus the sets of dominating and dominated
rays constitute the two nappes of a cone with the vertex at x and centered
on the line through ¢ and x. These sets constitute the dominating cone
and the dominated cone, respectively, with respect to x; the dominating
cone faces toward the yolk and the dominated cone faces away from the
yolk. The set of contingent rays is the complement of these cones; we
may call it the chaotic region. These definitions are illustrated in Figure
10.

The next question is how to specify which rays are of which type, and
thus to specify exactly where these regions about x lie. (We have already
observed that, if point x is inside the yolk, all rays from x are contingent;
thus the chaotic region with respect to such a point fills the entire space.)
As before, we specify rays from x in terms of the angle © between the
ray in question and the ray from x through the center of the yolk. We
can answer the question of which rays are of which type by computing
the critical angles ©* and ©** that separate dominating from contingent
rays and contingent from dominated rays, respectively, as shown in Figure
10. Each angle is a function of r, the radius of the yolk, and d, the distance
from x to c¢. Angle ©* defines the ray such that T, passes through x (see
Figure 11(a)); angle ©** defines the ray such that T, passes through x,
and is simply 180° — ©* (see Figure 11(b)). Thus cos ©* = r/d and
cos @** = —r/d.

Chaotic

Figure 10. Dominating, Chaotic, and Dominated Regions About a Point Outside the Yolk

18. One ‘boundary condition’ constitutes an exception to these statements: if a tangent
line passes exactly through x, one ray from x is contingent and its opposite is dominated.
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(b)

Figure 11. (a) Critical Angle Separating Dominating and Chaotic Regions; (b) Critical
Angles Separating Chaotic and Dominated Regions

We can summarize this discussion in the following theorem. (Recall
that cos © decreases as © increases and that, in particular, cos 0° = 1,
cos 90° = 0, and cos 180° = —1.)

THEOREM 5. For any point x at a distance of d from the center of the
yolk c, and for any ray from x specified by O: (1) if I = cos @ > r/d, the
ray is dominating; (2) if r/d < 1 (i.e. if x is outside the yolk) and —rld =
cos © = —1, the ray is dominated; and (3) if r/d = cos ©@ > —r/d or if rld
=] (i.e. if x is in the yolk), the ray is contingent.

Proof. Follows from the preceding discussion.

Given these relationships, we can readily see what happens to the three
regions of the space about x as the ratio r/d changes.

As x moves further from the yolk (as d increases), or the radius of the
yolk shrinks (as r decreases), so that the ratio r/d decreases and approaches
zero, the critical angles ©* and ©** approach 90° (from below and above,
respectively). Thus the dominating and dominated cones widen and the
chaotic region contracts. Therefore, as distance from the yolk increases
or the size of the yolk decreases, majority rule becomes more orderly —
in that a given point is beaten by a larger and larger fraction (approaching
100 per cent) of nearby points in the direction of the yolk and by a smaller
and smaller fraction (approaching O per cent) of points in the direction
away from the yolk. (As we have seen from Theorem 3, majority rule
becomes perfectly orderly in this sense when the radius of the yolk shrinks
to zero.)

As x moves closer to the yolk (as d decreases), or the yolk expands (as
r increases), so that the ratio r/d increases and approaches one, the critical
angles ©* and ©** approach 0° and 180° respectively, so the dominating
and dominated cones narrow and the chaotic region expands. Therefore,
as distance from the yolk decreases or as the size of the yolk increases,
majority rule becomes more chaotic — in that a given point is beaten by
a smaller and smaller fraction (approaching 50 per cent) of nearby points
in the direction of the yolk and by a larger and larger fraction (approaching
50 per cent) of points in the direction away from the yolk.
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As we have already seen, if x is within the yolk, all rays from x are
contingent and, in this sense, majority rule within the yolk is totally chaotic
- a point within the yolk may be beaten by nearby points ‘on all sides’.

Next, we should bear in mind that, while x beats every point on a
dominated ray. x certainly is not beaten by every point on a dominating
ray but only by ‘nearby’ points. Put otherwise, while W(x) includes no
points in the dominated cone, W(x) includes only all ‘nearby’ points in
the dominating cone and some ‘nearby’ points in the chaotic region. The
question naturally arises of how ‘nearby’ these points must be. The answer
to this question follows directly from previous considerations.

Consider any dominating ray from x (see Figure 12). By definition both
T, and T, strictly intersect the ray. The median line perpendicular to the
ray cannot be closer to x than 7,. Thus x must be beaten by all points on
the ray between x and its reflection through T.. The distance from x to ¢’
(the projection of ¢ onto the ray) is, as we saw earlier, d - cos ©. The
projection x’ of x onto T is closer to x by the distance r, so the distance
from x to x' is d - cos ®—r. The distance from x to its reflection x,*
through 7, is just twice this, i.e. 2d - cos ®—2r. (Notice that this

T,
Z ‘ Chaotic

Outer ,’/ A
Cardioid g \
/ \‘
o [ A_\m_ B}
NYZ N Cone |
Cardioid N

hL

Region

Figure 12. Cardioid Bounds on a Win Set
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expression is positive just so long as the ray is dominating, i.e. cos © >
rid.) Thus x must be beaten by all points on a dominating ray up to a
distance of 2d - cos ®—2r from x.

Now consider any undominated ray from x. By definition, 7, strictly
intersects the ray. The median line perpendicular to the ray cannot be
further from x than 7,. Thus x must beat all points on the ray beyond x
and its reflection through 7,. Calculating in the same manner as above,
the distance from x to its reflection x,* through T is 2d - cos @+2r. (Notice
that this expression is positive just so long as the ray is undominated, i.e.
cos ® >—r/d.) Thus x must beat points on an undominated ray beyond a
distance of 2d - cos ®+2r from x.

In summary, we have established the following theorem.

THEOREM 6. For any point x at a distance of d from the center of the
yolk ¢, and for any ray from x specified by ©: (1) x is beaten by all points
on a dominating ray up to a distance of 2d - cos @—2r from x; and (2) x
beats all points on an undominated ray beyond a distance of 2d - cos @+2r
from x.

Proof. Follows from the preceding discussion.

This is, in effect, the theorem due to Ferejohn et al. (1984) who state
it in the following manner. Recall that the locus of points at a distance of
2d - cos © from x is simply the circle centered on ¢ and passing through
x. From the analysis just above, inner and outer bounds on W(x) are given
by the locus of points at a distance of 2d - cos ©@—2r and at a distance of
2d - cos ©+2r, respectively, from x. The first locus is the cardioid with
center ¢, underlying radius d, its cusp at x, and (negative) eccentricity
of—2r; the second locus is an otherwise similar cardioid with (positive)
eccentricity of +2r. Such cardioids are shown in Figure 12. Ferejohn et
al. state the theorem this way: the region enclosed by the inner cardioid
(with negative eccentricity) is contained in W(x), and W(x) in turn is
contained in the outer cardioid (with positive eccentricity).!®

10. Cycle Lengths and the Uncovered Set

Given the preceding results, we can now readily derive McKelvey’s ‘global
cycling’ theorem. We are also in a position to determine how long a cycle
must be to include two arbitrary points, a consideration that has direct
relevance also for the size of the uncovered set (since, if a point z beats
an uncovered point x, there is some third point y such that x beats y and

19. If x is inside the yolk (so no rays are dominating), the inner cardioid disappears and
the outer cardioid does not intersect x. If x is at ¢, the outer cardioid is simply the circle
centered on ¢ with radius 2r. We can use Lemma 4 to show that the boundary of W(x) must
touch the outer cardioid at some point (and likewise the inner cardioid, if it exists).
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y beats z). Thus we can also derive McKelvey’s circular bound on the
uncovered set.

Consider a point x at distance d from the center of the yolk c. Let us
construct two circles, both centered on ¢ and with radii of d—2r and d+2r
respectively. (The first circle will exist only if d > 2r.) It is apparent from
Figure 13, and from the discussion in the preceding section, that the region
enclosed by the smaller circle is a subset of the region enclosed by the
inner cardioid that is an inner bound on W(x), and the region enclosed
by the larger circle is a superset of the region enclosed by the outer
cardioid that is an outer bound on W(x). Thus these are circular (inner
and outer) bounds on W(x); x beats every point in the smaller circle and
is beaten by every point outside the larger circle.

It is worth stating this formally, as a corollary to Theorem 6.

Figure 13. Circular Bounds on a Win Set

COROLLARY 6.1. If point y is more than 2r further from the center of
the yolk than point x is, x beats y.

Note that this corollary subsumes Theorem 3, which pertains to the
special case in which 2r = 0.

Given this corollary in conjunction with Theorem 4, we can prove
McKelvey’s (1976) ‘global cycling’ theorem.

THEOREM 7. In the absence of an unbeaten point, for any pair of points
x and y, we can find a majority preference cycle including both x and y.
Proof. Suppose that x is beaten by y. By repeated application of The-
orem 4, we can always construct a trajectory of this form: y is beaten by
Z, z is beaten by w, and so forth, to a point at any finite distance from
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the center of the yolk. In particular, we can construct such a trajectory to
some point v at a distance greater than d+2r from the center of the yolk,
where d is the distance from x to the center of the yolk. By Corollary 6.1,
v is beaten by x. Thus we have the required cycle including both x and y.
If y is beaten by x, we can construct a similar trajectory from x to y to
get the required cycle. If x and y tie, we can construct similar trajectories
from x to y and from y to x and put them together to get the required
cycle. This establishes McKelvey’s theorem.?

While Corollary 6.1, in conjunction with Theorem 4, establishes McKel-
vey’s theorem, it also indicates a majority preference trajectory leading
from point x to a point y; considerably more distant from the center of
the yolk may require many intermediate steps, especially if the yolk itself
is small, since each step in the trajectory can lead at most 2r further out
from the center of the yolk.?’ We can state this formally.

COROLLARY 6.2. Given any two points x and y linked in a majority
preference cycle including k points altogether, where d, and d, are the
distances of x and y, respectively, from the center of the yolk and where d,
is less than d,, d,—d, cannot exceed 2r(k—1).

We also have the following corollary.

COROLLARY 6.3. If point y is more than 4r away from the center of
the yolk than point x is, x covers y.

Proof. Let d, and d. be the distances of x and y, respectively, from the
center of the yolk. Since d.—d, is greater than 4r, by Corollary 6.1 x beats
vy, and the circle centered on ¢ with radius d,—2r encloses the circle
centered on ¢ with radius d,+2r. Any point z that y beats must be on or
outside the larger circle (with radius d,—2r) but then z is outside the
smaller circle as well, which means x beats z. So x beats everything v
beats. Any point z that beats x must be on or inside the smaller circle
(with radius d,+2r) but then z is inside the larger circle as well, which

20. However, McKelvey defines majority preference in the absolute sense. Strictly, then,
we must also show that every majority preference relationship in the trajectories we have
constructed can be effected by a majority of all voters (not just a majority of non-indifferent
voters). All this requires is that the trajectory never move from a point w to a point u such
that u is the reflection w* of w through the median line perpendicular to the line connecting
w and u but instead to a point u such that « is between w and w*. This might possibly mean
the required trajectory would be slightly longer than otherwise, but it could be constructed
in any event.

21. Also, if this maximum outward movement of 2r is to be approached at each step, the
trajectory will move wildly back and forth across the alternative space, since — as the shape
of the outer cardioid indicates (see Figure 12) - the points most distant from the center of
the yolk that beat a given point x tend to be located on the far side of the yolk from x. Both
of these considerations suggest significant limitations on the kind of ‘agenda control’ that,
as McKelvey noted, are implied by his "global cycling’ theorem. We have pursued this line
of argument systematically in another paper (Feld et al., 1989).
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means z beats y. So z does not tie anything that beats x either. By
definition, then, x covers y.%

In Figure 13, for example, every point inside the inner circle covers
every point outside the outer circle.

We finally state the theorem giving McKelvey’s (1986) bounds on the
uncovered set.

THEOREM 8. The uncovered set of points is bounded by the circle
centered on the center of the yolk with radius 4r.

Proof. By Corollary 6.3, the point ¢ at the center of the yolk covers all
points outside the circle with center ¢ and radius 4r. Thus the set of points
not covered by c is within this circular bound. The uncovered set, i.e. the
set of all points none of which is covered by any other point, is a subset
of the set of points not covered by c. So, in any event, the uncovered set
lies within the same circular bound.

Thus, any political choice process that produces outcomes in the
uncovered set (such as those identified by Miller, 1980; and McKelvey,
1986), produce outcomes that are generally centrally located and, if the
yolk is relatively small, confined to a relatively small portion of the issue
space.?

11. Discussion

The purpose of this paper has been essentially methodological: to present
some basic results concerning majority rule on an alternative space in such
a way that the meaning and proofs of the theorems are accessible to a
relatively broad political science audience. But there is an underlying
substantive theme to this exposition as well, and it is worth highlighting
it explicitly, since it qualifies some interpretations of the ‘chaos theorems’.

The first substantive point to make is that majority rule on an alternative
space of two (or more) dimensions typically is not all that ‘chaotic’. The
strength of points with respect to majority preference is very much a
function of their centrality in the space, i.e. their closeness to the center
of the yolk. If there is an unbeaten point, majority rule is perfectly
behaved, as the strength of points is exclusively a function of their central-
ity (Theorem 3). Otherwise (i.e. in the generic case in which there is no

22. Another way to say this is that, if y is more than 4r further away from c than x is, the
inner cardioid with cusp at y always encloses the outer cardioid with cusp at x.

23. This raises the question as to the ‘typical’ size of the yolk. We expect the yolk typically
to be small relative to the distribution of voter ideal points. Certainly the yolk is contained
within this distribution; it can contain more than a very small proportion of the ideal points
only if the remaining ideal points are very oddly distributed; and the yolk is unlikely to
expand in size, and very probably shrinks in size, as new ideal points are added to a
distribution. We pursue these matters in more detail in Feld et al. (1988).
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unbeaten point) an element of ‘imperfection’ is introduced into majority
rule, in that somewhat less central points sometimes beat somewhat more
central points. But this is the exceptional case and in any event can occur
only if the less central point is not too much further from the center of
the yolk than the more central one (e.g. Corollary 6.1).

The second point to make is that the generic ‘imperfection’ of majority
rule on a space of alternatives is itself a matter of degree, though the
standard verbal statement of McKelvey’s ‘global cycling theorem’ (used
in Section 1) — that if majority rule fails at all, it fails completely — may
suggest that majority rule is either perfectly behaved or totally chaotic.
The degree of ‘imperfection’ is a direct function of the size of the yolk,
which determines the size of the circular bounds identified by Corollary
6.1, determines the eccentricity of the inner and outer cardioids, and
(together with the distance from point x to the center of the yolk) deter-
mines the magnitude of the critical angles ®* and ©** and thus the size
of the chaotic region about x. If the yolk is large, majority rule is indeed
quite ‘imperfect’ but, as the yolk decreases in size, the behavior of majority
rule approaches perfection in a continuous manner.
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